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Deep Learning Based Binaural Speech Separation
in Reverberant Environments

Xueliang Zhang, Member, IEEE, and DeLiang Wang, Fellow, IEEE

Abstract—Speech signal is usually degraded by room reverber-
ation and additive noises in real environments. This paper focuses
on separating target speech signal in reverberant conditions from
binaural inputs. Binaural separation is formulated as a supervised
learning problem, and we employ deep learning to map from both
spatial and spectral features to a training target. With binaural
inputs, we first apply a fixed beamformer and then extract sev-
eral spectral features. A new spatial feature is proposed and ex-
tracted to complement the spectral features. The training target
is the recently suggested ideal ratio mask. Systematic evaluations
and comparisons show that the proposed system achieves very
good separation performance and substantially outperforms re-
lated algorithms under challenging multisource and reverberant
environments.

Index Terms—Beamforming, binaural speech separation, com-
putational auditory scene analysis (CASA), deep neural network
(DNN), room reverberation.

I. INTRODUCTION

EVERYDAY listening scenarios are complex, with multi-
ple concurrent sound sources and their reflections from

the surfaces in physical space. Separating the target speech in
such an environment is called the “cocktail party problem” [6].
A solution to the cocktail party problem, also known as the
speech separation problem, is important to many applications
such as hearing aid design, robust automatic speech recognition
(ASR) and mobile communication. However, speech separation
remains a technical challenge despite extensive research over
decades.

Since the target speech and background noise usually overlap
in time and frequency, it is hard to remove the noise without
speech distortion in monaural separation. However, the speech
and interfering sources are often located at different positions
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of the physical space, one can exploit the spatial information for
speech separation by using two or more microphones.

Fixed and adaptive beamformers are common multi-
microphone speech separation techniques [29]. The delay-and-
sum beamformer is the simplest and most widely used fixed
beamformer, which can be steered to a specified direction by
adjusting phases for each microphone and adds the signals from
different microphones. One limitation of a fixed beamformer
is that it needs a large array to achieve high-fidelity separa-
tion. Compared with fixed beamformers, adaptive beamformers
provide better performance in certain conditions, like strong
and relatively few interfering sources. The minimized variance
distortionless response (MVDR) [10] beamformer is a represen-
tative adaptive beamformer, which minimizes the output energy
while imposing linear constraints to maintain energies from
the direction of the target speech. Adaptive beamforming can
be converted into an unconstrained optimization problem by
using a Generalized Sidelobe Canceller [12]. However, adap-
tive beamformers are more sensitive than fixed beamformers
to microphone array errors such as sensor mismatch and mis-
steering, and to correlated reflections arriving from outside the
look direction [1]. The performance of both fixed and adaptive
beamformers diminishes in the presence of room reverberation,
particularly when target source is outside the critical distance at
which direct-sound energy equals reverberation energy.

A different class of multi-microphone speech separation is
based on Multichannel Wiener Filtering (MWF), which esti-
mates the speech signal of the reference microphone in the
minimum-mean-square-error sense by utilizing the correlation
matrices of speech and noise. In contrast to beamforming, no
assumption of target speech direction and microphone array
structure needs to be made, while exhibiting a degree of ro-
bustness. The challenge for MWF is to estimate the correlation
matrices of speech and noise, especially in non-stationary noise
scenarios [26].

Another popular class of binaural separation methods is
localization-based clustering [22], [38]. In general, two steps
are taken. The localization step is to build the relationship be-
tween source locations and interaural parameters, such as in-
teraural difference (ITD) and interaural level difference (ILD),
in individual time-frequency (T-F) units. The separation step is
to assign each T-F unit into a different sound source by clus-
tering or histogram picking. In [22], these two steps are jointly
estimated by using an expectation-maximization algorithm.

Although studied for many years, binaural speech separation
is still a challenging problem, especially in multi-source and
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Fig. 1. Schematic diagram of the proposed binaural separation system.

reverberant conditions. In contrast, the human auditory system is
capable of extracting an individual sound source from a complex
mixture with two ears. Such perceptual organization is called
auditory scene analysis (ASA) [2].

Inspired by ASA, computational auditory scene analysis
(CASA) [31] aims to achieve source separation based on per-
ceptual principles. In CASA, target speech is typically separated
by applying a T-F mask to the noisy input. The values of this
mask indicate how much energy of a corresponding T-F unit
should be retained. The value of the ideal binary mask (IBM)
[30] is 1 or 0, where 1 indicates that the target signal dominates
the T-F unit and unit energy is entirely kept, and 0 indicates
otherwise. Speech perception research shows that IBM separa-
tion produces dramatic improvements of speech intelligibility
in noise for both normal-hearing listeners and hearing-impaired
listeners. In this context, it is natural to formulate the separation
task as a supervised, binary classification problem where the
IBM is aimed as the computational goal [30]. In the binaural
domain, this kind of formulation is first done by Roman et al.
[24], in which a kernel density estimation method is used to
model the distribution of the ITD and ILD features and clas-
sification is done in accordance with the maximum a posterior
(MAP) decision rule.

Treating speech separation as a supervised learning prob-
lem has become popular in recent years, particularly since deep
neural networks (DNNs) were introduced for supervised speech
separation [32]. Extensive studies have been done on features
[33], training targets [15], [34]–[37] and deep models [15], [32],
[36], [39] in the monaural domain. Compared with the rapid
progress in monaural separation, the studies on supervised bin-
aural separation are few. Recently, however, Jiang et al. [17] ex-
tract binaural and monaural features and train a DNN for each
frequency band to perform binary classification. Their results
show that even a single monaural feature can improve separa-
tion performance in reverberant conditions when interference
and target are very close to each other.

In this study, we address the problem of binaural speech sep-
aration in reverberant environments. In particular, we aim to
separate reverberant target speech from spatially diffuse back-
ground interference; such a task is also known as speech en-
hancement. The proposed system is supervised in nature, and
employs DNN. Both spatial and spectral features are extracted to
provide complementary information for speech separation. As in

any supervised learning algorithm, discriminative features play
a key role. For spectral feature extraction, we incorporate a fixed
beamformer as a preprocessing step and use a complementary
monaural feature set. In addition, we propose a two-dimensional
ITD feature and combine it with the ILD feature to provide spa-
tial information. Motivated by recent analysis of training targets,
our DNN training aims to estimate the ideal ratio mask (IRM),
which is shown to produce better separated speech than the
IBM, especially for speech quality [34]. In addition, we con-
duct feature extraction on fullband signals and train only one
DNN to predict the IRM across all frequencies. In other words,
the prediction of the IRM is at the frame level, which is much
more efficient than subband classification in [17].

In the following section, we present an overview of our DNN-
based binaural speech separation system and the extraction of
spectral and spatial features. In Section III, we describe the
training target and DNN training methodology. The evaluation,
including a description of comparison methods, is provided in
Section IV. We present the experimental results and comparison
in Section V. We conclude the paper in Section VI.

II. SYSTEM OVERVIEW AND FEATURE EXTRACTION

The proposed speech separation system is illustrated in Fig. 1.
Binaural input signals are generated by placing the target
speaker in a reverberant space with many other simultaneously
interfering talkers forming a spatially diffuse, speech babble.
In such an environment, the background noise is non-stationary
and diffuse. To separate the target speech from the background
noise, the left-ear and right-ear signals are first fed into two
modules to extract the spectral and spatial features separately.
In the upper module, a beamformer is employed to preprocess
the two-ear signals to produce a single signal for spectral fea-
ture extraction. In the lower module, the left-ear and right-ear
signals are each first decomposed into T-F units independently.
Then, cross correlation function (CCF) and ILD are extracted
in each pair of corresponding left-ear and right-ear units, and
regarded as spatial features. The spectral and spatial features
are then combined to form the final input feature. Our computa-
tional goal is to estimate the IRM. We train a DNN to map from
the final input feature to the IRM. After obtaining a ratio mask
from the trained DNN, the waveform signal of the target speech
is synthesized from the sound mixture and the mask [31].
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A. Spectral Features

We employ the delay-and-sum (DAS) beamformer to pro-
cess the left-ear and right-ear signals into a single signal be-
fore extracting monaural spectral features. Beamforming is a
commonly used spatial filter for microphone array processing.
As sounds coming from different directions reach the two ears
with different delays, this fixed beamformer is steered to the
direction of the target sound by properly shifting the signal of
each ear and then sums them together. As the noises coming
from other directions are not aligned, the sum will reduce their
amplitudes relative to the target signal, hence enhancing the tar-
get. The rationale for proposing beamforming before spectral
feature extraction is twofold. First, beamforming enhances the
target signal, and second, it avoids an adhoc decision of having
to choose one side for monaural feature extraction, as done in
[17] for instance.

After beamforming, we extract amplitude modulation spec-
trum (AMS), relative spectral transform and perceptual linear
prediction (RASTA-PLP) and mel-frequency cepstral coeffi-
cients (MFCC). In [33], these features are shown to be comple-
mentary and have been successfully used in DNN-based monau-
ral separation. It should be mentioned that the complementary
feature set originally proposed in [33] is extracted at the unit
level, i.e. within each T-F unit. We extract the complementary
feature set at the frame level as done in [34].

B. Spatial Features

We first decompose both the left-ear and right-ear signals
into cochleagrams [31]. Specifically, the input mixture is de-
composed by the 64-channel gammatone filterbank with center
frequencies ranging from 50 Hz to 8000 Hz on the equivalent
rectangular bandwidth rate scale. The output of each channel is
divided into 20-ms frame length with a 10-ms frame shift and
half-wave rectified. With a 16 kHz sampling rate, the signal in
a T-F unit has 320 samples.

With binaural input signals, we extract two primary binaural
features of ITD and ILD. The ITD is calculated from the nor-
malized CCF between the left- and right-ear signals, denoted
by subscript l and r respectively. The CCF of a T-F unit pair,
indexed by time lag τ , is defined as,

CCF (c,m, τ) =
∑

k xcm,l(k)xcm,r (k − τ)
√∑

k x2
cm,l(k)

√∑
k x2

cm,r (k − τ)
(1)

In the above formula, τ varies between −1 ms and 1 ms, xcm,l

and xcm,r represent the left- and right-ear signals of the unit
at channel c and frame m, respectively, and k indexes a signal
sample of a T-F unit. For the 16 kHz sampling rate, the dimension
of CCF is 33. In [17], CCF values are directly used as a feature
vector to distinguish the signals coming from different locations.

Here, we propose a new 2-dimensional (2D) ITD feature.
The first dimension is the CCF value at an estimated time lag τ̃ ,
corresponding to the direction of the target speech. The second
dimension is the maximum value of CCF, which reflects the
coherence of the left and right ear signals, and has been used for
selecting binaural cues for sound localization [9]. The reasons

for proposing these two features are as follows. The maximum
CCF value is used to distinguish directional sources from dif-
fuse sounds. For a directional source, the maximum CCF value
should be close to 1, whereas for a diffuse sound it is close to 0.
The CCF value at the estimated target direction is to differenti-
ate the target speech and the interfering sounds that come from
different directions. Specifically, we have

ITD(c,m) =

⎛

⎝
CCF (c,m, τ̃)

max
τ

CCF (c,m, τ)

⎞

⎠ (2)

ILD corresponds to the energy ratio in dB, and it is calculated
for each unit pair as below

ILD(c,m) = 10log10

∑
k x2

cm,l(k)
∑

k x2
cm,r (k)

(3)

To sum up, the spatial features in each T-F unit pair are
composed of 2D ITD and 1D ILD. We concatenate all the unit-
level features at a frame to form the frame-level spatial feature
vector. For 64-channel cochleagrams, the total dimension is 192
for each time frame.

III. DNN-BASED SPEECH SEPARATION

A. Training Targets

The ideal ratio mask (IRM) is defined as [34]

IRM(c,m) =

√
S2(c,m)

S2(c,m) + N 2(c,m)
(4)

where S2(c,m) and N 2(c,m) denote the speech and noise
energy, respectively, in a given T-F unit. This mask is essentially
the square-root of the classical Wiener filter, which is the optimal
estimator in the power spectrum [20]. The IRM is obtained using
a 64-channel gammatone filterbank.

As discussed in Section I, the IRM is shown to be preferable
to the IBM [34]. Therefore, we employ the IRM in a frame as the
training target, which provides the desired signal at the frame
level for supervised training.

B. DNN Training

A DNN is trained to estimate the IRM using the frame-level
features described in Section II. The DNN includes 2 hidden
layers, each with 1000 units. We find that this relatively simple
DNN architecture is effective for our task. Recent development
in deep learning has resulted in new activation functions [7],
[13], [23] and optimizers [3], [8]. Here, the rectified linear unit
(ReLU) activation function [23] is used for the hidden layers and
the sigmoid activation function is used for the output layer. The
cost function is mean square error (MSE). Weights of the DNN
are randomly initialized. The adaptive gradient algorithm (Ada-
Grad) [8] is utilized for back propagation, which is an enhanced
version of stochastic gradient descent (SGD) that automatically
determines a per-parameter learning rate. We also employ the
dropout technique [27] on hidden units to avoid overfitting. The
dropout rate is 0.5. The total number of training epochs is 100.
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The batch size is 512. To incorporate temporal context, we use
an input window that spans 9 frames (4 before and 4 after) to
predict one frame of the IRM.

IV. EXPERIMENTAL SETUP

A. Dataset

For both training and test datasets, we generate binaural mix-
tures by placing the target speaker in a reverberant space with
many interfering speech sources simultaneously. A reverberant
signal is generated by convolving a speech signal with a binaural
room impulse response (BRIR). In this study, we use two sets of
BRIRs. One is simulated by software, called BRIR Sim Set. The
other is measured in real rooms, called BRIR Real Set. These
sets were generated or recorded at the University of Surrey.1

The BRIR Sim Set is obtained from a room simulated using
CATT-Acoustics modeling software [4]. The simulated room is
shoebox-shaped with dimensions of 6 m × 4 m × 3 m (length,
width, height). The reverberation time (T60) was varied between
0 and 1 second with 0.1 s increments by changing the absorp-
tion coefficient of all six surfaces. The impulse responses are
calculated with the receiver located at the center of the room at
a height of 2 m and the source at a distance of 1.5 m from the
receiver. The sound source was placed at the head height with
azimuth between −90◦ and 90◦ spaced by 5◦.

The BRIR Real Set is recorded in four rooms with different
sizes and reflective characteristics, and their reverberation times
are 0.32 s, 0.47 s, 0.68 s and 0.89 s. The responses are captured
using ahead and torso simulator (HATS) and a loudspeaker.
The loudspeaker was placed around the HATS on an arc in the
median plane with a 1.5 m radius between ±90◦ and measured
at 5◦ intervals.

To generate a diffuse multitalker babble (see [21]), we use
the TIMIT corpus [11] which contains 6300 sentences, with
10 sentences spoken by each of 630 speakers. Specifically, 10
sentences of each speaker in the TIMIT corpus are first con-
catenated. Then, we randomly choose 37 speakers, one for each
source location as depicted in Fig. 1. A random slice of each
speaker is cut and convolved with the BRIR corresponding to its
location. Finally, we sum the convolved signals to form the dif-
fuse babble, which is also non-stationary. The IEEE corpus [16]
is employed to generate reverberant binaural target utterances,
and it contains 720 utterances spoken by a female speaker. The
target source is fixed at azimuth 0c irc, in front of the dummy
head (see Fig. 1). To generate a reverberant target signal, we
convolve an IEEE utterance with the BRIR at 0c irc. Finally, the
reverberant target speech and background noise are summed to
yield two binaural mixtures.

For the training and development sets, we respectively select
500 and 70 sentences from the IEEE corpus and generate binau-
ral mixtures using BRIR Sim Set with 4 T60 values of 0 s, 0.3 s,
0.6 s and 0.9 s; T60 = 0 s corresponds to the anechoic condition.
The development set is used to determine the DNN parameters.
So, the training set includes 2000 mixtures. The remaining 150
IEEE sentences are used to generate the test set. To evaluate

1http://iosr.uk/software/index.php

the proposed method, we use three sets of BRIRs to build test
sets called simulated matched room, simulated unmatched room
and real room. For the simulated matched-room test set, we use
the same simulated BRIRs as the ones in the training stage. For
the simulated unmatched-room test set, the BRIR Sim Set with
T60’s of 0.2 s, 0.4 s, 0.8 s and 1.0 s are used. The real-room
test set is generated by using BRIR Real Set. The SNR of the
mixtures for training and test is set to −5 dB, which is the av-
erage at the two ears. It means that the SNR at a given ear may
vary around −5 dB due to the randomly generated background
noise and different reverberation times. In SNR calculations,
the reverberant target speech, not its anechoic version, is used
as the signal.

B. Evaluation Criteria

We quantitatively evaluate the performance of speech separa-
tion by two metrics, which are conventional SNR and short-time
objective intelligibility (STOI) [28]. SNR is calculated as

SNR = 10 log10

∑
t S2(t)

∑
t(S(t) − O(t))2 (5)

Here, S(t) and O(t) denote the target signal and the synthe-
sized one from an estimated IRM, respectively. STOI measures
objective intelligibility by computing the correlation of short-
time temporal envelopes between target and separated speech,
resulting in a score in the range of [0, 1], which can be roughly
interpreted as the percent-correct predicted intelligibility. STOI
is widely used to evaluate speech separation algorithms aiming
for speech intelligibility in recent years.

C. Comparison Methods

We compare the performance of the proposed method with
several other prominent and related methods for binaural speech
separation. The first kind is beamforming and we choose DAS
and MVDR beamformers for comparison. As described earlier,
the DAS beamformer is employed as a preprocessor in our
system. The MVDR beamformer minimizes the output energy
while imposing linear constraints to maintain the energy from
the direction of the target speech. Both the DAS and MVDR
beamformer need the target DOA (direction of arrival), which
should be estimated in general. Because the location of the target
speaker is fixed in our evaluation, we provide the target direction
to the beamformers, which facilitates the implementation.

The second method is MWF [25]. For this method, the cor-
relation matrices of the speech and noises need to be estimated
by using voice activity detection (VAD) and speech detection
errors will degrade its performance. To avoid the VAD errors,
we calculate the noise correlation matrix from the background
noise directly. The same is done for MVDR, which also needs
to calculate the noise correlation matrix. Therefore, the actual
results for MWF and MVDR are expected to be somewhat lower.

The next one is MESSL [22] that uses spatial clustering for
source localization. Given the number of sources, MESSL it-
eratively modifies Gaussian mixture models (GMMs) of inter-
aural phase difference and ILD to fit the observed data. Across
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TABLE I
AVERAGE STOI SCORES (%) OF DIFFERENT METHODS IN SIMULATED MATCHED-ROOM AND UNMATCHED-ROOM CONDITIONS

T60 MIXL MIXR DAS MVDR MWF MESSL SBC Pro.

Matched room 0.0 s 58.00 58.04 63.56 63.75 66.86 65.92 63.65 74.66
0.3 s 53.13 52.64 58.61 58.78 64.06 58.66 62.79 74.88
0.6 s 44.08 41.00 50.82 50.84 57.72 51.89 55.08 68.53
0.9 s 44.58 43.31 48.20 48.15 57.38 48.46 53.37 65.39
Avg. 49.05 49.65 55.30 55.38 61.51 56.23 58.72 70.87

Unmatched room 0.2 s 55.28 57.20 61.80 61.91 65.35 60.52 64.68 74.95
0.4 s 47.98 48.82 54.46 54.64 61.21 55.91 59.02 70.40
0.8 s 39.99 41.59 47.06 47.01 56.86 47.12 54.27 65.92
1.0 s 39.05 40.95 45.21 45.01 55.55 46.05 51.64 62.82
Avg. 45.58 47.14 52.13 52.14 59.74 52.40 57.40 68.52

frequency integration is handled by linking the GMMs models
in individual frequency bands to a principal ITD.

The fourth comparison method employs DNN to estimate the
IBM [17]. First, input binaural mixtures are decomposed into
64-channel subband signals. At each frequency channel, CCF,
ILD and monaural GFCC (gammatone frequency cepstral co-
efficient) features are extracted and used to train a DNN for
subband classification. Each DNN has two hidden layers each
containing 200 sigmoidal units, which is the same as in [17].
Weights of DNNs are pre-trained with restricted Boltzmann
machines. The subband binaural classification algorithm is re-
ferred as SBC in the following. It should be mentioned that,
even though each DNN is small, SBC uses 64 DNNs.

V. EVALUATION AND COMPARISON

A. Simulated-Room Conditions

In this test condition, we intend to evaluate the performance
of the proposed algorithm in the simulated rooms, which are
divided into two parts: matched and unmatched conditions. As
mentioned earlier, for matched-room conditions, test reverber-
ated mixtures are generated by using the same BRIRs as in the
training stage, where the T60s are 0.3 s, 0.6 s and 0.9 s. For
the unmatched-room conditions, the BRIRs for generating re-
verberated mixtures are still simulated ones, but the T60s are
different from those in training conditions and take the values
of 0.2 s, 0.4 s, 0.8 s and 1.0 s.The results of STOI and SNR
are shown in Table I and Fig. 2, respectively. The “MIXL” and
“MIXR” refer to the unprocessed mixtures at the left and right
ear respectively.

Compared the unprocessed mixtures, the proposed system
obtains the absolute STOI gain about 22% on average in the
simulated matched-room conditions and 23% in the simulated
unmatched-room conditions. From Table I, we can see that the
proposed system outperforms the other comparison methods in
anechoic and all reverberation conditions. The second-best sys-
tem is MWF. DAS and MVDR have similar results, because the
background noise is quite diffuse; it can be proven that MVDR
and DAS become identical when noise is truly diffuse. For the
supervised learning algorithms, both SBC and the proposed
algorithm exhibit good generalization in the unmatched-room
conditions.

Fig. 2. Average SNRs of different methods in simulated room conditions. (a)
SNR results in simulated matched-room conditions. (b) SNR results in simulated
unmatched-room conditions.

As shown in Fig. 2, the proposed algorithm also obtains
the largest SNR gains in all conditions. It can be seen that
SBC outperforms MWF in the matched-room and less rever-
berant unmatched-room conditions. The SNR gains obtained by
MESSL are much larger than those of DAS and MVDR, while
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TABLE II
AVERAGE STOI SCORES (%) OF DIFFERENT METHODS

IN REAL ROOM CONDITIONS

Room MIXL MIXR DAS MVDR MWF MESSL SBC Pro.

A (0.32 s) 47.49 49.02 53.71 53.84 59.50 54.39 53.37 66.70
B (0.47 s) 41.29 42.55 48.10 48.08 55.01 48.61 42.95 61.96
C (0.68 s) 44.33 45.06 51.31 50.86 58.39 52.11 54.13 64.78
D (0.89 s) 39.61 39.18 45.48 45.58 55.22 45.35 48.52 60.57
Avg. 43.18 43.95 49.65 49.59 57.03 50.12 49.74 63.50

Fig. 3. Average SNRs of different methods in real room conditions.

these three methods have similar STOI scores. The main reason
is that SNR does not distinguish noise distortion and speech
distortion, which affect speech intelligibility in different ways.

B. Real-Room Conditions

In this test condition, we use the BRIR Real Set to evaluate the
proposed separation system and compare it with other methods.
The STOI and SNR results are given in Table II and Fig. 3,
respectively. The proposed system achieves the best results in
all four room conditions. Compared with unprocessed mixtures,
the average STOI gain is about 20% (i.e. from 43% to 63%),
which is consistent with that in simulated room conditions.

From the above experimental results, we can see that the
proposed algorithm outperforms SBC which is also a DNN-
based separation algorithm. One of the differences is that the
proposed algorithm employs ratio masking for separation, while
SBC utilizes binary masking. As described earlier, binary mask-
ing is not as preferable as ratio masking. A simple way to turn
a binary mask to a ratio mask in the context of DNN is to
directly use the outputs of the subband DNNs, which can be
interpreted as posterior probabilities with values ranging from
0 to 1. With such soft masks, SBC’s average STOI scores are
63.25% for matched-room conditions, 61.96% for unmatched-
room conditions and 55.80% for real-room conditions. These
results represent significant improvements over binary masks,
but they are still not as high as those of the proposed algorithm.

Fig. 4. Spectrograms of separated speech using different algorithms in a
recorded room condition (Room D with T60 = 0.89 s). The input SNR is
−5 dB. (a) Clean speech. (b) Mixture at the left ear. (c) Mixture at the right
ear. (d) Result of DAS. (e) Result of MVDR. (f) Result of MWF. (g) Result of
MESSL. (h) Result of SBC. (i) Result of the proposed algorithm.
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Fig. 5. Comparison of DNN-based speech separation using different spectral
features.

Fig. 4 illustrates the spectrograms of separated speech using
different methods on a test utterance mixed with the multitalker
babble noise at −5 dB in a highly reverberant condition with
T60 = 0.89 s. As shown in the figure, the spectrogram of the
separated speech using the proposed method is close to that of
clean reverberant speech.

C. Further Analysis

Our binaural speech separation system uses both spectral and
spatial features. For spectral features, the DAS beamformer is
employed as a preprocessor. The spatial features are formed by
combining the proposed 2D ITD and ILD. Previous work [17]
shows that binaural separation can benefit from joint spectral and
spatial features. In fact, several reasonable spectral and spatial
features could be constructed. In this subsection, we further
analyze several alternatives. Also we compare with alternative
training targets.

1) Spectral Features: One simple way to combine spectral
and spatial analyses is to directly concatenate the left- and right-
ear monaural features. In this case, we extract the complemen-
tary feature set from the left- and right-ear signals indepen-
dently and concatenate them to form the input feature vector for
DNN. We compare this feature vector with the proposed beam-
formed features and also single-ear monaural features (left-
ear as in [17]). The interaural features are excluded here. The
same DNN configuration and training procedure are used (see
Section III-B). The test datasets are also the same. Average
STOI results are shown in Fig. 5. From the figure, we can see
that extracting the spectral features on the output signal of the
beamformer is better than concatenating the spectral features
of the left- and right-ear signals. The beamformed and concate-
nated features are more effective than the single-ear feature.

2) Spatial Features: ITD and ILD are the most commonly
used cues for binaural separation. While ILD is typically

Fig. 6. Comparison of DNN-based speech separation using different spatial
features.

calculated in the same way (see Eq. (3)), the representation
of ITD information varies in different algorithms. In [24], ITD
was estimated as the lag corresponding to the maximum of CCF.
Jiang et al. [17] directly used CCF to characterize the interaural
time difference. They also show that the CCF is more effective
than ITD as a unit-level feature. In contrast, only two values of
CCF in each T-F unit are selected in our system.

We compare the performances of using conventional ITD
[24], CCF and the proposed 2D ITD as the spatial features.
To make the comparison, the frame-level features are formed by
concatenating ITD, CCF and 2D ITD in each T-F unit. Since con-
catenating unit-level CCF vectors directly leads to a very high
dimension, we perform principal component analysis (PCA)
to reduce the dimension to 128, equal to the size of 2D ITD
frame-level feature. Three DNNs with the same configuration
are trained using these different spatial features. The STOI re-
sults are shown in Fig. 6. We can see that the results with the
conventional ITD are much worse than CCF plus PCA and the
proposed 2D ITD. This indicates that the conventional ITD is
not discriminative in reverberant conditions. While proposed
2D ITD yields essentially the same results as CCF, it has an
advantage of relative invariance to different target directions in
addition to computational efficiency. As CCF changes with tar-
get speech direction, the DNN has to be trained for multiple
target directions as done in [17]. On the other hand, our 2D ITD
feature requires target direction to be estimated.

3) Fullband vs. Subband Separation: Early supervised
speech separation algorithms [17], [18] typically perform sub-
band separation. In contrast, the proposed algorithm employs
fullband separation. Earlier in this section, the proposed algo-
rithm has been demonstrated to perform much better than the
SBC algorithm of Jiang et al. [17]. To what extent can the better
performance be attributed to fullband separation? This ques-
tion is not addressed in earlier comparisons since the features
and the training target of the SBC algorithm are different from
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Fig. 7. Comparison of DNN-based speech separation using different spatial
features.

ours, and also the DNN for each frequency channel is relatively
small in [17]. Here, we make a comparison between subband
and fullband separation by using the same features and the same
training target.

For subband separation, DAS beamforming is first applied
to convert the left- and right-ear signals into a single-channel
signal. Then, we decompose the signal into 64 channels by using
the gammatone filterbank. For each frequency band, we extract
the complementary feature set [33], 2D ITD and ILD. The same
temporal context is utilized by incorporating 9 frames (4 before
and 4 after). The training target is the IRM. The configuration
of DNN for each frequency channel is the same as described in
Section III-B.

The STOI results are shown in Fig. 7. We can see that full-
band separation still performs better with the same features
and training target. Of course, another disadvantage of subband
separation is its computational inefficiency with a multitude of
DNNs to be trained.

4) Training Targets: This study uses the IRM as the train-
ing target, and a more direct target is the spectral magnitude
of the target speech [37]. However, such spectral mapping is
many-to-one and more difficult to estimate than the IRM [34].
Signal approximation (SA) [15], [36] is a training target that
can be viewed as a combination of ratio masking and spectral
mapping. SA-based speech separation has been shown to yield
higher signal-to-distortion ratio compared to masking-based or
mapping-based methods. The difference between Huang et al.
[15] and Weninger et al. [36] is that the former makes use of
both target and interference signals.

In this subsection, we compare IRM estimation and the two
SA-based methods mentioned above. For this comparison, the
input features, DNN configurations and training procedures
(seen in Section II-B) are the same for all the three methods. The
STOI scores are shown in Fig. 8. We can see that ratio masking
produces the highest scores. Due to its inclusion of interference

Fig. 8. Average STOI scores of using different targets.

Fig. 9. Average SNR of using different targets.

signal, Huang et al.’s method outperforms Weninger et al.’s. The
SNR results are given in Fig. 9. It can be seen that the SA-based
methods obtain higher SNR, particularly Huang et al.’s ver-
sion. Higher SNRs are expected as signal approximation aims
to maximize output SNR [36]. Similar results are obtained with
different DNN configurations (with larger or smaller hidden
layers, and one more hidden layer).

We close this section by discussing computational complex-
ity. Compared to the training-based algorithms of SBC and
MESSL, the proposed algorithm is faster, as SBC uses a DNN
for each of 64 subbands and MESSL utilizes the slow expec-
tation maximization algorithm. The DAS, MVDR and MWF
beamformers have much lower computational complexities than
the proposed algorithm with the given target direction, because
feature extraction in our algorithm is time consuming, espe-
cially the CCF calculation. On the other hand, the beamformers
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need DOA estimation when target direction is unknown, and
CCF-based DOA estimation [19] is a representative method.
In other words, the beamforming techniques and the proposed
algorithm have the same level computational complexity when
DOA estimation is performed.

VI. CONCLUDING REMARKS

In this work, we have proposed a DNN-based binaural speech
separation algorithm which combines spectral and spatial fea-
tures. DNN-based speech separation has shown its ability to
improve speech intelligibility [14], [32] even with just monau-
ral spectral features. As demonstrated in previous work [17],
binaural speech separation by incorporating monaural features
represents a promising direction to further elevate separation
performance.

For supervised speech separation, input features and train-
ing targets are both important. In this study, we make a novel
use of beamforming to combine left-ear and right-ear monau-
ral signals before extracting spectral features. In addition, we
have proposed a new 2D ITD feature. With the IRM as the
training target, the proposed system outperforms representative
multichannel speech enhancement algorithms and also a DNN-
based subband classification algorithm [17] in non- stationary
background noise and reverberant environments.

A major issue of supervised speech separation is generaliza-
tion to untrained environments. Our algorithm shows consistent
results in unseen reverberant noisy conditions. This strong gen-
eralization ability is partly due to the use of effective features.
Although only one noisy situation is considered, the noise prob-
lem can be addressed by involving large-scale training data [5].

In the present study, the target speaker is fixed to the front
direction and sound localization is not addressed. For the pro-
posed algorithm, two parts need the target direction. One is DAS
beamforming and the other is calculation of 2D ITD. Sound lo-
calization is a well-studied problem [31]. Recently, DNN is also
used for sound localization [21], although only spatial features
are considered. We believe that incorporating monaural separa-
tion is a good direction to improve the robustness of sound lo-
calization in adverse environments with both background noise
and room reverberation. One way to incorporate monaural sep-
aration is to employ spectral features for initial separation, from
which reliable T-F units are selected for sound localization.
Moreover, separation and localization could be done iteratively
as in [39].
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