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Sound Source Separation Problem

In a natural environment, a target sound source 
(e.g. speech) is usually accompanied by acoustic 
interference 
Many sound processing tasks, such as automatic 
speech recognition, audio retrieval, and hearing 
aid design, require a solution to the sound 
separation problem
Problem has been studied using different 
approaches



Approaches to Sound Separation Problem

Speech enhancement: Enhance signal-to-noise ratio 
(SNR) or speech quality by attenuating interference

Advantage: Simple and applicable to one-microphone recordings 
Challenge: Prior knowledge of interference

Spatial filtering (beamforming): Extract target sound 
from a specific spatial direction with a sensor array

Advantage: High fidelity and robustness to reverberation
Challenge: Rigidity. What if target switches or changes its location?

Independent component analysis: Find a demixing 
matrix from mixtures of sound sources

Advantage: High fidelity when assumptions are met
Challenge: Limiting assumptions. Chief among them is stationarity 
of mixing matrix



Auditory Scene Analysis (Bregman’90)

Listeners are able to parse a complex mixture of 
sounds arriving at the ears in order to retrieve a 
mental representation of each sound source 

Ball-room problem, Helmholtz, 1863 (“complicated 
beyond conception”)
Cocktail-party problem, Cherry’53

Two conceptual processes of ASA:
Segmentation. Decompose the acoustic mixture into 
sensory elements (segments)
Grouping. Combine segments into groups, so that 
segments in the same group are likely to have originated 
from the same source



Computational Auditory Scene Analysis

Computational ASA (CASA) approaches sound 
separation based on ASA principles

Weintraub’85, Cooke’93, Brown & Cooke’94, 
Klassner’96, Ellis’96, Wang & Brown’99
Problem domain or technical approach?

CASA advantage: Monaural segregation with 
minimal assumptions
CASA challenge: Reliable pitch tracking of noisy 
speech, unvoiced speech, room reverberation



CASA Evaluation Criteria
Comparing segregated target with premixing target

In terms of the group of target elements (Cooke’93)
In terms of SNR (Brown & Cooke’94; Wang & Brown’99)
In terms of spectral distortion (Nakatani & Okuno’99) or Wiener 
filter (Bodden’93)

Automatic speech recognition (ASR)
Weintraub’85; Glottin’01

Human listening
Stubbs and Summerfield’90; Ellis’96

Fit with perceptual and biological phenomena
Wang’96; McCabe and Denham’97; Wrigley’02



What Is the Goal of CASA?
What is the goal of perception?

The perceptual systems are ways of seeking and extracting 
information about the environment from sensory input (Gibson’66)
The purpose of vision is to produce a visual description of the 
environment for the viewer (Marr’82)
By analogy, the purpose of audition is to produce an auditory 
description of the environment for the listener

What is the computational goal of ASA?
The goal of ASA is to segregate sound mixtures into separate 
perceptual representations (or auditory streams), each of which 
corresponds to an acoustic event (Bregman’90)
By extrapolation the goal of CASA is to develop computational 
systems that extract individual streams from sound mixtures



Marrian Three Levels of Analysis

According to Marr (1982), a complex information 
processing system must be understood in three levels

Computational theory: goal, its appropriateness, and basic processing 
strategy 
Representation and algorithm: representations of input and output 
and transformation algorithms
Implementation: physical realization

All levels of explanation are required for eventual 
understanding of perceptual information processing 
Computational theory analysis – understanding the 
character of the problem – is critically important



Computational-Theory Analysis of ASA

To form a stream, a sound must be audible on its 
own
The number of streams that can be computed at 
a time is limited

Magical number 4 for simple sounds such as tones and 
vowels (Cowan’01)?
1, or figure-ground segregation, in noisy environment 
such as a cocktail party?

Auditory masking further constrains the ASA 
output

Within a critical band a stronger signal masks a weaker 
one



Computational-theory Analysis of ASA - continued

ASA result depends on sound types (overall 
SNR is 0)

Noise-Noise: pink      , white      , pink+white 
Tone-Tone: tone1     , tone2      , tone1+tone2
Speech-Speech: 
Noise-Tone:
Noise-Speech:
Tone-Speech:



Some Alternative CASA Objectives
Extract all underlying sound sources or a target sound 
source

Segregating all sources is implausible (probably unrealistic with one 
or two microphones)
A target might be too soft to be segregated

Enhance ASR
Advantage: close coupling with a primary motivation of CASA
Disadvantage

Specific to one kind of signal (e.g. what about music?)
Perceiving is more than recognizing (Treisman’99)

Enhance human listening 
Advantage: close coupling with auditory perception
Disadvantage

There are CASA applications that involve no human listening
Not always feasible for engineers
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Ideal Binary Mask as a Putative Goal of CASA

Key idea is to retain parts of a target sound that are 
stronger than the acoustic background, or to mask 
interference by the target

What a target is depends on intention, attention, etc.

Within a local time-frequency (T-F) unit, the ideal binary 
mask is 1 if target energy is stronger than interference 
energy, and 0 otherwise (Hu & Wang’01; Roman et 
al.’03)

Local 0 SNR criterion for mask generation
Earlier studies use binary masks as an output representation (Brown 
& Cooke’94; Wang and Brown’99; Roweis’00), but do not suggest 
the explicit notion of an ideal binary mask



Ideal Binary Mask Illustration



Resemblance to Visual Occlusion



Properties of Ideal Binary Masks

Flexibility: With the same mixture, the definition leads to 
different masks depending on what target is
Well-definedness: An ideal mask is well-defined no 
matter how many intrusions are in the scene or how 
many targets need to be segregated
Consistent with computational-theory analysis of ASA

Audibility and capacity
Auditory masking

Ideal binary masks yield good target resynthesis and 
provide a highly effective front-end for automatic speech 
recognition (Cooke et al.’01)

ASR performance degrades gradually with deviations from an ideal
mask (Roman et al.’03)



Ideal Binary Masking and Speech Intelligibility

Ideal binary masking provides a potential 
methodology to remove informational masking 
(distraction from perceptually similar maskers) 
by making maskers inaudible
Human speech intelligibility tests on ideal binary 
masking (Chang, Brungart, et al.’03)

Stimuli: CRM (coordinate response measure) corpus
1-3 speech maskers (competing talkers)
Varying SNR criterion for each T-F unit



Intelligibility Results

Overall target to single-masker SNR is 0 dB



Results and Implications

Intelligibility performance reaches near 100% 
for a range of local SNR criteria, from around    
-10 dB to +10 dB

Precise criterion for local SNR is not necessary in order 
to produce high intelligibility

Systematic degradation towards higher or lower 
local SNR criteria and more talkers
Informational masking is eliminated

Is informational masking localized energetic masking?
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Monaural Segregation of Voiced Speech

For voiced speech, lower harmonics are resolved while 
higher harmonics are not
For unresolved harmonics, a filter channel responds to 
multiple harmonics, and its response is amplitude 
modulated (AM)
Our study (Hu & Wang’01) applies different grouping 
mechanisms in the low-frequency and high-frequency 
ranges (see Bird & Darwin’97)

Low-frequency signals are grouped based on periodicity and 
temporal continuity
High-frequency signals are grouped based on AM and temporal 
continuity



AM - Example

(a) The output of a gammatone filter (center frequency:
2.6 kHz) in response to clean speech

(b) The corresponding autocorrelation function



T-F Unit Labeling and Grouping

In the low-frequency range, a T-F unit is labeled by 
comparing its periodicity with the estimated target pitch
In the high-frequency range:

Due to their wide bandwidths, high-frequency filters respond to 
multiple harmonics. These responses are amplitude modulated due to 
beats and combinational tones (Helmholtz, 1863)
A T-F unit in the high-frequency range is labeled by comparing its 
AM repetition rate with the estimated target pitch

New segments corresponding to unresolved harmonics 
are formed based on temporal continuity and cross-
channel correlation of response envelopes (i.e. common 
AM). Then they are grouped into the foreground stream 
according to AM repetition rates



Voiced Speech Segregation Example



Systematic SNR Results
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Evaluation on a corpus of 100 mixtures (Cooke’93): 10 voiced 
utterances x 10 noise intrusions based on ideal binary masks
Average SNR gain: 12.1 dB; 5 dB better than the Wang-Brown model 
(1999)



Segregation Examples

Mixture

Ideal Binary Mask

Estimated Binary Mask



Binaural Segregation of Natural Speech

The objective is to model a listener’s ability to selectively 
attend to one talker while filtering out acoustic 
interference using binaural cues
Binaural speech segregation is applicable to both voiced 
and unvoiced speech
Our study (Roman, Wang, & Brown’03) focuses on 
location cues:

Interaural time difference (ITD)
Interaural intensity difference (IID)

Again, the computational goal is to estimate ideal binary 
masks



Ideal Binary Mask Estimation

For narrowband stimuli, we observe that systematic 
changes of extracted ITD and IID values occur as the 
relative strength of the original signals changes. This 
interaction produces characteristic clustering in the joint 
ITD-IID space
The core of our model lies in deriving the statistical 
relationship between the relative strength and the 
binaural cues

Independent supervised learning for different spatial configurations 
and different frequency bands in the joint ITD-IID space

The model yields large SNR improvements
For 2-source configurations, average SNR gain (at the better ear) 
ranges from 13.7 dB to 5 dB depending on azimuth separation and 
deviation from median plane
For 3 sources, average SNR gain is 11.3 dB in good configurations



3-Source Configuration Example

- Data histograms for one channel (center frequency: 1.5 kHz) from
speech sources with target at 0ο and two intrusions at -30ο and 30ο (R: 
relative strength)

- Clustering in the joint ITD-IID space



Example (Target: 0o, Noise: 30o)

Target Noise Mixture Ideal binary mask Result



Sound Demos
2 sound sources (Target: 0o, Noise: 30o)

Noise Mixture Segregated target
‘Cocktail Party’

Siren

Female Speech

Target

3 sound sources (Target: 0o, Noise1: -30o, Noise2: 30o)

Noise1 Mixture Segregated target
‘Cocktail Party’

Female Speech

Target

Noise2



ASR Evaluation
We employ the missing-data technique for robust speech recognition 
(Cooke et al.’01). The task domain is recognition of connected digits

Target at 0ο 

Intrusion (male speech) at 30ο
Target at 0ο 

Two intrusions at 30ο and -30ο



Speech Intelligibility Evaluation
We employ the Bamford-Kowal-Bench sentence database that 
contains short semantically predictable sentences as target

Mixture Segregated
Two-source (0ο, 5ο) condition
Interference: babble noise

Three-source (0ο, 30ο , -30ο) condition 
Interference: male utterance & female utterance



Summary

A clear understanding of the computational goal 
of ASA is important for model development

Computational theory analysis
Evaluation criteria for CASA

Discussion of different CASA objectives
Ideal binary mask as a putative goal

Example studies estimate ideal binary masks for 
monaural and binaural speech segregation
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