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a b s t r a c t

Traditional multi-channel active noise control (MCANC) is based on adaptive filtering and usually
uses a separate control unit for each channel. This paper introduces a deep learning based approach
for multi-channel active noise control (ANC). The proposed approach, called deep MCANC, encodes
optimal control parameters corresponding to different noises and environments, and jointly computes
the multiple canceling signals to cancel or attenuate the primary noises captured at error microphones.
A convolutional recurrent network (CRN) is employed for complex spectral mapping where the
summated power of error signals is used as the loss function for CRN training. Deep MCANC is a fixed-
parameter ANC approach and large-scale multi-condition training is employed to achieve robustness
against a variety of noises. We explore the performance of deep MCANC with different setups and
investigate the impact of factors such as the number of loudspeakers and microphones, and the
position of a secondary source, on ANC performance. Experimental results show that deep MCANC
is effective for wideband noise reduction and generalizes well to untrained noises. Moreover, the
proposed approach is robust against variations in reference signals and works well in the presence
of nonlinear distortions.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Active noise control (ANC) is a noise cancellation methodology
ased on the principle of destructive superposition of sound
aves; more specifically, an unwanted primary noise is canceled
y generating an anti-noise with the same amplitude but op-
osite phase (Kuo & Morgan, 1996). It has attracted increasing
ttention over the past decades, and has been used in industrial
pplications such as headphones (Kuo et al., 2006), automo-
iles (Cheer & Elliott, 2015), airplanes (Wilby, 1996), and medical
quipment (Kajikawa et al., 2012). A recent trend extends the
ontrol region of ANC to achieve noise cancellation at multiple
patial points or within a spatial zone (Kajikawa et al., 2012;
urao et al., 2017; Pawełczyk, 2008). However, the performance
f single-channel ANC is limited when it comes to noise control in
hree-dimensional space (Elliott et al., 1987). Multi-channel ANC
MCANC) that employs multiple microphones and loudspeakers
as been introduced to achieve ANC in such scenarios.
A general MCANC system with I reference microphones, J can-

eling loudspeakers, and K error microphones is shown in Fig. 1.
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The MCANC system takes the reference signals and error sig-
nals, recorded by reference microphones and error microphones,
respectively, as inputs to update the weights of controllers so
that the canceling signals generated can superpose with the pri-
mary noises at error microphones. Conventionally, MCANC is
accomplished by optimizing controller weights through adaptive
algorithms so that the sum of the error signals is minimized (Liu
et al., 2009; Murao et al., 2017; Patel & George, 2020). Adaptive
filters such as filtered-x least mean square (FxLMS), fast affine
projection, mixed-error approach, and their variable step-size
versions, are commonly used ANC algorithms and have been
extended to MCANC modules (Bouchard, 2003; Elliott et al., 1987;
Kuo & Morgan, 1999; Liu et al., 2009; Murao et al., 2017; Patel &
George, 2020).

Active noise control systems can be developed using adap-
tive as well as fixed-parameter (also known as fixed-coefficient
or fixed-filter) techniques (Lam et al., 2021). Standard adaptive
MCANC algorithms estimate the J × K secondary paths (acous-
tic paths from loudspeakers to error microphones) during an
initial stage and use the estimated secondary paths to update
controllers. For decentralized MCANC systems, each of the pos-
sible feedforward channels requires a separate adaptive filter,
resulting in I × J controllers (Elliott et al., 1987; Patel & George,
2020). To achieve noise control over multiple points or within
a spatial zone, more channels need to be added to the sys-

tem and the computational complexity of MCANC algorithms
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Fig. 1. Diagram of a general I × J × K multi-channel active noise control
system that consists of I reference microphones, J canceling loudspeakers, and K
error microphones. Symbol pk denotes the primary path from the noise source
to the kth error microphone, and sjk denotes the secondary path from the jth
canceling loudspeaker to the kth error microphone.

grows accordingly (Patel & George, 2020; Shi et al., 2020). This
factor acts as a bottleneck in the real-time implementation of
MCANC and numerous efforts have been made to alleviate the
complexity (Bouchard, 2003; Lorente et al., 2015; Murao et al.,
2017). However, the reduction of computational complexity usu-
ally comes at the expense of noise attenuation performance (Shi
et al., 2021). In addition, the adaptive nature of these algo-
rithms poses an inherent risk of update divergence in the pres-
ence of external disturbances or errors in secondary path model-
ing (Krukowicz, 2013; Lam et al., 2021; Shi et al., 2017). Moreover,
the slow convergence of the adaptive algorithms results in a
limited reduction of dynamic noise, and noise reduction is not
perceived immediately (Shi et al., 2022).

Fixed-parameter noise control methods utilize pre-trained
control filters to attenuate noise instantaneously. They have be-
come an effective alternative to adaptive ANC, as exemplified by
noise-canceling headphones. Different from adaptive methods,
fixed filters determine their coefficients during offline training
and deploy these carefully tuned coefficients in actual opera-
tions (Shi et al., 2020, 2018). Tanaka et al. implement an MCANC
system with fixed noise control filters to reduce computational
complexity (Tanaka et al., 2014). Shi et al. propose a selective
fixed-filter active noise control (SFANC) method which selects a
pre-trained control filter to attenuate a detected primary noise
rapidly (Shi et al., 2020). Later, a modified version of SFANC
employs a convolutional neural network (Shi et al., 2022). Fixed-
parameter ANC methods are feasible when the application envi-
ronment does not change rapidly. However, such approaches are
usually optimized for a limited range of noise types, resulting in
limited generalization performance (Shi et al., 2020).

Many studies assume linear ANC systems. However, nonlinear
effects caused by loudspeakers and acoustic paths are common-
place in practical ANC systems (Kukde et al., 2020), such as
the gain saturation effect of loudspeakers (Kuo et al., 2004). It
has been shown that a small nonlinearity in a secondary path
can have a significant impact on the behavior of linear adaptive
filters (Costa et al., 2002). Having multiple loudspeakers could
therefore adversely impact the overall performance of an MCANC
system further.

Deep neural networks have been widely used in recent years
to address speech and audio processing tasks, including speaker
recognition (Bai & Zhang, 2021), speech separation (Chen & Zhang,
2021; Xian et al., 2021), and noise-robust voice conversion (Du
et al., 2022). In a previous study, we first formulated ANC as a
supervised learning problem and proposed a deep learning ap-
proach, called deep ANC, to address the nonlinear ANC task (Zhang

& Wang, 2021a). It has been shown that deep ANC is effective
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for wideband noise reduction and generalizes well to different
noises. Later, Shi et al. proposed a deep learning based SFANC
method which employs a convolutional neural network to classify
noise types and identify the most suitable fixed control filter for
different incoming noise (Shi et al., 2022). More recently, Chen
et al. utilized deep learning to address the nonlinearity of the
secondary path in an ANC system and proposed a secondary path-
decoupled method using two pre-trained convolutional recurrent
networks (Chen et al., 2021). Deep learning methods achieve
active noise control by training a deep neural network (DNN)
offline, and can therefore be viewed as fixed-parameter ANC.
Compared to conventional fixed filter methods, deep ANC is
capable of attaining nonlinear active noise reduction for a variety
of noises through large-scale training.

This study extends deep ANC to the multi-channel domain.
The resulting approach, called deep MCANC, is investigated for
active noise control at multiple spatial points (multi-point ANC)
and within a spatial zone (generating a quiet zone). Rather than
estimating multiple secondary paths and adaptive controllers in-
dividually, the proposed method trains a convolutional recurrent
network (CRN) (Tan & Wang, 2019) to encode the optimal control
parameters of an MCANC controller and output multiple cancel-
ing signals simultaneously so that the corresponding anti-noises
match the primary noises at desired locations. As ANC is inher-
ently sensitive to both the magnitude and phase of an anti-noise,
we use complex spectral mapping to estimate both magnitude
and phase responses of MCANC outputs (Tan & Wang, 2019;
Williamson et al., 2016). The performance of MCANC is impacted
by factors such as the number of loudspeakers and microphones,
and the position of a secondary source. We systematically inves-
tigate the effects of these factors on overall performance, in order
to guide design choices for MCANC systems. Furthermore, evalu-
ations in the presence of nonlinear distortions and variations in
reference signals are carried out to demonstrate the robustness
of the proposed method.

Compared to a preliminary version (Zhang & Wang, 2021b),
this paper conducts more extensive evaluations and investi-
gates the performance of deep MCANC under different exper-
imental setups. Moreover, we explore the influence of various
factors on ANC performance and assess the robustness of the
proposed method against variations in reference signals. We
also provide new evaluation results on recorded noise signals in
realistic environments and discuss the generalization ability of
deep MCANC.

The remainder of this paper is organized as follows. Section 2
describes the deep MCANC approach. Section 3 describes exper-
iment settings. Evaluation and comparison results are presented
in Section 4. Section 5 provides further discussions and concludes
this paper.

2. Deep MCANC

2.1. Signal model

A general I × J × K MCANC system is shown in Fig. 1.
The primary path pk(n) and secondary path sjk(n) correspond
to the acoustic responses from a noise source and the jth can-
celing loudspeaker, respectively, to the kth error microphone,
where j = 1, 2, . . . , J and k = 1, 2, . . . , K . The reference
noises {x1, x2, . . . , xI} sensed by reference microphones are fed
to multi-channel active noise controllers to get the canceling
signals {y1, y2, . . . , yJ}. Assuming wji(n) is the active noise con-
troller placed between the ith reference microphone and the jth
canceling loudspeaker, the canceling signal at the jth loudspeaker
is obtained as

yj(n) =

I∑
wT

ji (n)xi(n) (1)

i=1
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Fig. 2. Diagram of (a) deep MCANC approach, and (b) CRN based deep MCANC.
P and S denoted primary and secondary paths. Superscripts (r) and (i) denote
eal and imaginary parts of signals, respectively.

here n is the time index, and the superscript T indicates trans-
ose. These canceling signals are then passed through the can-
eling loudspeakers and the secondary paths to generate anti-
oises in order to cancel or attenuate primary noises at the
rror microphones. The anti-noise generated by the jth canceling
oudspeaker and received by the kth error microphone can be
ritten as

jk(n) = sjk(n) ∗ fLS{yj(n)} (2)

where fLS{·} denotes the function of loudspeaker, and ∗ denotes
onvolution.
The error microphones are placed over desired locations to

easure the residual noise components, and the error signal
ensed by the kth error microphone is given by

k(n) = dk(n) −

J∑
j=1

ajk(n) (3)

where

dk(n) = pk(n) ∗ x(n) (4)

is the primary noise received at the kth error microphone, and
x(n) denotes the source noise. Note that the anti-noises are sub-
tracted in (3) to achieve noise cancellation.

2.2. Deep learning for MCANC

The proposed method uses deep learning for MCANC. It trains
a DNN with large-scale multi-condition training to directly ap-
proximate an optimal MCANC controller to minimize the total
energy of all the error microphones under different situations.
The diagram of deep MCANC is given in Fig. 2. Our goal is to
jointly estimate J canceling signals from the I reference signals
o that the corresponding anti-noises cancel the primary noises
t the K error microphones. In the proposed method, we use
eference signals (reference noises) as inputs and set the ideal
nti-noises as the training targets. To achieve complete noise
ancellation at desired locations, the ideal anti-noises should be
he same as the primary noises. During training, the outputs
f deep MCANC (canceling signals) are treated as ‘‘intermediate
roducts’’ and the anti-noises are generated by passing these
roducts through the corresponding loudspeakers and secondary
aths. The loss function calculated from all the error signals is

hen used to guide model training. T
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Table 1
Network details of the CRN architecture, where T denotes the number of time
frames in a spectrogram.
Layer name Input size Hyperparameters Output size

conv2d 1 2I × T × 161 1 × 3, (1, 2), 16 16 × T × 80
conv2d 2 16 × T × 80 1 × 3, (1, 2), 32 32 × T × 39
conv2d 3 32 × T × 39 1 × 3, (1, 2), 64 64 × T × 19
conv2d 4 64 × T × 19 1 × 3, (1, 2), 128 128 × T × 9
conv2d 5 128 × T × 4 1 × 3, (1, 2), 256 256 × T × 4
reshape_1 256 × T × 4 – T × 1024
grouped_lstm_1 T × 1024 1024 T × 1024
grouped_lstm_2 T × 1024 1024 T × 1024
reshape_2 T × 1024 – 256 × T × 4
deconv2d 5 512 × T × 4 1 × 3, (1, 2), 128 128 × T × 9
deconv2d 4 256 × T × 9 1 × 3, (1, 2), 64 64 × T × 19
deconv2d 3 128 × T × 19 1 × 3, (1, 2), 32 32 × T × 39
deconv2d 2 64 × T × 39 1 × 3, (1, 2), 16 16 × T × 80
deconv2d 1 32 × T × 80 1 × 3, (1, 2), 2J 2J × T × 161

2.3. Features and training targets

The performance of ANC is inherently sensitive to both mag-
nitude and phase of anti-noises. Our MCANC makes use of the
real and imaginary spectrograms of reference signals as inputs
to estimate the real and imaginary spectrograms of canceling
signals, as shown in Fig. 2(b). A reference signal xi(n) is sampled at
16 kHz, and windowed into 20-ms frames with 10-ms frame shift.
Then a 320-point short time Fourier transform (STFT) is applied to
each time frame to produce the real and imaginary spectrograms
of xi(n), which are denoted as X (r)

i (t, f ) and X (i)
i (t, f ), respectively,

within a T-F unit at time t and frequency f , superscripts (r) and
(i) denote real and imaginary parts of signals.

To attenuate the primary noises at the desired locations, we
set the ideal anti-noises, i.e., the primary noises, as the training
targets. The deep MCANC model is trained to output the real and
imaginary spectrograms of the J canceling signals, Y (r)

j (m, c) and
Y (i)
j (m, c), j = 1, 2, . . . , J , simultaneously. These outputs are then

fed to the inverse Fourier transform to derive waveform signals
yj(t). The anti-noises, which can be regarded as estimates of the
training targets, are generated by passing the canceling signals
through the corresponding loudspeakers and secondary paths.

2.4. Loss function and learning machine

The objective of deep MCANC is to generate canceling signals
that minimize the error signals received at all error microphones.
Therefore, the loss function is calculated as the sum of the K error
signals:

Loss =

∑K
k=1

∑L
n=1 e

2
k(n)

KL
(5)

where ek(n) is defined as (3), and L is the length of error signals.
We employ CRN for model training. The CRN has an encoder–

ecoder architecture, where the encoder and decoder comprise
ive convolutional layers and five deconvolutional layers, respec-
ively, as shown in Fig. 2(b). A two-layer recurrent network with
ong short-term memory (LSTM) is inserted between them to
ccount for temporal dynamics of audio signals, and a group
trategy is used in LSTM (Gao et al., 2018) with the group number
et to two. In our implementation, the encoder is a stack of
onvolutional layers and pooling layers, which serves to extract
igh-level features from the raw input. The decoder has the same
tructure as the encoder but in the reverse order and it ensures
hat the output of the decoder has the same shape as the input.

The detailed description of the CRN architecture is provided
n Table 1. Layer kind and position are shown under layer name.
he input and output size of each layer are marked as



H. Zhang and D. Wang Neural Networks 158 (2023) 318–327

t

F
s
z
t
l
i
b
a
e
c
c
a
c

2

o
A
s
i
r
v
z
w
r
e
m
m
m

z
s
O
f
v
t
c

3

3

m
s
m
s
t
s
d
i
t
i

z
0
t
p
w
a
g

n
1
g
p
b
a
m
w

3

2
m
f

N

Fig. 3. Deep MCANC for noise attenuation within a sphere with a radius of r
o generate a quiet zone.

eatureMaps×TimeSteps×FreqChannels. The hyperparameters are
pecified in the (kernelSize, strides, outChannels) format. We apply
ero-padding to the time direction for all the convolutions and
he deconvolutions. The number of feature maps in each decoder
ayer is doubled due to skip connections. Batch normalization
s adopted right after each convolution (or deconvolution) and
efore activation. Exponential linear units (ELUs) are used as the
ctivation function in all convolutional and deconvolutional lay-
rs except the output layer. As shown in Fig. 2(b), we utilize skip
onnections, which feed the output of each encoder layer to the
orresponding decoder layer, to improve the flow of information
nd gradients through the CRN. The number of input and output
hannels are set to 2I and 2J , respectively.

.5. Deep MCANC for quiet zone

Besides noise attenuation at multiple spatial points (locations
f error microphones), deep MCANC can be trained to achieve
NC within a spatial zone using one or multiple canceling loud-
peakers and multi error microphones. The general strategy is
llustrated in Fig. 3. The goal is to attenuate noise in a target
egion. To achieve this, we train the deep MCANC controller on a
ariety of room impulse responses (RIRs) sampled within a spatial
one during training in an RIR-independent way. To be specific,
e simulate the quiet zone as a sphere with a radius of r and
andomly select K points within the sphere as the locations of the
rror microphones. We call these error microphones ‘‘virtual error
icrophones’’ since they are simulated and only used during
odel training. Once the model is trained, these virtual error
icrophones are no longer used during the inference stage.
In order to achieve stronger noise attenuation within the quiet

one, more virtual error microphones are needed during training
tage to sample as many positions within the zone as possible.
ne idea for efficient model training is to calculate the loss
unction each time from a randomly sampled subset of the K
irtual error microphones (Zhang & Wang, 2021b). The model
rained this way saves the amount of computation while still
overing all K positions within the quiet zone.

. Experimental setup

.1. Experimental settings

To train a noise-independent model, we expose the MCANC
odel to a large variety of noisy environments in the training
tage (Chen et al., 2016) and use 10000 non-speech environ-
ental sounds (noises) from a sound-effect library (http://www.
ound-ideas.com) to create the training set. Babble noise, fac-
ory noise, operating room noise (denoted as ‘‘oproom’’), and
peech-shaped noise (denoted as ‘‘SSN’’) from the NOISEX-92
ataset (Varga & Steeneken, 1993), as well as recorded noises
n the DEMAND dataset (Thiemann et al., 2013), are used for
esting. All the noises are wideband without any low-pass filter-
ng, i.e. they have significant energy across the entire frequency
321
Fig. 4. Illustration of the MCANC experimental setup.

range. The test noises are unseen during training, and hence can
evaluate the generalization ability of the proposed method.

The physical structure of an ANC system is usually modeled
as a rectangular enclosure and many studies have shown the
effectiveness of ANC systems for noise canceling in enclosed
rooms (Cheer, 2012; Parkins et al., 2000; Samarasinghe et al.,
2016). In this study, we simulate a rectangular enclosure of size
3 m × 4 m × 2 m (width × length × height) and use the image
method (Allen & Berkley, 1979) to generate RIRs for the primary
and secondary paths of an MCANC system. The MCANC system
with three reference microphones, three canceling loudspeakers,
and four error microphones, is shown in Fig. 4 for the multi-point
ANC scenario. Our evaluation considers a single noise source
located at the position (1.5, 1, 1) m and is recorded by three
reference microphones located at (1.5, 1, 1) m, (1.4, 1, 1) m, (1.6,
1, 1) m. In this scenario we can equate the noise and the first ref-
erence microphone recording. The three canceling loudspeakers
are located at (1.5, 2.5, 1) m, (1.6, 2.5, 1) m, (1.4, 2.5, 1) m, and
the four error microphones at (1.5, 3, 1) m, (1.5, 3, 1.1) m, (1.4, 3,
1) m, (1.4, 3, 0.9) m. In the following experiments, an I × J × K
ANC system refers to the MCANC setup that consists of the first
I (1 ≤ I ≤ 3) reference microphones, the first J (1 ≤ J ≤ 3)
loudspeakers and the first K (1 ≤ K ≤ 4) error microphones
described here. For the quiet zone scenario, we use the same J
(1 ≤ J ≤ 3) canceling loudspeakers and set the center of the quiet
one at the position (1.5, 3, 1) m. Five reverberation times (T60s):
.15 s, 0.175 s, 0.2 s, 0.225 s, and 0.25 s, are used for generating
raining RIRs. With each T60, we generate multiple RIRs for all the
rimary and secondary paths in the MCANC system. For testing,
e use RIRs with reverberation time 0.2 s as the default test RIRs,
nd the RIRs generated with untrained T60s are used to test the
eneralization ability of deep MCANC.
We create 20000 training signals and 100 test signals. Each

oise signal is created by randomly cutting a 3-s signal from the
0000 noise signals. The primary noise at an error microphone is
enerated by convolving the source noise with the corresponding
rimary path (see Fig. 1). The estimated anti-noises are generated
y passing the canceling signals through a loudspeaker function
nd then RIRs for the corresponding secondary paths. The CRN
odel is trained using the AMSGrad optimizer (Reddi et al., 2019)
ith a learning rate of 0.001 for 30 epochs.

.2. Evaluation metric

We use normalized mean squared error (NMSE) (Das & Panda,
004; Tan & Jiang, 2009) to evaluate noise attenuation perfor-
ance of the proposed method. NMSE is a commonly used metric

or ANC evaluations and it is defined as

MSE = 10 log10

∑L
t=1 e

2(t)∑L 2
(6)
t=1 d (t)

http://www.sound-ideas.com
http://www.sound-ideas.com
http://www.sound-ideas.com
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Table 2
Average NMSE (dB) of ANC systems under different setups and with untrained noises.

1 × 1 × 1 1 × 2 × 1 1 × 2 × 2

Babble
FxLMS −6.95 (0.3) −9.12 (0.3) −7.60 (0.06) −7.94 (0.06)
PMl-FxLMS −7.02 (0.3) −9.40 (0.3) −7.85 (0.06) −8.17 (0.06)
Deep ANC −12.08 −16.27 −12.93 −13.34

Factory
FxLMS −6.62 (0.4) −9.06 (0.3) −7.51 (0.07) −8.11 (0.07)
PMl-FxLMS −6.67 (0.4) −9.29 (0.3) −7.81 (0.07) −8.38 (0.07)
Deep ANC −11.71 −14.73 −12.26 −12.39

Oproom
FxLMS −6.93 (0.3) −7.69 (0.2) −7.15 (0.08) −7.24 (0.08)
PMl-FxLMS −7.18 (0.3) −8.38 (0.2) −7.50 (0.08) −7.60 (0.08)
Deep ANC −11.14 −14.72 −10.84 −11.95

SSN
FxLMS −6.45 (0.2) −9.51 (0.2) −8.48 (0.06) −9.48 (0.06)
PMl-FxLMS −6.49 (0.2) −10.35 (0.2) −9.00 (0.06) −9.87 (0.06)
Deep ANC −12.53 −17.10 −12.26 −12.39
Fig. 5. Power spectrum of signals obtained with SSN noise under 1 × 1 × 1
nd 1 × 2 × 1 setups using (a) PMl-FxLMS, and (b) proposed method.

here L is the length of the signal. NMSE values are typically be-
ow zero, with a lower value indicating better noise attenuation.

. Experimental results and comparisons

.1. Deep MCANC for multi-point ANC

We first evaluate the performance of the proposed method
nder 1 × 1 × 1, 1 × 2 × 1, and 1 × 2 × 2 ANC setups, where
he single-channel ANC (1 × 1 × 1) can be seen as a special case
f MCANC. In the evaluations of this subsection and Sections 4.2–
.4, we use a linear loudspeaker function in (2), and nonlinear
unctions will be considered in Section 4.5. Two traditional ANC
lgorithms, FxLMS and post-masking-based FxLMS (PMl-FxLMS)
re utilized for comparison. FxLMS is the most commonly used
NC algorithm and PMl-FxLMS is its modified version for faster
onvergence and better noise attenuation (Shi et al., 2019). The
tep sizes of FxLMS and PMl-FxLMS are chosen for different noises
ccording to the criteria given in Shi et al. (2019) to ensure stable
pdating and good noise attenuation. The length of the error
ignal memory in PMl-FxLMS is set to 10, which is large enough to
chieve good performance of ANC. The proposed and comparison
322
Fig. 6. Average NMSE for 1 × 2 × 1 deep MCANC using untrained RIRs with
different T60s. The NMSE results for the trained T60 of 0.2 s are included for
comparison purposes.

methods are tested with four types of untrained noises and the
average NMSE of test signals is given in Table 2. The NMSE values
of the traditional ANC algorithms correspond to the final steady
state results, and the associated step sizes are given inside the
parentheses. For the MCANC setup with two error microphones
(1 × 2 × 2), we give NMSE results at both error microphones
in two separate columns in the table. It can be seen from this
table that the proposed deep MCANC consistently outperforms
the other methods under different setups and generalizes well to
untrained noises.

We provide power spectrum curves in Fig. 5 for SNN for
further comparisons. Power spectrum measures signal power as
a function of frequency, and illustrates relative noise attenua-
tion achieved at various frequencies. The curves presented in
the figure show that deep MCANC outperforms the traditional
method of PMI-FxLMS, and using more canceling loudspeakers
improves the noise attenuation performance. Moreover, the pro-
posed method is effective for ANC at low- and high-frequencies,
while the comparison method is only effective at low frequencies.
Traditional ANC is known to be restricted to low frequencies
due to factors such as convergence and latency (Kuo & Morgan,
1999; Samarasinghe et al., 2016), and narrow-band or low-pass
filtered noises are frequently utilized for performance evaluation.
We use wideband noises in this study for evaluation, which partly
explains why the amount of noise attenuation for the compari-
son methods is lower in Table 2 than typically reported in the
literature.

Fig. 6 shows the average NMSE of deep MCANC when tested
with RIRs generated using different T60 values (both trained and
untrained). The NMSE results for the trained T60 of 0.2 s are
included as reference. It is seen that the performance of deep
MCANC generalizes well to untrained RIRs.

Table 3 provides the results of deep MCANC using different
numbers of reference microphones. Using more reference micro-
phones helps to capture the primary noise better and leads to
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Fig. 7. Spectrograms of test results for different noises. The first, second and third row of each panel illustrates the output of no ANC, deep single-channel ANC, and
deep MCANC (1 × 2 × 1), respectively.
Table 3
Average NMSE (dB) of deep MCANC using different numbers of reference
microphones.

Babble Factory Oproom SSN

1 × 1 × 1 −12.08 −11.71 −11.14 −12.53
2 × 1 × 1 −12.57 −12.39 −11.51 −13.29
3 × 1 × 1 −12.93 −12.59 −11.77 −13.61

a little better noise attenuation performance. As our evaluations
consider point-source noises, which are relatively easy to capture,
MCANC with a single reference microphone will be taken as the
default setting in the following experiments.

The spectrograms of the proposed method tested using differ-
nt noises are shown in Fig. 7, where the first row of each panel
hows the spectrogram of primary noise (no ANC), and the second
nd third rows show the residual noises (error signals) obtained
sing 1 × 1 × 1 and 1 × 2 × 1 setups, respectively. It can be seen

that the proposed method is capable of achieving wideband noise
attenuation. Using two canceling loudspeakers helps to improve
the noise attenuation performance over the single loudspeaker
setup.

To further explore the impact of the number of canceling
loudspeakers and error microphones on multi-point ANC per-
formance, we evaluate the performance of 1 × J × K MCANC
etups with different combinations of J and K values, where J
aries from 1 to 3 and K from 1 to 4. The results tested using
ifferent noises are shown in Table 4. For an MCANC system with
error microphones, we measure the average NMSE obtained at

ach microphone and provide all K values in different rows of
he table. These results show that, with a fixed number of error
icrophones, noise attenuation performance usually improves as

he number of canceling loudspeakers increases.
323
4.2. Deep MCANC for quiet zone

This subsection evaluates the performance of deep MCANC
for generating a quiet zone. Conventional ANC methods require
multiple canceling loudspeakers and error microphones to gen-
erate a quiet zone, and the error microphones need to be placed
in the target zone, or near the zone with the help of remote
sensing techniques (Kajikawa et al., 2012). The proposed method
can achieve a quiet zone using a single canceling loudspeaker and
does not need to have any physical error microphones during the
inference stage (see also Zhang & Wang, 2021a). In this study, we
simulate the quiet zone as a sphere and set its radius to r = 5
cm; such a zone size is appropriate, for example, for a driver’s
ears inside a vehicle. For testing, besides the center of the quiet
zone (r = 0 cm), the performance is also evaluated at locations
on spheres of different radii (r = 1, 2, 3, 4, 5 cm). Specifically, for
‘‘r = d’’, we place an error microphone at 10 random positions
on the sphere of radius d cm and use the corresponding RIRs to
create test signals. Unless otherwise stated, the default number
of virtual error microphones is set to K = 100.

We start with assessing the impact of the number of virtual
error microphones on the quiet zone performance. A 1 × 1 × K
MCANC system with a single canceling loudspeaker and K virtual
error microphones is used for generating the quiet zone, where
K varies from 1 to 200. The results are provided in Fig. 8 with the
average value for each K shown below corresponding bars. Note
that the case with K = 1, which is the single-channel ANC case,
is trained by putting one error microphone at the center of the
sphere. It achieves better NMSE than other cases at r = 0 cm. But
its performance drops significantly as test positions move away
from the center of the zone. Using more virtual error microphones
achieves better overall noise attenuation within the zone, while
the improvement plateaus when K reaches 100.
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Table 4
Average NMSE (dB) of deep MCANC for multi-point noise cancellation using different numbers of canceling loudspeakers and error microphones.
Babble Factory Oproom SSN

1 × 1 × 1 1 × 2 × 1 1 × 3 × 1 1 × 1 × 1 1 × 2 × 1 1 × 3 × 1 1 × 1 × 1 1 × 2 × 1 1 × 3 × 1 1 × 1 × 1 1 × 2 × 1 1 × 3 × 1

−12.08 −16.27 −15.52 −11.71 −14.73 −14.20 −11.14 −14.72 −13.94 −12.53 −17.10 −16.64

1 × 1 × 2 1 × 2 × 2 1 × 3 × 2 1 × 1 × 2 1 × 2 × 2 1 × 3 × 2 1 × 1 × 2 1 × 2 × 2 1 × 3 × 2 1 × 1 × 2 1 × 2 × 2 1 × 3 × 2

−8.41 −12.93 −14.55 −7.94 −12.26 −13.53 −7.47 −10.84 −12.49 −8.19 −12.58 −13.11
−9.27 −13.34 −13.78 −8.70 −12.39 −12.55 −8.27 −11.95 −12.48 −9.66 −13.56 −14.45

1 × 1 × 3 1 × 2 × 3 1 × 3 × 3 1 × 1 × 3 1 × 2 × 3 1 × 3 × 3 1 × 1 × 3 1 × 2 × 3 1 × 3 × 3 1 × 1 × 3 1 × 2 × 3 1 × 3 × 3

−8.17 −8.36 −12.62 −7.65 −8.21 −12.00 −6.99 −7.54 −10.43 −8.08 −8.42 −12.83
−8.73 −9.45 −11.69 −8.22 −8.99 −10.93 −7.88 −8.38 −10.88 −8.47 −10.24 −11.63
−8.16 −9.72 −13.34 −7.57 −9.13 −12.11 −7.31 −8.92 −11.89 −8.74 −9.90 −14.09

1 × 1 × 4 1 × 2 × 4 1 × 3 × 4 1 × 1 × 4 1 × 2 × 4 1 × 3 × 4 1 × 1 × 4 1 × 2 × 4 1 × 3 × 4 1 × 1 × 4 1 × 2 × 4 1 × 3 × 4

−7.13 −9.28 −11.50 −6.59 −9.05 −10.70 −6.08 −8.06 −9.09 −6.89 −9.13 −11.65
−9.26 −9.89 −11.41 −8.69 −9.38 −10.63 −8.19 −8.87 −9.76 −9.36 −9.93 −11.92
−8.18 −9.80 −11.97 −7.56 −8.91 −10.89 −6.96 −8.56 −9.93 −8.62 −9.70 −11.87
−8.50 −9.49 −11.49 −7.42 −8.59 −10.07 −7.44 −8.22 −9.83 −7.23 −8.34 −10.69
Fig. 8. Average NMSE of deep MCANC for generating quiet zone in babble noise
using a 1×1×K setup with different numbers of virtual error microphones (K ),
here r (cm) is the distance of a test position to the center of the zone. The
alue shown below each cluster is the average NMSE within the quiet zone.

Table 5
Average NMSE (dB) of deep MCANC for generating quiet zone using different
numbers of canceling loudspeakers.

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 Ave

Babble
J = 1 −10.83 −10.72 −10.52 −9.77 −9.48 −7.55 −9.81
J = 2 −14.15 −14.16 −13.27 −11.74 −11.53 −9.02 −12.31
J = 3 −15.53 −15.59 −15.51 −14.37 −13.69 −11.59 −14.38

Factory
J = 1 −9.89 −9.83 −9.54 −8.84 −8.42 −6.52 −8.84
J = 2 −12.86 −12.87 −12.15 −10.79 −10.60 −8.25 −11.25
J = 3 −14.09 −14.15 −14.08 −13.17 −12.59 −10.87 −13.16

Oproom
J = 1 −9.20 −8.92 −8.49 −8.38 −7.92 −7.04 −8.33
J = 2 −11.78 −11.04 −10.50 −10.45 −9.62 −8.29 −10.28
J = 3 −12.29 −11.50 −11.29 −10.66 −10.65 −9.40 −10.96

SSN
J = 1 −10.04 −9.99 −9.67 −8.88 −8.37 −6.43 −8.90
J = 2 −14.63 −14.55 −13.51 −11.55 −11.27 −8.58 −12.35
J = 3 −16.45 −16.19 −16.40 −15.10 −14.37 −11.90 −15.07

Table 5 shows the MCANC performance for generating a quiet
one using different numbers of canceling loudspeakers. Similar
o the trend observed in the multi-point ANC scenario, more
anceling loudspeakers improve the overall performance of quiet
one generation. This is because, as the number of loudspeakers
ncreases, more canceling signals are generated for canceling or
ttenuating the primary noise within the fixed zone. For exam-
le, the average NMSE with babble noise is improved to −12.31
B from −9.81 dB by using 2 loudspeakers instead of 1, and the

NMSE is further improved by 2.07 dB when 3 loudspeakers are
324
Table 6
Average NMSE (dB) of deep MCANC for generating quiet zone with different
canceling loudspeaker positions.

Near Medium Far

1 × 1 × 100

r = 0 −15.78 −11.33 −12.56
r = 1 −15.16 −11.56 −12.52
r = 2 −12.83 −10.06 −11.98
r = 3 −11.38 −9.21 −11.28
r = 4 −10.04 −8.77 −10.88
r = 5 −8.61 −8.00 −10.01

Average −12.30 −9.75 −11.54

Variance 6.40 1.86 0.95

used. With more than 3 loudspeakers, we expect NMSE perfor-
mance to further improve, although the amount of improvement
for each added loudspeaker will diminish.

4.3. Position of canceling loudspeaker

The position of a canceling loudspeaker (the secondary source)
not only influences the system causality but also determines the
amount of noise reduction. To explore the influence of loud-
speaker position on ANC performance, we consider three 1 × 1 ×

100 MCANC setups with different loudspeaker positions for gen-
erating a quiet zone. The distance between the canceling loud-
speaker and the center of the quiet zone is set to 0.1 m, 0.5 m, and
1.9 m, respectively. The corresponding positions of the canceling
loudspeaker are (2.9, 1.5, 1) m, (2.5, 1.5, 1) m, and (1.1, 1.5,
1) m, which are denoted as ‘‘Near’’, ‘‘Medium’’ and ‘‘Far’’ cases,
respectively. To save training time, a smaller dataset with 5000
babble noises is used for model training, and the performance
is tested using 100 untrained babble noises. Table 6 shows the
NMSE results. It can be seen that the ‘‘Near’’ case achieves better
noise cancellation at locations that are close to the center of the
quiet zone (locations with smaller r) than the other two cases.
Moving the canceling loudspeaker away from the quiet zone
(the ‘‘Medium’’ case) results in weaker noise attenuation. Further
increasing the distance between canceling loudspeaker and the
quiet zone, the ‘‘Far’’ case slightly improves the performance
compared to the results obtained in the ‘‘Medium’’ case.

The above observations can be understood from two perspec-
tives. The performance of deep MCANC for generating a quiet
zone relies on the magnitude and phase of anti-noises received
within the spatial zone. From the reverberation point of view,
placing the secondary source nearer to the quiet zone results in
higher direct-to-reverberant-ratio (DRR) in anti-noise. Since the
noise attenuation level is highly related to the direct part of anti-
noise, higher DRR would lead to better noise attenuation. From
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Table 7
Robustness of deep MCANC to variations in reference signals.

1 × 1 × 1 1 × 2 × 1 1 × 1 × 100 1 × 2 × 100

Noisechange
Babble → Factory −11.83 −15.48 −9.47 −11.87
Babble → Oproom −11.58 −15.41 −9.19 −10.90
Babble → SSN −12.33 −16.82 −9.39 −12.36

Noisemixture
Babble + Factory −11.33 −14.85 −9.12 −11.43
Babble + Oproom −10.99 −14.60 −8.95 −10.64
Babble + SSN −12.41 −17.01 −9.40 −12.42
Table 8
Average NMSE (dB) of deep learning based MCANC in the present of nonlinear
distortions.
η2 1 × 2 × 1 1 × 1 × 100

∞ 0.1 0.5 ∞ 0.1 0.5

Babble −16.43 −16.39 −16.46 −9.68 −9.57 −9.64
Factory −15.54 −15.46 −15.57 −8.90 −8.66 −8.87
Oproom −15.77 −15.73 −15.79 −8.46 −8.41 −8.47
SSN −17.74 −17.79 −17.82 −9.04 −8.97 −9.03

the wave propagation point of view, given a zone of fixed size, the
waves inside a zone that is farther from the sound source have
smaller intensity variations within the zone due to the inverse
square law of wave propagation (Hartmann, 1998). This makes
noise attenuation within this zone more ‘‘even’’. To show this,
we calculate the variance of NMSE obtained within the zone and
present it in the last row of Table 6. It is seen that the variance
of NMSE obtained in the ‘‘Far’’ case is much smaller than that
obtained in the ‘‘Near’’ case.

4.4. Robustness test

In ANC applications, variations may occur in reference signals
ue to the change of acoustic environment. Here, we evalu-
te deep MCANC models in situations with noise type change
nd multiple noises occurring simultaneously in reference signals
o show the robustness of the proposed method against these
ariations. For noise type change, we generate test signals by
hanging the noise type in the reference signal from babble noise
o a different noise after 1.5 s, the middle point of a reference
ignal. For situations with multiple noises, the reference signal is
enerated as a mixture of babble noise and another noise. The
est results are given in Table 7, and they demonstrate the strong
obustness of deep MCANC against such variations in reference
ignals.

.5. Nonlinear MCANC

The performance of deep MCANC in the presence of nonlinear
istortions is studied in this part. We follow the setup given
n Agerkvist (2007), Zhang and Wang (2020) and Ghasemi et al.
2016) and simulate the saturation nonlinearity of loudspeaker
sing the scaled error function (SEF) (Klippel, 2006). That is

LS(y) = fSEF(y) =
∫ y
0 e

−
z2

2η2 dz (7)

where y is the input to the loudspeaker, and η2 defines the
strength of nonlinearity. The SEF becomes linear as η2 tends to
infinity, and a hard limiter as it tends to zero.

The deep MCANC models are trained using four loudspeaker
functions: η2

= 0.1 (severe nonlinearity), η2
= 1 (moderate

nonlinearity), η2
= 10 (soft nonlinearity), and η2

= ∞ (linear).
During training, we randomly select a loudspeaker function for
each input signal, and generate the loudspeaker signal by passing
a canceling signal through the loudspeaker function. For testing,
both trained and untrained (η2

= 0.5) loudspeaker functions are
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Table 9
Average NMSE (dB) of deep MCANC tested on recorded noises in six realistic
environments.

1 × 1 × 1 1 × 2 × 1 1 × 1 × 100 1 × 2 × 100

NRIVER −10.92 −13.05 −7.22 −9.10
OMEETING −12.08 −14.00 −9.37 −10.93
DLIVING −11.68 −11.93 −9.34 −9.85
PRESTO −12.76 −15.10 −8.52 −10.15
SPSQUARE −10.81 −11.08 −8.44 −9.35
TMETRO −11.30 −11.91 −9.10 −9.91

used. The results are given in Table 8. These results show that
deep MCANC models can be trained to achieve noise attenuation
in both linear and nonlinear situations.

4.6. Noise attenuation performance under real recordings

Finally, nonstationary noises from the DEMAND corpus (Thie-
mann et al., 2013) are used to test the performance of deep
ANC in realistic conditions. All recordings of the DEMAND corpus
are five-minute long and recorded with a 16-channel array. We
randomly select one channel of the recordings for testing.

The DEMAND dataset has six categories of noises. We choose
one noise from each category to represent distinct environments.
These six nonstationary noises is described as follows.

• The ‘‘Nature’’ category: The NRIVER noise, recorded besides
a creek of running water.

• The ‘‘Office’’ category: The OMEETING noise, recorded in a
meeting room.

• The ‘‘Domestic’’ category: The DLIVING noise, recorded in-
side a living room.

• The ‘‘Public’’ category: The PRESTO noise, recorded in a
university restaurant at lunchtime.

• The ‘‘Street’’ category: The SPSQUARE noise, recorded in a
public town square with many tourists.

• The ‘‘Transportation’’ category: The TMETRO noise, recorded
in a subway.

The NMSE results are given in Table 9. These results show that
the proposed deep MCANC works well for recorded noises under
different realistic environments.

5. Discussion

This paper demonstrates the utility of deep learning for solving
MCANC problems. For quiet zone generation, we investigate the
feasibility of using fewer virtual error microphones for efficient
model training. In comparison to deep MCANC trained with a
large number of virtual error microphones, training a model using
a subset of the virtual microphones, say 20%, achieves comparable
quiet zone performance while requiring less computation.

Compared with traditional methods, deep MCANC has the
following advantages. First, deep MCANC is capable of cancel-
ing different types of noise and effective for wideband noise

attenuation. Second, rather than training a separate ANC for each
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hannel, the proposed method approaches MCANC by training a
ingle controller to generate multi-channel outputs. Third, deep
CANC can be trained to generate a quiet zone using a single
anceling loudspeaker and does not need physical error micro-
hones during the inference stage. Fourth, the proposed method
an inherently deal with nonlinear distortions. Moreover, as we
ave shown previously, deep ANC is flexible in terms of training
arget, e.g., it can be trained to selectively attenuate the noise
omponents of a noisy speech signal and let the underlying
peech pass through Zhang and Wang (2021a). This advantage
olds for deep MCANC.
Two main issues are worth discussing, which are generaliza-

ion ability and processing latency. Limited generalization abil-
ty is a common problem for fixed-parameter ANC methods.
o address this, we employ large-scale multi-condition training
o make deep MCANC robust against a variety of noises. Other
ethods like selective fixed-parameter ANC (Ranjan et al., 2016;
hi et al., 2020, 2018, 2022) have also been proposed to improve
eneralization ability. These methods work by pre-training multi-
le fixed-coefficient sets for different environments and selecting
proper one for noise attenuation during the inference stage. In
ddition, using a hybrid approach that combines fixed-parameter
nd adaptive ANC could be explored for further improving the
eneralization ability of deep MCANC.
The processing latency is an important issue due to the causal-

ty constraint of ANC systems, whereby the signal of the canceling
oudspeaker has to be generated before the actual noise propa-
ates to the canceling loudspeaker. Deep MCANC is a frequency
omain method, which incurs an algorithmic delay related to the
rame length and frame shift of STFT. This kind of delay is consid-
red as a shortcoming for frequency-domain ANC algorithms and
any approaches have been proposed to overcome this (Bendel
t al., 2001; Kim et al., 1994; Kuo et al., 2008; Yang et al.,
018). We have proposed a delay-compensated training strategy
n Zhang and Wang (2021a) to tackle this latency problem and it
an be utilized in deep MCANC as well. In addition, implementing
eep MCANC using low-latency time-domain methods (Luo &
esgarani, 2019; Pandey & Wang, 2019, 2021) could alleviate the

atency problem.
In terms of computational complexity, the proposed deep

CANC system contains about 8.8 million (M) trainable param-
ters and takes 12.72 M floating-point fused multiply-adds per
ime frame. As expected, the DNN model requires more compu-
ations than traditional adaptive algorithms. Model compression
nd efficient implementation will be addressed in future studies
o enable deep MCANC in real-world applications.

The MCANC formulation in this paper is focused on the situa-
ion with a single noise source. However, our formulation can be
traightforwardly extended to the situation with multiple noise
ources at different locations. In this case, the number of primary
aths will be increased to M×K , where M is the number of noise

sources. The corresponding error signal sensed by the kth error
microphone will be expanded to (cf. Eq. (3))

ek(n) =

M∑
m=1

dmk(n) −

J∑
j=1

ajk(n) (8)

and Eq. (4) will be modified to

dmk(n) = pmk(n) ∗ sm(n) (9)

where sm(n) is themth noise source, and dmk(n) is the correspond-
ing primary noise at error microphone k. The overall procedure of
using deep MCANC for noise attenuation with single and multiple
noise sources would otherwise be the same. It is worth noting
that attenuating multiple noise sources jointly usually places a
separate reference microphone near each source; for example,
for road noise cancellation in the in-car environment, a sensor is
installed at each wheel to capture the road generated noise (Sano

et al., 2001).
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6. Conclusion

In this paper, we have introduced a deep MCANC approach to
multi-channel active noise control. The proposed approach trains
a CRN model to estimate multiple canceling signals simultane-
ously from reference signals so that the corresponding anti-noises
cancel or attenuate the primary noises. We have evaluated the
performance of deep MCANC for multi-point ANC and quiet zone
generation. The impact of factors such as the number of canceling
loudspeakers and error microphones, and the position of a cancel-
ing loudspeaker on MCANC performance has been investigated.
Extensive experimental results show the effectiveness of deep
MCANC for noise attenuation in various scenarios. In addition,
the proposed method is robust against untrained noises and
works well in the presence of loudspeaker nonlinearity. Future
work includes exploring time-domain methods and considering
practical issues such as computational complexity.
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