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a b s t r a c t

Traditional active noise control (ANC) methods are based on adaptive signal processing with the least
mean square algorithm as the foundation. They are linear systems and do not perform satisfactorily in
the presence of nonlinear distortions. In this paper, we formulate ANC as a supervised learning problem
and propose a deep learning approach, called deep ANC, to address the nonlinear ANC problem. The
main idea is to employ deep learning to encode the optimal control parameters corresponding to
different noises and environments. A convolutional recurrent network (CRN) is trained to estimate
the real and imaginary spectrograms of the canceling signal from the reference signal so that the
corresponding anti-noise can eliminate or attenuate the primary noise in the ANC system. Large-scale
multi-condition training is employed to achieve good generalization and robustness against a variety
of noises. The deep ANC method can be trained to achieve active noise cancellation no matter whether
the reference signal is noise or noisy speech. In addition, a delay-compensated strategy is introduced
to solve the potential latency problem of ANC systems. Experimental results show that deep ANC
is effective for wideband noise reduction and generalizes well to untrained noises. Moreover, the
proposed method can achieve ANC within a quiet zone and is robust against variations in reference
signals.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Active noise control is a noise cancellation methodology based
n the principle of superposition of acoustic signals, i.e. two
uperposed waveform signals cancel each other when they have
he same amplitude but the opposite phase. The goal of ANC
ystems is to generate an anti-noise with the same amplitude and
pposite phase of the primary (unwanted) noise to cancel the pri-
ary noise (Goodwin, Silva, & Quevedo, 2010). ANC differs from
assive noise control, e.g. by using sound-absorbing barriers like
n earplug, and noise removal in signal enhancement where noise
s removed by processing a noisy signal like noisy speech (Wang
Chen, 2018). Fundamentally, ANC requires to predict both the

mplitude and phase of a noise signal at a given point in space
head of time. While signal amplitude may be steady over time,
ignal phase changes all the time at any spatial location due to
he nature of acoustic waves (Hartmann, 2004). Thus ANC is a
ery challenging problem, and in practice it can attenuate only
ow-frequency stationary noises.

ANC has attracted increasing attention in research and in-
ustrial applications over the past few decades. There are two
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kinds of ANC systems: feedforward and feedback (Kuo & Morgan,
1999). A typical feedforward ANC system is shown in Fig. 1, and
it consists of a reference microphone, a canceling loudspeaker,
and an error microphone. The active noise controller takes the
reference signal and error signal, sensed by the reference micro-
phone and error microphone, respectively, as inputs to adapt the
controller so that the canceling signal generated can superpose
with the primary noise at the location to be silenced. Feedback
ANC uses only an error sensor to adapt the controller and is sim-
pler to implement. However, it is not as effective as feedforward
ANC when dealing with broad-band noise cancellation because
feedback ANC does not use the information from the reference
signal.

Traditionally, an active noise controller is implemented using
adaptive filters that optimize filter characteristics by minimizing
an error signal (Manolakis, Ingle, Kogon, et al., 2000). Filtered-x
least mean square (FxLMS) and its extensions are the most widely
used active noise controllers due to their simplicity, robustness
and relatively low computational load. The FxLMS algorithm al-
leviates the effect of the secondary path by filtering the reference
signal, x(t), with an estimate of the secondary path before feeding
it to the controller (Elliott, Stothers, & Nelson, 1987); see Fig. 1.
The secondary path is usually estimated separately as a finite
impulse response filter (FIR) beforehand. However, nonlinear dis-

tortions are inevitably introduced to the anti-noise in applications
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Fig. 1. Diagram of a single-channel feedforward ANC system, where P(z) and
(z) denote the frequency responses of the primary path and secondary path,
espectively.

f ANC due to the limited quality of electronic devices such as
mplifiers and loudspeakers. The linear adaptive approach fails to
dentify the secondary path accurately in the presence of nonlin-
arities. Consequently, the inaccurately estimated secondary path
eteriorates the overall noise cancellation performance. Costa,
ermudez, and Bershad (2002) present a statistical analysis of
he FxLMS behavior when the secondary path includes a nonlin-
ar element and conclude that a small nonlinearity can have a
ignificant impact on the adaptive filter behavior.
Many adaptive nonlinear ANC algorithms have been proposed

n the literature to address nonlinear distortions (Das & Panda,
004; Ghasemi, Kamil, & Marhaban, 2016; Kuo & Wu, 2005;
ashkari, 2006; Napoli & Piroddi, 2009; Tan & Jiang, 2001; To-
ias & Seara, 2005). The Volterra expansion has been shown to
e effective for modeling soft or weak nonlinearities (Lashkari,
006) and a truncated second-order Volterra based FxLMS al-
orithm has been proposed for feedforward active noise control
n the presence of nonlinear distortions (Guo et al., 2018; Tan
Jiang, 2001). Napoli and Piroddi (2009) utilize the polyno-
ial Nonlinear AutoRegressive model with eXogenous variables

NARX) to identify controller structure for more efficient and
eliable nonlinear ANC. Nonlinear FxLMS and the tangential hy-
erbolic function based FxLMS (THF-FxLMS) are introduced to
andle the nonlinearities of the ANC system by modeling the
econdary path as a saturation-type nonlinearity (Ghasemi et al.,
016). Other algorithms such as bilinear FxLMS (Kuo & Wu,
005), filtered-s LMS (Das & Panda, 2004), leaky FxLMS (Tobias &
eara, 2005) have also been investigated to address nonlinearity.
owever, their performance is limited in the presence of strong
onlinearities.
Neural networks have been introduced to address nonlinear

NC (George & Panda, 2013), considering their ability in handling
onlinear relations. A multilayer perceptron (MLP) network is
ntroduced in Snyder and Tanaka (1995) for active control of
ibrations, wherein the weights of the neural network are up-
ated by using adaptive filtered-x backpropagation. Based on the
onlinear active control structure given in Snyder and Tanaka
1995), improved training algorithms are developed to increase
he convergence speed and decrease the computational load of
he training (Bouchard, Paillard, & Le Dinh, 1999; Chang & Luoh,
007). Krukowicz (2010) and Panda and Das (2003) use an ef-
icient ANC structure based on functional link neural network
o resolve the nonlinear effect in ANC. Other nonlinear adaptive
odels such as radial basis function networks (Tokhi & Wood,
997), fuzzy neural networks (Zhang, Gan, & Zhou, 2006), and
ecurrent neural networks (Bambang, 2008) have been developed
o further improve the ANC performance. These neural network
rchitectures for nonlinear ANC utilize online adaptation or train-
ng to obtain an optimal controller and thus should be regarded
s adaptive algorithms.
Deep learning is capable of modeling complex nonlinear rela-

ionships and can potentially play an important role in addressing
2

nonlinear ANC problems. To be suitable for real-world applica-
tions, an ANC system must be able to attenuate a variety of
noises and cope with the variations in acoustic environments.
Traditional ANC systems are adaptive and handle these variations
with properly adapted parameters. As for deep learning based
supervised ANC, large-scale multi-condition training would be
required to expose ANC to a large variety of noises and variations
during training. A deep learning model trained this way could
potentially generalize to untrained noises and environments.

In this paper, we propose a new approach to address ANC,
particularly nonlinear ANC problems. Our approach, named deep
ANC, employs a deep learning model trained to encode the opti-
mal control parameters corresponding to different noise sources.
Considering that ANC is inherently sensitive to both the mag-
nitude and phase of the anti-noise, we use complex spectral
mapping to estimate both magnitude and phase responses of
the ANC output simultaneously (Fu, Hu, Tsao, & Lu, 2017; Tan &
Wang, 2019b; Williamson, Wang, & Wang, 2016). During training,
a CRN (Tan & Wang, 2019a) is trained to estimate the real and
imaginary spectrograms of a canceling signal from the refer-
ence signal. The subsequent anti-noise is obtained by passing the
canceling signal through a loudspeaker and secondary path (see
Fig. 1). Finally, the error signal is used to calculate the loss func-
tion for training the CRN model. To the best of our knowledge,
this study is the first attempt to formulate ANC as a supervised
learning problem and use deep learning to address it.

From the methodological perspective, deep ANC can be more
advantageous than traditional ANC algorithms. Besides attenu-
ating noise signals, deep ANC can be trained to attenuate the
noise components of a noisy speech signal and let the underly-
ing speech pass through. Namely, deep ANC in principle is able
to maintain the target signal embedded in noise by selectively
canceling the noise components of the noisy signal; the target
signal does not have to be speech, and it can be other kinds, such
as music. This advantage could dramatically expand the scope of
ANC applicability. In addition, we introduce a delay-compensated
training strategy to tackle a shortcoming of frequency-domain
ANC algorithms: processing latency.

Besides ANC at a given spatial location, a more useful but more
challenging task is to perform ANC within a small spatial zone,
i.e., to generate a quiet zone. The deep ANC method can be trained
in an RIR (room impulse response) independent way to generate
such a quiet zone.

A preliminary version of this study is recently published
(Zhang & Wang, 2020). Compared to the conference version, this
paper provides a wider range of evaluations with more noises,
signal-to-noise ratios (SNRs), and untrained speakers. In addition,
the robustness of deep ANC against variations that occur in
reference signals is investigated and new comparisons are made
with other nonlinear ANC methods.

The remainder of this paper is organized as follows. Section 2
introduces the signal model of active noise control. Section 3
presents the deep ANC approach. Evaluation metrics and ex-
perimental setup are given in Section 4. Section 5 shows the
evaluation results and comparisons. Section 6 concludes the pa-
per.

2. Active noise control

2.1. Signal model

As is shown in Fig. 1, the primary path and secondary path
correspond to the acoustic responses from the reference micro-
phone and the canceling loudspeaker, respectively, to the error
microphone, and their frequency responses are denoted as P(z)
nd S(z), respectively. The reference signal x(t) is picked up by a
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Fig. 2. Diagram of the deep ANC approach, where fLS{·} denotes the function of
the canceling loudspeaker and y(t) the canceling signal (output of deep ANC).

eference microphone and passed through the active noise con-
roller to get the canceling signal y(t). The canceling signal is then
assed through the canceling loudspeaker and the secondary path
o produce the anti-noise a(t). The corresponding error signal
sensed by the error microphone is defined as

e(t) = d(t) − a(t)

= p(t) ∗ x(t) − s(t) ∗ fLS{wT (t)x(t)} (1)

where t is the time index, d(t) is the primary signal received by
the error microphone, w(t) represents the active noise controller,
fLS{·} denotes the function of the loudspeaker, ∗ denotes linear
convolution, and the superscript T indicates transpose. Further-
more, p(t) and s(t) denote the impulse responses of the primary
and secondary path, respectively.

Active noise control aims to generate an anti-noise so as to
cancel the primary noise. Traditionally, this is accomplished by
using adaptive algorithms to estimate the digital filter W (z) so
that the mean squared error is minimized. The FxLMS algorithm
and its variations work by estimating a secondary path first and
then placing the estimated filter Ŝ(z) in the reference signal path
to compensate for the effect of the secondary path. The secondary
path is usually estimated offline during an initial stage in ANC
applications and the performance of traditional ANC methods
depends largely on the accuracy of Ŝ(z).

2.2. Deep learning for active noise control

Ignoring the function of the loudspeaker, the z-transform of
(1) can be written as

E(z) = [P(z) − S(z)W (z)]X(z) (2)

Assuming that the residual error is completely attenuated after
the convergence of an adaptive filter, the optimal solution of
the adaptive filter can be represented by the following transfer
function

W o(z) =
P(z)
S(z)

(3)

This means that the ANC system has to model P(z) and the inverse
of S(z), simultaneously, to achieve the optimal performance (Kuo
& Morgan, 1999). However, an inverse of S(z) does not necessarily
exist and the direct estimation of the adaptive filer W (z) can be
complicated for traditional adaptive algorithms, letting alone the
nonlinear distortions introduced by the loudspeaker.

Different from traditional ANC methods that need to estimate
the secondary path and adaptive filter individually, deep ANC
uses supervised learning and trains a deep neural network to
directly approximate the optimal controller W o(z) in order to
minimize the error signal under different situations. A diagram
of deep ANC is shown in Fig. 2. The overall goal is to estimate a
canceling signal from the reference signal so that the correspond-
ing anti-noise cancels the primary noise. In the proposed method,
we use the reference signal as input and set the ideal anti-noise
as the training target. To achieve complete noise cancellation, the
3

ideal anti-noise should be the same as the primary noise. During
training, the output of deep ANC is treated as an ‘‘intermediate
product’’ and the estimate of the anti-noise is generated by pass-
ing deep ANC output through the loudspeaker and the secondary
path. The loss function is calculated from the error signal.

Formulating ANC as a supervised learning problem is nontriv-
ial. There are two conceptual obstacles to such a formulation.
First, it is not straightforward to define what the training target
should be for a deep neural network (DNN). Although the ideal
canceling signal for attenuating a primary noise is known, it can-
not be used directly as the desired output of the DNN due to the
existence of the loudspeaker and the secondary path (see Fig. 2).
Second, the primary and secondary paths can be time-varying and
the transfer function that the DNN needs to approximate can be
different for different acoustic conditions. This seems to imply
that a supervised learning model needs to predict a one-to-many
mapping, an impossible job. These obstacles may explain why
ANC has not been approached from the deep learning standpoint.
However, as detailed in the next section, we have access to the
ideal anti-noise to supervise DNN training, and the DNN can
be trained to estimate, for a given input, some average of the
different outputs for different scenarios. With these observations,
ANC can be formulated as a deep learning task.

3. Deep ANC method

3.1. Feature extraction and training target

The reference signal x(t) is sampled at 16 kHz and divided into
20-ms frames with a 10-ms overlap between consecutive frames.
Then a 320-point short time Fourier transform (STFT) is applied to
each time frame to produce the real and imaginary spectrograms
of x(t), which are denoted as Xr (m, c) and Xi(m, c), respectively,
within a T-F unit at time m and frequency c. The proposed CRN
for deep ANC is shown in Fig. 3 and it takes Xr (m, c) and Xi(m, c)
as input features for complex spectral mapping.

To attenuate the primary noise at the location of the error
microphone, deep ANC uses the ideal anti-noise (the primary
noise) as the training target. The CRN is trained to map from the
real and imaginary spectrograms of the reference signal to those
of the canceling signal, Yr (m, c) and Yi(m, c). This is different from
the methods that estimate only the magnitude spectrogram and
use the phase spectrogram of the input signal to generate the es-
timated waveform output. We choose complex spectral mapping
because of the importance of phase in active noise control. The
complex spectrogram of the canceling signal goes through the
inverse Fourier transform to derive a waveform signal y(t). The
anti-noise, which can be regarded as an estimate of the training
target, is then generated by passing the canceling signal through
the loudspeaker and secondary path.

3.2. Two training strategies and loss functions

In real-world applications, ANC applications may need to han-
dle cases when the reference signal is noisy speech. Taking noise-
canceling headphones as an example, the reference microphone
on the headphones may pick up voice when someone is talking
in the vicinity of the user. The reference signal in this case is a
mixture of speech and primary noise. In this case, ANC should
ideally allow the speech signal to pass through while suppressing
the primary noise.

Deep ANC can be trained to achieve noise cancellation no
matter whether the reference signal is noise or noisy speech, by
using proper training data and loss functions. Fig. 4 shows two
training strategies for the deep ANC method:
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Fig. 3. Diagram of CRN based deep ANC. Conv blocks denote convolutional layers and Deconv blocks denote deconvolutional layers. Skip connections connect layers
at the same level. The inputs and outputs of CRN are defined in the complex STFT domain.
Fig. 4. Illustration of the training strategies for deep ANC when reference signal
is (a) noise, and (b) noisy speech.

• Deep ANC trained with noise: The model trained this way
aims to cancel any noise received at the reference micro-
phone. To achieve this, we use noise signal n(t) as the
reference signal and train deep ANC to completely eliminate
the primary noise. The loss function is defined as:

Ln =

∑L
t=1 e

2(t)
L

(4)

where L is the length of the noise signal, and e(t) is defined
in (1).

• Deep ANC trained with noisy speech: The deep ANC model
is trained to cancel surrounding noise while preserving
speech signal. The reference signal used to train this deep
ANC system is a mixture of noise n(t) and speech v(t), and
the corresponding primary signal d(t) is

d(t) = p(t) ∗ [v(t) + n(t)]

= p(t) ∗ v(t) + p(t) ∗ n(t) (5)

where p(t) ∗ n(t) and p(t) ∗ v(t) are, respectively, the noise
and speech components of the primary signal. In order to at-
tenuate only noise components and let speech pass through,
the training target is set to the noise component, p(t) ∗ n(t),
and the ideal error signal then is equivalent to p(t) ∗ v(t).
The loss function used for training this deep ANC system is
defined as:

Lns =

∑L
t=1[e(t) − p(t) ∗ v(t)]2

L
(6)

3.3. Learning machine

Deep ANC employs a CRN for complex spectral mapping (Tan
& Wang, 2019a). Besides its previous use for complex spectral
4

mapping and strong speech enhancement performance, the CRN
exhibits higher parameter efficiency and is suitable for real-time
processing. The CRN has an encoder–decoder architecture, as
shown in Fig. 3, where the encoder and decoder comprise five
convolutional layers and five deconvolutional layers, respectively.
Between them are two recurrent LSTM (long short-term memory)
layers with a group strategy (Gao et al., 2018), where the group
number is set to 2. The encoder–decoder structure is designed
in a symmetric way where the number of kernels progressively
increases in the encoder and decreases in the decoder. To ag-
gregate the spectral context, a stride of two is adopted along
the frequency dimension in all convolutional and deconvolutional
layers. Therefore, the frequency dimensionality of feature maps is
halved layer by layer in the encoder and doubled layer by layer
in the decoder to ensure that the output has the same shape as
the input. Skip connections are utilized in the CRN so that the
output of each encoder layer is concatenated to the input of the
corresponding decoder layer. In the CRN, all convolutions and
deconvolutions are causal, so that the system does not use future
information and is thus suited for real-time implementation. A
detailed description of the CRN architecture is provided in Tan
and Wang (2019a).

We employ exponential linear units (ELUs)
(Clevert, Unterthiner, & Hochreiter, 2015) in all convolutional
and deconvolutional layers except for the output layer, where
linear activation is used for spectrogram estimation. Moreover,
we utilize batch normalization (Ioffe & Szegedy, 2015) right after
each convolution or deconvolution and before activation. The
model is trained using the AMSGrad optimizer (Reddi, Kale, &
Kumar, 2019) with a learning rate of 0.001 for 30 epochs.

3.4. Delay-compensated training

The proposed approach uses real and imaginary spectrograms
as the input and output, and it can thus be regarded as a
frequency-domain ANC algorithm. However, frequency-domain
ANC algorithms incur a time delay equal to the frame length of
STFT (Yang, Cao, Wu, Albu, & Yang, 2018). This delay may violate
the causality constraint of ANC, considered a shortcoming for
frequency-domain ANC algorithms. Many approaches have been
proposed to reduce this delay, which is not easy to be completely
eliminated (Bendel, Burshtein, Shalvi, & Weinstein, 2001; Kim, Na,
Kim, & Park, 1994; Kuo, Yenduri, & Gupta, 2008; Park, Yun, Park,
& Youn, 2001; Rout, Das, & Panda, 2015).

We propose a delay-compensated training strategy for deep
ANC in order to address this delay problem. The main idea is to
train the model to predict the canceling signal a few frames in

advance. A diagram of this strategy is shown in Fig. 5, where
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Fig. 5. Diagram of the delay-compensated training strategy. Gray blocks
enote the original signals and blocks inside the thick boxes denote the
xpanded signals for the delay-compensated strategy. The CRN block denotes
he convolutional recurrent network used for deep ANC.

denotes the total number of frames in an input signal, M
enotes the number of predicted frames. Specifically, the input
ignal is first expanded by padding M frames of zeros at the
eginning. Then the first N frames of the expanded input are used
s the new input signal to train the model. The new input is a
oncatenation of M frames of zeros and the first N − M frames
f the original input, while the target signal is kept unchanged,
ence equivalent to using the input signal to predict M frames
f the target in advance. With 20-ms frames and 10-ms frame
hift, delay-compensated training saves 10×M ms for active noise
ontrol. Therefore, this strategy can in principle solve the latency
roblem of frequency-domain ANC systems.

. Experimental setup

.1. Performance metrics

Performance of the proposed method is evaluated in terms of
ormalized mean squared error (NMSE), short-time objective in-
elligibility (STOI) (Taal, Hendriks, Heusdens, & Jensen, 2011) and
erceptual evaluation of speech quality (PESQ) (Rix, Beerends,
ollier, & Hekstra, 2001).
The power of the error signal in an ANC system is usually used

s a quality metric of noise attenuation. In this paper, we use
MSE in dB to measure the performance of ANC systems:

MSE = 10 log10

∑L
t=1 e

2(t)∑L
t=1 d2(t)

(7)

where L is the length of signal. The value of NMSE is usually below
zero and a lower value indicates better noise attenuation.

STOI and PESQ are used to measure the intelligibility and
quality of denoised speech received at the error microphone,
respectively, when the reference signal is noisy speech. They
are obtained by comparing the error signal e(t) with the speech
component of the primary signal, p(t)∗v(t). The range of the STOI
score is typically from 0 to 1. The range of the PESQ score is from
−0.5 to 4.5. A higher score is better.

4.2. Experimental settings

To train a noise-independent model, we expose the ANC
model to a large variety of noisy environments in the training
stage (Chen, Wang, Yoho, Wang, & Healy, 2016) and use 10000
non-speech environmental sounds (noises) from a sound-effect
library (http://www.sound-ideas.com) to create the training set.
Engine noise, factory noise, babble noise and speech-shaped noise
(denoted as ‘‘SSN’’) from NOISEX-92 (Varga & Steeneken, 1993)
are used for testing. Note that the testing noises are unseen
during the training stage, and hence evaluate the generalization
ability of the proposed method.
5

Fig. 6. Scaled error function for various values of η2 .

The physical structure of an ANC system is usually modeled
as a rectangular enclosure (Kestell, 2000; Tarabini & Roure, 2008)
and many studies have shown the effectiveness of ANC systems
for noise canceling in enclosed rooms (Cheer, 2012; Samaras-
inghe, Zhang, & Abhayapala, 2016; Sommerfeldt, Parkins, & Park,
1995). In this study, we simulate a rectangular enclosure of size
3 m × 4 m × 2 m (width × length × height) and use the
image method (Allen & Berkley, 1979) to generate room impulse
responses for the primary and secondary paths of an ANC system.
The reference microphone is located at the position (1.5, 1, 1)
m, the canceling loudspeaker is located at (1.5, 2.5, 1) m and
the error microphone at (1.5, 3, 1) m. This is a typical scenario
where the primary noise source is located far from the walls
for easy access (Lau & Tang, 2000). For training, five different
reverberation times (T60s): 0.15 s, 0.175 s, 0.2 s, 0.225 s, and
0.25 s, are used for generating RIRs and the length of the RIRs
is set to 512. Two RIRs, one for primary path and the other one
for secondary path, are generated with each T60. For testing, we
use the RIRs with reverberation time 0.2 s as the default test RIRs,
and the RIRs generated with untrained T60s are also used to test
the generalization ability of deep ANC.

Saturation effects produced by a loudspeaker are the most
significant source of nonlinearity present in an ANC system (Costa
et al., 2002; Ghasemi et al., 2016). In ANC studies of loudspeaker
saturation (Agerkvist, 2007; Bershad, 1990; Klippel, 2006; Tobias
& Seara, 2006), this nonlinearity is usually represented by the
scaled error function (SEF) (Tobias & Seara, 2006):

fSEF(y) =

∫ y

0
e
−

z2

2η2 dz (8)

where y is the input to the loudspeaker (see Fig. 1), and η2 rep-
resents the strength of nonlinearity. It models a commonly found
saturation type nonlinearity, e.g. sound level saturation limited by
loudspeaker size. The SEF becomes linear as η2 tends to infinity
and becomes a hard limiter as η2 tends to zero. To investigate the
obustness of the proposed method against nonlinear distortions,
our loudspeaker functions are used during the training stage:
2

= 0.1 (severe nonlinearity), η2
= 1 (moderate nonlinearity),

η2
= 10 (soft nonlinearity), and η2

= ∞ (linear). Fig. 6 plots the
SEF with these η2 values. For testing, we use both trained and
untrained loudspeaker functions.

The deep ANC is trained to handle cases when the reference
signal is either noise or noisy speech. To achieve this, we generate
20000 training signals and 100 test signals for each case. Each
noise signal is created by randomly cutting a 6-second signal
from the 10000 noise signals. The speech signal used to gen-
erate noisy speech is obtained from the TIMIT dataset (Lamel,
Kassel, & Seneff, 1989) by randomly choosing 200 speakers (100
male speakers and 100 female speakers). Each chosen speaker

http://www.sound-ideas.com
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T
A

able 1
verage NMSE (in dB) for deep ANC and traditional algorithms with respect to different noises and nonlinear distortions.
Noise type Engine Factory Babble SSN

η2
∞ 0.5 0.1 ∞ 0.5 0.1 ∞ 0.5 0.1 ∞ 0.5 0.1

FxLMS −6.78 −5.26 −4.54 −5.88 −4.73 −1.67 −6.04 −4.32 −3.37 −5.95 −4.38 −3.46
THF-FxLMS – −6.70 −6.55 – −5.86 −5.75 – −6.02 −5.97 – −5.98 −5.94
CRN-n −11.07 −10.98 −10.60 −9.58 −9.50 −9.17 −9.49 −9.45 −9.27 −9.90 −9.83 −9.56
CRN-n(−1) −9.60 −9.53 −9.25 −8.47 −8.42 −8.19 −8.80 −8.76 8.62 −8.97 −8.92 −8.69
CRN-n(−2) −7.93 −7.89 −7.72 −6.97 −6.94 −6.81 −7.00 −7.00 −6.89 −7.50 −7.47 7.32
has 10 utterances in the TIMIT corpus, and 7 of them are used
for training and the remaining 3 for testing. To create a noisy
speech signal, utterances from a randomly selected speaker are
mixed with random noise cuts from the 10000 noises at a SNR
randomly chosen from [5, 10, 15, 20] dB. The primary signal d(t)
is generated by convolving the reference signal with a randomly
selected RIR for the primary path. The anti-noise a(t) is generated
by passing the corresponding canceling signal y(t) successively
through a randomly chosen loudspeaker function and a randomly
selected RIR for the secondary path. In the following experiments,
we use CRN-n and CRN-ns to denote the deep ANC model trained
with noise and noisy speech, respectively.

4.3. Comparison methods

The deep ANC method is compared with FxLMS and THF-
FxLMS in linear and nonlinear situations. FxLMS works by mod-
eling the secondary path in terms of an FIR filter and utilizing
the estimated model to adapt the filter for the ANC controller.
FxLMS achieves good noise attenuation when the secondary path
is a linear system. However, it fails to identify the secondary
path accurately when there is nonlinear distortion in the system.
Nonlinear models for the secondary path are utilized in active
noise control to account for nonlinear distortions. THF-FxLMS is
a recently proposed algorithm for nonlinear ANC (Ghasemi et al.,
2016). It incorporates the tangent hyperbolic function (THF) to
model the saturation effect of the loudspeaker and then apply
the estimated degree of nonlinearity in the design of the ANC
controller. As shown in Ghasemi et al. (2016), THF-FxLMS outper-
forms FxLMS and the second-order Volterra algorithm for noise
attenuation in situations with nonlinear distortions.

Both FxLMS and THF-FxLMS are adaptive algorithms and can
be used to cancel different types of noise. However, their perfor-
mance is sensitive to control parameters such as the step size and
filter length. Appropriate step sizes are needed to achieve good
performance when exposed to different noises and environments.
The step sizes of FxLMS and THF-FxLMS in our experiments are
chosen heuristically for different noises according to the criteria
given in Chen and Zhang (2011) and Huang and Xu (2012) to
ensure stable updating and good noise attenuation. The filter
length of the comparison methods is set to 512, which is equal
to the length of the primary and secondary paths.

In addition, we consider another nonlinear ANC setup in
Section 5.5 where deep ANC is compared with a Volterra filter
based method and a MLP based method.

5. Evaluation results and comparisons

5.1. Performance of deep ANC trained with noise

We first evaluate the performance of the deep ANC model
trained with noise. The proposed methods and traditional ANC
algorithms are tested with four types of untrained noises in a
linear system (η2

= ∞) and two nonlinear systems (η2
= 0.5,

η2
= 0.1). Table 1 shows the average NMSE of 100 testing signals,

where CRN-n(-1), and CRN-n(-2) denote the model trained with
6

Fig. 7. Noise attenuation achieved for engine noise with loudspeaker
nonlinearity η2

= 0.1: (a) normalized mean squared error, (b) power spectrum.

the delay-compensated strategy to predict 1 and 2 frames in
advance, respectively. The step size used to update FxLMS with
respect to engine noise, factory noise, babble noise and SSN is
set to 0.05, 0.4, 0.3, 0.4, respectively, and the step size to update
THF-FxLMS is set to 0.05, 0.4, 0.3, 0.4, respectively, for the four
noises. It is apparent from this table that FxLMS is capable of
attenuating different noises but its performance degrades when it
comes to nonlinear ANC. THF-FxLMS models the secondary path
as a nonlinear system and it achieves good noise attenuation in
different nonlinear cases. The deep ANC models outperform the
comparison algorithms in both linear and nonlinear cases and
generalize well to untrained noises and untrained nonlinearity
(η2

= 0.5). As expected, CRN-n performs the best among the
deep ANC models. Using the delay-compensated strategy to pre-
dict one or even two frames still obtains good levels of noise
attenuation, higher than FxLMS and THF-FxLMS, while the overall
performance drops gradually as prediction length increases.

We plot the NMSE and the power spectrum curves in Fig. 7
for further comparison. Power spectrum measures signal power
with respect to frequency and is used here to show relative
noise attenuation achieved at different frequencies. The results
in this figure are obtained in the situations with engine noise
and nonlinearity η2

= 0.1. It can be seen that the deep ANC

method consistently outperforms the comparison methods. As
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Models Noise only SNR = 5 dB SNR = 15 dB SNR = 20 dB

NMSE STOI PESQ NMSE STOI PESQ NMSE STOI PESQ NMSE

Unprocessed 0 0.79 1.95 0 0.94 2.61 0 0.97 2.96 0
FxLMS −4.54 0.71 1.84 −2.30 0.71 1.90 −0.36 0.72 1.98 −0.07
THF-FxLMS −6.55 0.69 1.73 −3.89 0.74 1.92 −1.58 0.78 2.12 −0.99
CRN-n −10.60 0.72 1.71 −8.75 0.83 2.02 −8.66 0.85 2.10 −8.67
CRN-ns −10.00 0.84 2.26 – 0.96 3.00 – 0.98 3.32 –
CRN-ns(−1) −8.31 0.85 2.24 – 0.96 2.95 – 0.98 3.28 –
CRN-ns(−2) −7.04 0.84 2.14 – 0.96 2.87 – 0.98 3.21 –
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Fig. 8. Average NMSE for CRN-n with engine noise, η2
= 0.1, and untrained RIRs

with different T60s. The NMSE result for the trained T60 of 0.2 s is included as
a reference.

illustrated in Fig. 7(b) , the proposed method achieves wideband
noise reduction, while the comparison methods are only effective
for noise attenuation at low frequencies. It is well known that
traditional ANC is restricted to low frequencies (Kuo & Morgan,
1999; Samarasinghe et al., 2016), due to factors such as conver-
gence and latency. As a result, narrow band noise or low-pass
filtered noise are usually used as input. Deep ANC is effective for
both low- and high-frequency noises. Note that the test noises
used in this study are wideband, which is part of the reason why
the amount of noise removal for the comparison methods is lower
in Table 1 than typically reported in the literature.

Fig. 8 gives the average NMSE of deep ANC when tested
with RIRs generated with different T60 values. It shows that the
performance of deep ANC generalizes well to untrained RIRs.

5.2. Performance of deep ANC trained with noisy speech

This subsection evaluates the performance of deep ANC when
the reference signal is noisy speech. Comparison results of differ-
ent methods in situations with noise and noisy speech at different
SNR levels are given in Table 2, where CRN-ns(-1) and CRN-ns(-2)
denote the models trained with the delay-compensated strategy
to predict 1 and 2 frames in advance, respectively. The step size
to update FxLMS with engine noise at the SNR of 5, 15, and 20 dB
is set to 0.01, 0.05, 0.01, respectively, and the step size to update
THF-FxLMS is set to 0.01, 0.01, 0.01, respectively, at the three SNR
levels. The results given in this table are obtained with engine
noise and a nonlinear system with η2

= 0.1. ‘‘Unprocessed’’
enotes the results when there is no ANC, and the STOI and
ESQ values of unprocessed signals are obtained by comparing
he primary signal d(t) with the underlying speech component in
t. The second column in Table 2 shows the NMSE values when
ested with noise signals. It can be seen that the performance of
RN-ns is comparable to that of CRN-n when tested in the noise
nly situation even though the former model is trained with noisy
peech. For situations with noisy speech, the overall performance
s dropped in terms of NMSE since speech is the main component
n noisy speech with positive SNRs. The CRN-n model still has the
est performance and the NMSE values at all SNR levels are below

8.6 dB. That is, the CRN-n model treats noisy speech as ‘‘general

7

Fig. 9. Performance comparison in noisy speech situations with different noises
at SNR = 5 dB and loudspeaker nonlinearity η2

= 0.1. The unprocessed average
TOI and PESQ values are given in the table below the plots.

oise’’ and it is capable of attenuating noise, as well as noisy
peech. CRN-ns trained with noisy speech aims to remove the
oise component of noisy speech and the error signal corresponds
o an estimate of clean speech. We use STOI and PESQ to evaluate
he performance of preserving the speech component. As shown
n the table, CRN-ns improves objective intelligibility and quality
f speech, due to its ability to selectively attenuate noise. For
xample, there is around 0.05 STOI and 0.3 PESQ improvement at
he SNR level of 5 dB. Performances of CRN-ns(-1) and CRN-ns(-2)
re comparable to that of CRN-ns, with a small decrease in terms
f PESQ. Traditional methods and CRN-n focus on minimizing
rror signal (attenuating reference signal), and therefore distort
he speech component as reflected by substantially lower STOI
nd PESQ values than unprocessed noisy speech.
The deep ANC method is further tested with factory noise,

abble noise and SSN at 5 dB SNR to show its robustness to
ifferent noises. To clearly show the improvement in terms of
TOI and PESQ, we define ∆STOI and ∆PESQ as the difference
n these metrics introduced by ANC. Fig. 9 plots these values and
MSE values. It can be seen that ∆STOI and ∆PESQ values for
xLMS, THF-FxLMS and CRN-n are all below zero. The models
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Fig. 10. Waveforms and spectrograms of the CRN-ns model at noise only and noisy speech cases with engine noise, 5 dB SNR, and loudspeaker nonlinearity
η2

= 0.1: (a) and (d) are waveforms of primary signal (black lines) and error signal (gray lines), (b) and (e) are spectrograms of the primary signals, and (c) and (f)
are spectrograms of the error signals.
Table 3
Average NMSE (dB), STOI and PESQ for deep ANC trained to generate a quiet zone with 5 cm radius for different noises and different SNR levels. The nonlinear
distortion is η2

= 0.1.
Model CRN-n CRN-ns (Engine)

Noise Engine Factory Babble SSN SNR = 5 dB SNR = 15 dB SNR = 20 dB

NMSE NMSE NMSE NMSE STOI PESQ STOI PESQ STOI PESQ

Unprocessed 0 0 0 0 0.79 1.95 0.94 2.63 0.97 2.96
r = 0 −9.44 −9.87 −10.33 −10.09 0.85 2.16 0.96 2.88 0.98 3.21
r = 2 −9.49 −10.18 −10.55 −10.39 0.85 2.17 0.96 2.90 0.98 3.20
0 ≤ r ≤ 5 −8.32 −8.97 −9.42 −9.13 0.85 2.16 0.96 2.88 0.98 3.19
trained with noisy speech (CRN-ns, CRN-ns(-1) and CRN-ns(-2))
generalize well to untrained noises and are capable of selec-
tively attenuating the noise components of noisy speech, hence
improving objective speech intelligibility and quality.

Waveforms and spectrograms of CRN-ns with nonlinearity
2

= 0.1 are shown in Fig. 10, where the first row shows the
esults when tested with engine noise and the second row when
ested with noisy speech with engine noise at 5 dB SNR. It is
vident that the deep ANC system trained with noisy speech
CRN-ns) can not only attenuate the noise component in the noisy
peech, but also cancel the noise when there is no speech in the
eference signal.

.3. Quiet zone

So far we have focused on noise attenuation at a given point
n space. A more challenging and desirable task would be to
chieve active noise control within a small spatial zone, called
uiet zone (Kuo, Wu, Chen, & Gunnala, 2004; Zhu, Qiu, & Burnett,
020). To achieve a quiet zone, deep ANC can be trained in an
IR-independent way by exposing the model to a variety of RIRs
ampled within a small zone during training. To be specific, we
imulate the quiet zone as a sphere with a radius of 5 cm which
s appropriate, for example, for around one ear of a driver inside
vehicle. We randomly select 100 points within the sphere as

he locations of the error microphone and generate 100 pairs
f RIRs for primary and secondary paths by using the image
ethod (Allen & Berkley, 1979). Twenty thousand training signals

or noise only and noisy speech cases are created with these 100
airs of RIRs in each case, and the CRN-n and CRN-ns models are
rained with these data. Three test sets, with 100 signals in each,
re generated to evaluate the performance of these models.
The results are given in Table 3, where r denotes the distance

rom the zone center. For the case of ‘‘r = 0’’, test signals are
enerated by placing the error microphone at the center of the
phere. For ‘‘r = 2’’, the test set is generated by placing the
microphone within the sphere, 2 cm away from the center point.
For the case of ‘‘0 ≤ r ≤ 5’’, we randomly place the error

microphone at 10 different points within the sphere and use the

8

corresponding 10 pairs of RIRs to create the test set. The CRN-
n model produces 8.32 dB NMSE for noisy speech with engine
noise within the sphere. The CRN-ns model obtains 0.06 and 0.21
improvement, respectively, in terms of STOI and PESQ for the
engine noise at 5 dB SNR within the sphere. Similar amounts
of NMSE, STOI, and PESQ improvements are observed for other
test conditions in Table 3. Generally speaking, the deep ANC
models trained in this way achieve substantial noise attenuation
at any point within this sphere while preserving speech, hence
generating a quiet zone.

5.4. Robustness of deep ANC

In ANC applications, many variations occur in reference sig-
nals such as SNR, noise type, and multiple noises existing si-
multaneously in the reference signal. To test the robustness of
the proposed methods against these variations, we evaluate the
model trained in Sections 5.1 and 5.2 in four cases. First, the SNR
level of reference signal is changed from 5 dB to 20 dB (with
engine noise) after 3 s, the middle point of a reference signal.
Second, the noise type in reference signal is changed from engine
noise to factory noise after 3 s. Third, the reference signal is a
mixture of engine noise and factory noise. The SNR levels for
the second and third case are set to 5 dB. Fourth, we randomly
select 20 untrained speakers (10 male and 10 female) from the
TIMIT dataset and create 100 test signals (with engine noise
and 5 dB SNR) to evaluate the performance of deep ANC in an
untrained speaker condition. The results are given in Table 4.
‘‘Noisy Speech’’ results are obtained by using noisy speech as
the reference signal, and ‘‘Noise Only’’ results by using the noise
component of noisy speech as the reference signal. Results shown
in this table demonstrate the strong robustness of the deep ANC
approach.

5.5. Comparison using different nonlinear ANC setup

We consider a different nonlinear ANC setup in this subsec-
tion and compare the performance of deep ANC with a Volterra
filter based method and a neural network based method. The
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able 4
obustness of deep ANC to variations in reference signal with nonlinear
istortion η2

= 0.1.
η2

= 0.1 Noise only Noisy speech

Cases: NMSE STOI PESQ NMSE

SNR
change

Unprocessed 0 0.91 2.64 0
CRN-n −10.60 0.76 2.02 −8.44
CRN-ns −10.00 0.93 2.97 –

Noise
change

Unprocessed 0 0.81 2.06 0
CRN-n −10.05 0.73 1.77 −8.69
CRN-ns −9.93 0.86 2.39 –

Noise
mixture

Unprocessed 0 0.80 2.01 0
CRN-n −9.46 0.73 1.78 −8.84
CRN-ns −9.52 0.86 2.37 –

Untrained
speakers

Unprocessed – 0.78 1.96 0
CRN-n – 0.71 1.72 −8.37
CRN-ns – 0.83 2.22 –

experiments are carried out using the setup in Guo et al. (2018)
and Zhou and DeBrunner (2007).

The primary path is modeled by a Volterra series and the
elationship between the primary noise d(t) and the reference
signal x(t) is defined as (Guo et al., 2018; Zhou & DeBrunner,
2007)

d(t) =x(t) + 0.8x(t − 1) + 0.3x(t − 2) + 0.4x(t − 3) (9)
− 0.8x(t)x(t − 1) + 0.9x(t)x(t − 2) + 0.7x(t)x(t − 3)

The secondary path is modeled as the nonlinear–linear (NL) struc-
ture introduced in Zhou and DeBrunner (2007). In the NL model,
the anti-noise a(t) is obtained by passing the canceling signal y(t)
uccessively through a nonlinear model, denoted as N , and an FIR
ilter that is denoted as l(z) in the z-domain,

[y(t)] = 3.3 tanh[0.3y(t)] (10)

(z) = 1 + 0.2z−1
+ 0.05z−2 (11)

We have implemented the adaptive Volterra controller using
he FxLMS structure (VFxLMS) introduced in Guo et al. (2018)
nd Tan and Jiang (2001). The active noise controller and the
econdary path of the VFxLMS algorithm are modeled by using
econd-order Volterra filters with a memory size of 10 and the
tep sizes are set as given in Guo et al. (2018).
The neural network based method for nonlinear ANC is an

xtension of the FxLMS algorithm with the controller modeled
s an MLP (Chang & Luoh, 2007; Zhou, Zhang, Li, & Gan, 2005).
t is denoted as FxMLP and the weights of the MLP are updated
daptively using gradient descent (Chang & Luoh, 2007). The MLP
as 6 inputs, 2 hidden layers with 12 neurons in each layer, and 1
euron in the output layer. The hidden layer activation functions
re sigmoidal and the last layer is linear.
As for deep ANC, we generate another 20000 training signals

rom the 10000 noises and retrain the CRN-n model. These train-
ng signals are generated following the description in Section 4.2
xcept that the primary and the secondary paths are replaced
ith the ones presented in (9), (10), and (11).
CRN-n, VFxLMS, and FxMLP are evaluated with respect to the

our types of noise used before with 100 noise signals generated
or each condition. The comparison results are given in Table 5. It
an be seen that all of these methods are capable of attenuating
oise for the nonlinear ANC setup, and deep ANC consistently
utperforms the other two methods.

. Concluding remarks

In this paper, we have introduced the deep ANC approach

o active noise control. A convolutional recurrent network is

9

Table 5
Average NMSE (in dB) for different methods using a nonlinear ANC setup.
NMSE Engine Factory Babble SSN

VFxLMS −15.48 −13.75 −15.86 −13.58
FxMLP −17.01 −14.96 −16.13 −15.57
CRN-n −19.63 −20.32 −20.15 −20.01

employed to estimate a canceling signal from the reference signal
so as to remove or attenuate the primary noise. Using proper
training data and loss functions, the deep ANC system can be
trained to not only cancel noise, but also selectively cancel the
noise component of noisy speech. We have also proposed a
delay-compensated training strategy to tackle the latency prob-
lem of frequency-domain ANC methods. In addition, the pro-
posed method is capable of achieving ANC within a spatial zone.
Systematic evaluations with NMSE, STOI and PESQ show the
effectiveness and robustness of the deep ANC model for noise
attenuation in noise only and noisy speech situations and the
model generalizes well to different acoustic variations.

The deep ANC approach has major advantages over traditional
methods. It has the intrinsic ability of modeling nonlinearities
unavoidable in ANC systems. Deep ANC is flexible in terms of
training target, e.g., it can be trained to achieve noise cancellation
in noisy speech and even noisy music. A quiet zone can be
generated by using a single canceling loudspeaker, whereas adap-
tive filter methods need multiple loudspeakers. Unlike traditional
methods, deep ANC is effective for wideband noise removal.
Finally, in addition to address the latency difficulty in frequency-
domain algorithms, the delay compensation strategy significantly
expands the range of causality in ANC.

Future work includes exploring time-domain methods for
deep ANC, assessing robustness of deep ANC to RIR changes
caused by changing error microphone position, and extending
deep ANC to a multi-channel version. Furthermore, practical
issues such as computational complexity and device implemen-
tation will be considered in future research.
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