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Abstract

Background noise and room reverberation are two major distor-
tions to the speech signal in real-world environments. Each of
them degrades speech intelligibility and quality, and their com-
bined effects are especially detrimental. In this paper, we pro-
pose a DenseUNet based model for noisy-reverberant speech
enhancement, where a novel time-frequency (T-F) attention
mechanism is introduced to aggregate contextual information
among different T-F units efficiently and a channelwise atten-
tion is developed to merge sources of information among dif-
ferent feature maps. In addition, we introduce a normalization-
activation strategy to alleviate the performance drop for small
batch training. Systematic evaluations demonstrate that the pro-
posed algorithm substantially improves objective speech intelli-
gibility and quality in various noisy-reverberant conditions, and
outperforms other related methods.
Index Terms: speech denoising, speech dereverberation, com-
plex ratio mask, DenseUNet, attention

1. Introduction
In daily listening environments, speech is inevitably corrupted
by background noise. Besides additive noises, reverberation
caused by the attenuated and delayed reflections of sound waves
in a room is another major distortion that we face everyday.
These distortions together degrade both speech intelligibility
and quality, especially when the signal-to-noise ratio (SNR) is
low [1, 2]. Furthermore, many speech processing tasks such
as automatic speech recognition (ASR) and speaker identifica-
tion (SID) become more difficult under these adverse noisy-
reverberant conditions [3, 4].

For noisy-reverberant speech enhancement, Han et al. [5]
proposed to utlize deep neural networks (DNNs) to learn a
nonlinear mapping from the log magnitude spectrum of noisy-
reverberant speech to that of clean-anechoic speech. Consid-
ering the different natures of background noise and room re-
verberation, Zhao et al. [6] employed a two-stage strategy to
enhance noisy-reverberant speech, where noise and reverbera-
tion were removed in two separate stages, respectively. The
two-stage system was jointly optimized with a time loss during
training. Similar to [5], during testing, the time-domain sig-
nals were resynthesized using the Griffin-Lim phase enhance-
ment algorithm [7]. Ribas et al. [8] proposed a wide residual
network (WRN) based model to perform enhancement, which
leverages the residual connections in a very deep architecture.
Although good performance was obtained, these methods focus
on performing enhancement in the magnitude domain, while
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leaving phase enhancement to a post processing stage or sim-
ply using the corrupted phase. Recent studies [9, 10] have
shown substantial improvements of performing enhancement
in the complex domain. In addition, speech separation studies
[11, 12] were conducted on time-domain signals in an end-to-
end fashion. However, the short-time Fourier transform (STFT)
representation may be more stable than the representation di-
rectly learned from the waveform signals. This paper develops
a noisy-reverberant speech enhancement algorithm in the com-
plex domain.

From the perspective of DNN models, we adopt a Dense-
UNet architecture as the backbone, which is a combination of
the architecture of UNet [13] and DenseNet [14]. It is worth
noting that DenseUNet based models have been successfully
employed in several speech processing tasks, such as speaker
separation [15] and speech enhancement [16]. In this study,
we further improve the DenseUNet model for noisy-reverberant
speech enhancement. Specifically, we propose a novel time-
frequency (T-F) attention mechanism to integrate global infor-
mation among different T-F units and design a channelwise at-
tention mechanism to merge feature maps according to their im-
portance. Attention-based models have been studied previously
for speech enhancement [17, 18, 16].

The rest of this paper is organized as follows. We describe
the proposed algorithm in the next section. The experimental
setup and evaluations are presented in Section 3 and Section 4.
Section 5 concludes this paper.

2. Algorithm description
2.1. Problem formulation

Let s(t), h(t) and n(t) denote clean speech, room impulse re-
sponse (RIR) function, and background noise, respectively. The
noisy-reverberant speech y(t) can be written as

y(t) = s(t) ∗ h(t) + n(t) = x(t) + r(t) + n(t) (1)

where ∗ stands for the convolution operator; x(t) and r(t) de-
note anechoic speech (direct sound) and its reverberation, re-
spectively. Our objective is to recover x(t) from the observed
y(t).

Given noisy-reverberant speech sampled at 16 kHz, features
are extracted by framing the signal using the 32-ms Hamming
window with a 8-ms window shift, and then applying a 512-
point fast Fourier transform (FFT) to each frame. This results
in 257 frequency bins. Supposing the number of frames in the
utterance is N , we use Y to denote the extracted features in the
frequency domain, which is a N × 257 matrix with complex
values. Similarly, let X denote the T-F representation of x(t).
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Figure 1: System diagram of the proposed noisy-reverberant
speech enhancement model. “C(·, ·)” denotes a basic convolu-
tional block, “D(·, ·)” denotes a dense block, “TL(·)” denotes a
transition layer, “Concat” denotes concatenating feature maps,
and “TFA” denotes the proposed T-F attention. The data flow in
encoder blocks is top-down, in decoder blocks it is bottom-up.

2.2. System overview

Fig. 1 shows the diagram of the proposed system, which takes
the real and imaginary components of Y as two feature maps.
We pass the features to an input processor, where the number
of channels gradually increases to 64 by employing a convo-
lutional block and a dense block. In this study, we employ 5
dense blocks for the encoder and 5 for the decoder. Max pooling
is used to perform downsampling during encoding, and trans-
posed convolution is utilized for upsampling during decoding.
The output of the DenseUNet is passed to an output processor,
which includes a convolutional block to reduce the number of
channels to 2. These two feature maps are interpreted as the
real and imaginary components of an estimated complex ratio
mask (cRM). When applied to the complex spectrum of noisy-
reverberant speech, it provides an estimate of enhanced com-
plex spectrum X̂ , namely,

X̂ = cRM ⊗ Y (2)

Then, we compute the loss as follows,

L = ‖Xr − X̂r‖1 + ‖Xi − X̂i‖1 + ‖‖X‖2 − ‖X̂‖2‖1 (3)

where ‖ · ‖1 denotes the L1 norm and ‖ · ‖2 denotes the L2

norm; subscript r and i denote the real and imaginary compo-
nents of the complex spectrum, respectively. By incorporating
a magnitude loss as part of the loss function, better PESQ [19]
results can be expected [20].

Next we explain several terms and blocks used in the system
description. Note that the terms feature maps and channels are
used interchangeably in the following descriptions.

A basic convolutional block is denoted by C(kernel size,
out channel), which consists of a filter response normalization
(FRN) with the Thresholded Linear Unit (TLU) activation (we
use the term FRN layer to denote a FRN with the TLU) [21] and
a depthwise separable convolutional layer [22]. The kernel size
of the convolutional layer is given by kernel size. The number
of output channels is given by out channel. Due to the design
of UNet and the heavy use of dense blocks, the GPU memory
consumption for training becomes very large. The introduction
of the attention makes the memory situation even worse. So we

have to use a small batch size (4 in our experiments). How-
ever, when the batch size becomes too small, the performance
of batch normalization deteriorates rapidly. We adopt FRN lay-
ers since our study shows better performance using FRN layers
than other normalization techniques with small batch size. On
the other hand, compared with standard convolution, depthwise
separable convolution provides good performance using much
fewer parameters [22, 23].

Within a dense block, at layer l, the feature maps of all
preceding layers, z0, z1, ..., zl−1, are simply concatenated and
fed as input:

zl = Hl([z0,z1, ..., zl−1]) (4)
where Hl denotes the convolutional block at layer l. If Hl pro-
duces k feature maps and the number of input channels of the
dense block is k0, the number of output channels at layer l is
k0 + k× l. Symbol k is also called the growth rate of the dense
block. In our system, a dense block with L layers is denoted by
D(L, growth rate). In order to control the number of channels
to some level, after each dense block, we add a transition layer
(TL) to reduce the channels. Let TL(out channel) denote the
transition layer, which can reduce the number of input channels
to the given out channel.

2.3. Time-frequency attention

For speech processing tasks, the contextual information plays
a key role. To leverage such information, a general way is to
employ an attention mechanism [24]. Note that the contextual
information is not limited to the time dimension. For speech,
the frequency dimension should be also taken into account.

Following the terminology in [24], we first describe how to
compute attention and produce new representations in general.
An attention module takes queries (Q) and key-value (K − V )
pairs as the input. Mathematically, Q, K and V are matrices
and considered as a set of vectors (queries, keys or values) with
each row vector as the element. Inside the attention module,
they are first linearly projected to Q′, K′ and V ′, respectively.
Given a query q′ from Q′, a weight distribution on the keys
set is computed by the similarities between the query (q′) and
keys (K′). Then, by making a weighted sum of the values (V ′)
with the computed weight distribution, a dynamic representa-
tion is obtained to capture more relevant information in the key-
value pairs. Typically a SoftMax function is applied to these
weights, making the sum of the weights to be 1. There are dif-
ferent choices for the similarity computation, like inner product
or using a small neural network. In our study, we use a scaled
dot product as the similarity function. Therefore, the attention
is computed by

Attention(Q′,K′, V ′) = SoftMax(
Q′K′T√

dk′
)V ′ (5)

where dk′ is the dimension of vector in keys set. If queries,
keys, and values are from the same vector set, it becomes self
attention. The proposed T-F attention is based on self attention.
After applying attention weights, the weighted sum is projected
back to the original space and added to the original representa-
tion to produce a new representation.

The intermediate T-F representations (feature maps)
learned by the DenseUNet are tensors with the dimension
T × F × D (D = 64 in our experiments). Since we perform
downsampling or upsampling on both time and frequency di-
mensions during encoding and decoding, both T and F change
after encoder blocks or decoder blocks. If we consider each T-
F unit as an element, such a representation can be viewed as a
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Figure 2: Diagrams of the proposed time attention (TA) and
time-frequency attention (TFA).

vector set, in which each vector’s dimension is D and the num-
ber of vectors is T × F . To explore the global information
among different T-F units, one natural idea is to take this vector
set as the input for an attention module. However, for speech
processing applications, this idea becomes almost impossible
to implement in practice. With the vector set size to be T × F ,
the size of attention weight matrix in the attention module is
(T × F )× (T × F ), which would be very large.

To address this dimension explosion problem in directly
employing the attention mechanism, we propose to factorize the
T-F attention into time attention (TA) and frequency attention
(FA). Fig. 2 shows the diagram of the proposed T-F attention
(TFA). By doing this factorization, we reduce the large attention
weight matrix to two much smaller ones, T × T and F × F .
More importantly, it does not affect the aggregation of informa-
tion among different T-F units. With the TFA, the information
is first integrated to an intermediate T-F unit through the time
path (by employing TA), and then integrated to the target one
through the frequency path (by employing FA). The order of
TA and FA is not important. In our study, we find that the two
orders (TA+FA or FA+TA) perform similarly.

2.4. Improved transition layer

Figure 3: A schematic diagram of the proposed transition layer.
The number of channels is reduced from C1 to C2

Transition layers are used in our model to reduce the num-
ber of channels after dense blocks or the concatenation of en-
coding features and decoding features. One simple choice is
to use a 1 × 1 convolutional block, which treats all the chan-
nels with the same importance when merging them. Obviously,
different feature maps have different contributions. To lever-
age such channel information, we propose to add a channelwise
attention before the 1× 1 convolutional block to build the tran-

sition layer. Fig. 3 shows the diagram of the proposed transition
layer. Different from [25], two 1-D convolutional layers instead
of fully-connected layers are used in f1 to reduce the model
complexity and the number of introduced parameters. Specifi-
cally, we first apply global average pooling to obtain the global
information of each channel, i.e. mean statistics of each chan-
nel. Then an excitation function f1 is applied to get a weight for
each channel. We use the obtained weight vector to recalibrate
the original features. Finally, the number of channels is reduced
by using f2 (a FRN layer plus a 1× 1 convolutional block).

3. Experimental setup
3.1. Datasets

We generate noisy-reverberant data using the WSJ0 corpus [26]
as target speech. From the corpus, 7138, 410 and 330 clean
utterances are selected to produce training data, validation data
and test data, respectively. There are 83 speakers in the train-
ing data; 10 speakers in the validation data; and 12 speakers in
the test data. All the speakers in the test data are unseen dur-
ing training. Three reverberant rooms, from small to large, are
simulated. We place the microphone in a fixed position in each
room, and randomly select the position of speaker with two dis-
tances from the microphone, namely, near (0.5 m) and far (2
m). Reverberation time is selected from 0.3 s to 1.0 s, with a
0.1 s increment. We employ an RIR generator1 to generate 6
RIRs for each utterance in the training and validation data using
randomly chosen reverberant configurations. To investigate the
generalization ability of the proposed systems to different rever-
berant conditions, different test sets are generated. See Section
4 for details.

We use different noises for training, validation and testing.
For training, we utilize 10,000 noises from a sound effect li-
brary2. The total duration of the noises is about 126 hours. Each
reverberant utterance is mixed with 4 random noise cuts at a
random SNR chosen from -6 dB to 0 dB with 1 dB increment.
To further augment the noise data, one third of the noise cuts
are not sampled from the 10k noise but correspond to mixed
noises. Specifically, we first randomly sample 4 different cuts
and then mix them together to produce a mixed noise cut. The
use of mixed noises is to further increase the noise variety. Just
like a noise cut from the orignal set of noises, a mixed noise cut
is added to a reverberant utterance at a chosen SNR. There are
42828 (reverberant speech) × 4 (noise cuts) = 171312 noisy-
reverberant utterances for training. For the validation data, three
noises from the DEMAND corpus [27] are selected. The first
channel signal of the corpus is used for data generation. These
selected noises were recorded in a busy subway station, an of-
fice cafeteria, and a university restaurant. Each reverberant ut-
terance in the validation set is mixed with a random cut from
these three noises at a randomly chosen SNR from -6 dB to 6
dB with 1 dB increment. We have 2460 noisy-reverberant utter-
ances for the validation set.

To simulate realistic noisy-reverberant room environments,
two different room noises from the DEMAND corpus are se-
lected to generate test data. These noises were recorded in a
living room and an office, respectively. Three SNRs, -6 dB,
0 dB and 6 dB, are chosen to perform evaluation. The re-
verberant speech is taken as the reference signal when com-
puting the SNR. Since the objective is to recover the clean-
anechoic speech from its noisy-reverberant observation, the ac-

1Available at https://www.audiolabs-erlangen.de/
fau/professor/habets/software/rir-generator.

2Available at https://www.sound-ideas.com/.
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tual SNR level (taking clean-anechoic speech as the signal) be-
comes much lower, which makes it very challenging to enhance.

3.2. Comparison systems

We take the DenseUNet using FRN layers and the proposed
transition layers as a baseline system for comparison, and de-
note it as “DenseUNet”. The architecture is similar to that used
in deep CASA [15]. In order to investigate the function of our
proposed attention mechanism, we denote the proposed system
with the time attention as “DenseUNet+TA”, with the T-F at-
tention as “DenseUNet+TFA”.

We also employ an improved two-stage model [6] as an-
other baseline for comparison. Compared with the original
method in [6], there are several differences. Firstly, we replace
the feedforward neural networks with bidirectional long short-
term memory networks (BLSTMs). Secondly, we useL1 loss to
perform optimization instead of L2 loss. Thirdly, for the dere-
verberation stage, we directly predict the log magnitude spec-
trum of the clean-anechoic speech. For fair comparisons, the
log magnitude spectrum of the noisy-reverberant speech is used
as input features instead of using the complementary features.
In our experiments, for each stage, a two layer BLSTM network
with 1024 hidden units is used, with 512 units assigned to each
direction. We denote this system as “BLSTM-2S”.

4. Evaluations and comparisons
In this study, STOI [28] is employed to evaluate speech intelli-
gibility, and PESQ [19] is employed to evaluate speech quality.
The value range of STOI is typically [0, 1], and for PESQ, it is
[-0.5, 4.5].

4.1. Evaluations on untrained RIRs

To study whether the trained models generalize well to other
rooms, we generate a new set of RIRs. Specifically, we simu-
late a room with size 10 m × 7 m × 3 m. Three reverberation
times (0.3 s, 0.6 s and 0.9 s) are investigated, and these T60 val-
ues have been used during training. The microphone-speaker
distance is set to 2 m. All the RIRs and sentences used for test-
ing are unseen during training and validation. Two new noises
are added at three SNRs (-6 dB, 0 dB and 6 dB) as described
in Section 3.1. For convenience, when performing evaluation,
we take average across these three reverberation times at each
SNR.

Table 1: Average STOI and PESQ scores at untrained RIRs
for LIVING-ROOM noise. Boldface indicates the best perfor-
mance.

STOI (in %) PESQ

SNR (dB) -6 0 6 Avg. -6 0 6 Avg.

mixture 62.10 68.25 72.13 67.49 1.53 1.76 1.90 1.73
BLSTM-2S 82.61 87.12 89.02 86.25 2.30 2.55 2.66 2.50
DenseUNet 82.66 87.93 90.33 86.97 2.25 2.56 2.73 2.51

DenseUNet+TA 85.68 90.64 92.93 89.75 2.45 2.75 2.93 2.71
DenseUNet+TFA 86.82 91.28 93.31 90.47 2.52 2.84 3.02 2.79

The evaluation results are shown in Table 1 and Table 2.
Similar performance trend can be observed with different noise
types, so we take the living-room noise condition as an example.
In Table 1, all the enhancement algorithms improve STOI and
PESQ substantially, indicating improvements on both speech
intelligibility and quality. On average, adding the time atten-
tion improves the baseline DenseUNet model by 2.78% in STOI
and by 0.20 in PESQ. This demonstrates that aggregating the
information across the time dimension boosts the performance

Table 2: Average STOI and PESQ scores at untrained RIRs for
OFFICE-ROOM noise.

STOI (in %) PESQ

SNR (dB) -6 0 6 Avg. -6 0 6 Avg.

mixture 73.25 74.83 75.39 74.49 1.93 1.99 2.02 1.98
BLSTM-2S 89.06 89.79 90.09 89.65 2.65 2.72 2.75 2.71
DenseUNet 89.42 91.02 91.79 90.74 2.68 2.80 2.86 2.78

DenseUNet+TA 92.45 93.86 94.52 93.61 2.90 3.03 3.10 3.01
DenseUNet+TFA 92.63 94.05 94.72 93.80 2.98 3.11 3.18 3.09

significantly. As we have studied in [29], the contextual infor-
mation in the time dimension is important for speech derever-
beration. Considering the reverberation components in noisy-
reverberant speech, such improvements are to be expected.
Moreover, with the frequency attention, the performance is im-
proved further. The proposed DenseUNet+TFA model outper-
forms the DenseUNet+TA model by 0.72% in STOI and by 0.08
in PESQ.

In addition, the two-stage baseline system shows compara-
ble performance with the DenseUNet model. For most noisy-
reverberant conditions, the DenseUNet model only slightly out-
performs the BLSTM-2S model.

4.2. Evaluations on recorded RIRs

Previously, we employ simulated RIRs. Now we evaluate the
proposed algorithms with recorded RIRs. Two RIRs from the
Aachen Impulse Response (AIR) database [30] are selected, and
are resampled to 16 kHz. They were recorded in a living room
and an office, and reverberation times are about 0.70 s and 0.37
s, respectively. The living-room noise and the office-room noise
from the DEMAND corpus is added to the corresponding room
to produce noisy-reverberant speech at -6 dB SNR.

Table 3: Average STOI and PESQ scores with recorded RIRs at
-6 dB SNR.

STOI (in %) PESQ

room living office living office

mixture 68.05 82.78 1.58 2.19
BLSTM-2S 85.86 92.14 2.41 2.85
DenseUNet 85.96 92.75 2.38 2.93

DenseUNet+TA 87.60 93.86 2.50 3.01
DenseUNet+TFA 88.31 93.67 2.56 3.06

Table 3 presents the evaluation results. All the enhancement
systems improve the objective speech intelligibility and quality
of noisy-reverberant speech substantially. This demonstrates
that models trained with simulated RIRs are able to general-
ize to real recorded RIRs well. The proposed DenseUNet+TFA
model performs the best under most conditions.

5. Conclusion
Motivated by the need to aggregate contextual information
among different T-F units, we have proposed a T-F atten-
tion mechanism to improve DenseUNet based noisy-reverberant
speech enhancement. In addition, the proposed system per-
forms the enhancement in the complex domain by implicitly es-
timating a complex ratio mask. In other words, the magnitude
spectrum and phase spectrum are jointly enhanced. System-
atic evaluations demonstrate that our proposed system is able
to remove both background noise and room reverberation effec-
tively, and outperforms previous two-stage models for noisy-
reverberant speech enhancement.
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[1] A. K. Nábělek, “Communication in noisy and reverberant envi-

ronments,” Acoustical factors affecting hearing aid performance,
pp. 15–28, 1993.

[2] B. Edwards, “The future of hearing aid technology,” Trends in
amplification, vol. 11, pp. 31–45, 2007.

[3] J. Li, L. Deng, Y. Gong, and R. Haeb-Umbach, “An overview
of noise-robust automatic speech recognition,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 22, pp. 745–777, 2014.

[4] K. A. Al-Karawi, A. H. Al-Noori, F. F. Li, and T. Ritchings, “Au-
tomatic speaker recognition system in adverse conditions - im-
plication of noise and reverberation on system performance,” In-
ternational Journal of Information and Electronics Engineering,
vol. 5, pp. 423–427, 2015.

[5] K. Han, Y. Wang, D. L. Wang, W. S. Woods, I. Merks, and
T. Zhang, “Learning spectral mapping for speech dereverberation
and denoising,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 23, pp. 982–992, 2015.

[6] Y. Zhao, Z.-Q. Wang, and D. L. Wang, “Two-stage deep learning
for noisy-reverberant speech enhancement,” IEEE/ACM Trans.
Audio. Speech Lang. Proc., vol. 27, pp. 53–62, 2019.

[7] D. W. Griffin and J. S. Lim, “Signal estimation from modified
short-time Fourier transform,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 32, pp. 236–243, 1984.

[8] D. Ribas, J. Llombart, A. Miguel, and L. Vicente, “Deep speech
enhancement for reverberated and noisy signals using wide resid-
ual networks,” arXiv preprint arXiv:1901.00660, 2019.

[9] D. S. Williamson, Y. Wang, and D. L. Wang, “Complex ratio
masking for monaural speech separation,” IEEE/ACM Trans. Au-
dio, Speech, Lang. Process., vol. 24, pp. 483–492, 2016.

[10] K. Tan and D. L. Wang, “Learning complex spectral mapping
with gated convolutional recurrent networks for monaural speech
enhancement,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 28, pp. 380–390, 2020.

[11] A. Pandey and D. L. Wang, “A new framework for CNN-based
speech enhancement in the time domain,” IEEE/ACM Trans. Au-
dio, Speech, Lang. Process., vol. 27, pp. 1179–1188, 2019.

[12] Y. Luo and N. Mesgarani, “Conv-TasNet: Surpassing ideal time–
frequency magnitude masking for speech separation,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 27, pp. 1256–1266,
2019.

[13] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in Proc. MICCAI.
Springer, 2015, pp. 234–241.

[14] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. CVPR,
2017, pp. 4700–4708.

[15] Y. Liu and D. L. Wang, “Divide and conquer: A deep CASA
approach to talker-independent monaural speaker separation,”
IEEE/ACM Trans. Audio, Speech, Lang. Process., vol. 27, pp.
2092–2102, 2019.

[16] B. Tolooshams, R. Giri, A. H. Song, U. Isik, and A. Kr-
ishnaswamy, “Channel-Attention Dense U-Net for multichannel
speech enhancement,” arXiv preprint arXiv:2001.11542, 2020.

[17] X. Hao, C. Shan, Y. Xu, S. Sun, and L. Xie, “An attention-based
neural network approach for single channel speech enhancement,”
in Proc. ICASSP, 2019, pp. 6895–6899.

[18] C.-F. Liao, Y. Tsao, X. Lu, and H. Kawai, “Incorporating sym-
bolic sequential modeling for speech enhancement,” in Proc. IN-
TERSPEECH, 2019, pp. 2733–2737.

[19] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Per-
ceptual evaluation of speech quality (PESQ) - a new method for
speech quality assessment of telephone networks and codecs,” in
Proc. ICASSP, vol. 2, 2001, pp. 749–752.

[20] Z.-Q. Wang and D. L. Wang, “Deep learning based target can-
cellation for speech dereverberation,” IEEE/ACM Trans. Audio.
Speech Lang. Proc., vol. 28, pp. 941–950, 2020.

[21] S. Singh and S. Krishnan, “Filter response normalization layer:
eliminating batch dependence in the training of deep neural net-
works,” arXiv preprint arXiv:1911.09737, 2019.

[22] F. Chollet, “Xception: deep learning with depthwise separable
convolutions,” in Proc. CVPR, 2017, pp. 1251–1258.

[23] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: efficient
convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you
need,” in Proc. NIPS, 2017, pp. 5998–6008.

[25] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in Proc. CVPR, 2018, pp. 7132–7141.

[26] D. B. Paul and J. M. Baker, “The design for the Wall Street
Journal-based CSR corpus,” in Proceedings of the workshop on
speech and natural language, 1992, pp. 357–362.

[27] J. Thiemann, N. Ito, and E. Vincent, “The diverse environments
multi-channel acoustic noise database: A database of multichan-
nel environmental noise recordings,” J. Acoust. Soc. Am., vol. 133,
pp. 3591–3591, 2013.

[28] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “An al-
gorithm for intelligibility prediction of time–frequency weighted
noisy speech,” IEEE Trans. Audio, Speech, Lang. Process.,
vol. 19, pp. 2125–2136, 2011.

[29] Y. Zhao, D. L. Wang, B. Xu, and T. Zhang, “Monaural speech
dereverberation using temporal convolutional networks with self
attention,” IEEE/ACM Trans. Audio. Speech Lang. Proc., vol. 28,
pp. 1598–1607, 2020.

[30] M. Jeub, M. Schafer, and P. Vary, “A binaural room impulse re-
sponse database for the evaluation of dereverberation algorithms,”
in Proc. ICDSP, 2009, pp. 1–5.

3265


