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Abstract
Building on deep learning based acoustic echo cancel-

lation (AEC) in the single-loudspeaker (single-channel) and
single-microphone setup, this paper investigates multi-channel
(multi-loudspeaker) AEC (MCAEC) and multi-microphone
AEC (MMAEC). A convolutional recurrent network (CRN) is
trained to predict the near-end speech from microphone signals
with far-end signals used as additional information. We find
that the deep learning based MCAEC approach avoids the non-
uniqueness problem in traditional MCAEC algorithms. For the
AEC setup with multiple microphones, rather than employing
AEC for each microphone, we propose to train a single net-
work to achieve echo removal for all microphones. Combining
deep learning based AEC with supervised beamforming fur-
ther improves the system performance. Experimental results
show the effectiveness of deep learning approach to MCAEC
and MMAEC. Furthermore, deep learning based methods are
capable of removing echo and noise simultaneously and work
well in the presence of nonlinear distortions.
Index Terms: acoustic echo cancellation, deep learning, multi-
channel AEC, multi-microphone AEC, nonlinearity

1. Introduction
Acoustic echo cancellation (AEC) is the task of removing
undesired echoes that result from the coupling between a
loudspeaker and a microphone in a communication system
[1]. Modern hands-free communication devices are usually
equipped with multiple microphones and loudspeakers. The
availability of additional devices also elevates the need for en-
hanced sound quality and realism, which can hardly be satis-
fied with single-channel AEC. Therefore, it is necessary to de-
sign AEC for multiple loudspeakers and/or microphones, which
leads to the study of MCAEC and MMAEC. MCAEC and
MMAEC present additional challenges and opportunities com-
pared to single-channel AEC and have received considerable
attention recently.

Multi-channel AEC refers to the setup with at least two
loudspeakers or channels (stereophonic sound). Although con-
ceptually similar, MCAEC is fundamentally different from
single-channel AEC and a straightforward generalization of
single-channel AEC does not result in satisfactory performance
because of the non-uniqueness problem [2]. This problem is
due to the correlation between loudspeaker signals. As a result,
the convergence of adaptive technique could be degraded and
the echo paths cannot be determined uniquely [2]. Many meth-
ods have been proposed to circumvent this problem [3, 4, 5, 6],
among which coherence reduction methods are most commonly
used. Such methods, however, inevitably degrade sound qual-
ity, and a compromise must be made between enhanced conver-
gence and sound quality corruption [2, 7].

MMAEC is required for situations in which multiple mi-
crophones are present and beamforming techniques are usually
combined with AEC for efficient reduction of noise and acous-
tic echoes. The most straightforward ways of combining these
two processing modules are applying AEC separately for each
microphone signal before beamforming or applying a single-
microphone AEC to the output of a beamformer [8]. In general,
the former scheme outperforms the latter one [9, 10]. Other
algorithms employ relative echo transfer functions [11, 12] or
joint optimization strategies [13, 14] to improve the MMAEC
performance. However, efficient combinations of AEC and
beamforming are still challenging and many of the strategies
exhibit convergence deficiencies [7].

Recently, deep learning based methods have been proposed
for solving AEC problems and have shown to be effective for
echo and noise removal, especially in situations with nonlin-
ear distortions [15, 16, 17, 18]. On the basis of the deep
learning based single-channel AEC approach, we investigate
AEC setups with multiple loudspeakers and microphones. The
CRN [19] based method is introduced to address MCAEC and
MMAEC problems. Evaluation results show that the proposed
method effectively remove acoustic echo and background noise
in the presence of nonlinear distortions.

The proposed work has four major advantages over tradi-
tional methods. First, instead of estimating echo paths, deep
learning based MCAEC works by directly estimating near-end
speech, which intrinsically avoids the non-uniqueness prob-
lem. Second, although there are multiple acoustic paths in
the MCAEC and MMAEC setups, the deep learning based ap-
proach can naturally address the problem with model train-
ing, rather than employing a separate AEC module for each
echo path. Third, combining deep learning based AEC and
deep learning based beamforming elevates AEC performance
remarkably. Fourth, deep learning based methods can remove
echo and noise simultaneously in the presence of nonlinear dis-
tortions.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the deep learning approach to MCAEC and
MMAEC. Experiments and evaluation results are given in Sec-
tion 3. Section 4 concludes the paper.

2. Method Description
2.1. Deep learning based AEC

As is shown in Fig. 1(a), the microphone signal y(n) in the
single-channel AEC setup is a mixture of echo d(n), near-end
speech s(n), and background noise v(n):

y(n) = d(n) + s(n) + v(n) (1)
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Figure 1: Diagrams of conventional (1) single-channel AEC
setup, (2) Multi-channel (Stereophonic) AEC setup, and (c)
Multi-microphone AEC setup.
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Figure 2: CRN based AEC method. Subscripts r and i denote
real and imaginary spectra of signals, respectively.

where n indexes a time sample, and echo is generated by con-
volving a loudspeaker signal with a room impulse response
(RIR) (h(n)). The echo d(n) is typically a linear or nonlinear
transform of the far-end signal x(n). We formulate AEC as a
supervised speech separation problem and the overall approach
is to estimate the near-end speech from microphone signal with
far-end signal used as additional information. The diagrams of
deep learning based methods are shown in Fig. 2. The input sig-
nals, sampled at 16 kHz, are windowed into 20 ms frames with
a 10-ms overlap between consecutive frames. Then a 320-point

short time Fourier transform (STFT) is applied to each frame
to extract the real and imaginary spectra of signals, which are
denoted as ∗r and ∗i, respectively.

A CRN is trained for complex spectral mapping. As is
shown in Fig. 2, it estimates the real and imaginary spectro-

grams of near-end speech (Ŝr and Ŝi) from the real and imagi-
nary spectrograms of microphone signal and far-end signal (Yr ,

Yi, Xr , and Xi). Then Ŝr and Ŝi are sent to the inverse
short time Fourier transform to derive an estimated near-end
signal ŝ(n). Hence, it is capable of enhancing both magni-
tude and phase responses simultaneously and ŝ(n) resynthe-
sized achieves better speech quality. The CRN is an encoder-
decoder architecture. Specifically, the encoder and decoder
comprise five convolutional layers and five deconvolutional lay-
ers, respectively. Between them is a two-layer LSTM with a
group strategy, where the group number is set to 2. A detailed
description the CRN architecture is provided in [19].

2.2. Deep learning for MCAEC

Without loss of generality, let us take stereophonic AEC as
an example to study deep learning based MCAEC. The sig-
nal model is given in Fig. 1(b) where the stereophonic signals,
x1(n) and x2(n) are transmitted to loudspeakers and then cou-
pled to one of the microphones, hij(n) denotes the echo path
from loudspeaker i to microphone j. The signal picked up by
microphone j is composed of two echo signals d1j(n), d2j(n),
near-end speech sj(n), and background noise vj(n):

yj(n) =
∑2

i=1 dij(n) + sj(n) + vj(n), j = 1, 2 (2)

Deep learning based MCAEC works by estimating the tar-
get sj(n) given yj(n), x1(n), and x2(n) as inputs. Specif-
ically, we use [Yjr , Yji, X1r , X1i, X2r , X2i] as inputs and
train the network to directly estimate [Sjr , Sji] from them.
And there is not need to do any de-correlation preprocessing
to the stereophonic signals. Therefore, deep learning based
MCAEC method can avoid the non-uniqueness problem, which
traditional adaptive filter-based methods often suffer from. In
the proposed method, the training signals are generated by ran-
domly selecting j from {1, 2}, i.e. the model is exposed to
signals picked up by the two microphones in MCAEC during
training. A model trained this way is able to achieve echo re-
moval for both microphones in the system.

2.3. Deep learning for MMAEC

Considering an MMAEC setup with one loudspeaker and M
microphones, as is shown in Fig. 1(b). The signal picked up by
microphone j is

yj(n) = dj(n) + sj(n) + vj(n), j = 1, 2, · · ·M (3)

Different strategies for solving MMAEC problems have
been discussed in [8, 9, 10]. In this paper, we focus on the
most straightforward one, which is to apply AEC separately
for each microphone signal before beamforming [8]. There-
fore, this MMAEC strategy does not structurally differ from the
single-microphone case in terms of AEC. Based on this strategy,
traditional MMAEC methods need to update M AEC modules
separately to achieve echo removal for all the M microphones
in the array. While deep learning based MMAEC can be trained
to achieve this with a single network rather than training sep-
arate networks for each microphone. During training, we use
yj(n) and x(n) as inputs and set the corresponding near-end
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Figure 3: Diagram of combining deep learning based AEC with
deep learning based beamforming for further enhancement.

speech sj(n) as the training target. The training signals are gen-
erated by randomly choosing j from {1, 2, · · · ,M}. A model
trained this way is able to achieve echo removal for all the mi-
crophones in the array.

Once the model is trained, the outputs of the model can
be used for deep learning based minimum variance distortion-
less response (MVDR) beamforming [20]. Choosing the first
microphone in the array as reference microphone, the MVDR
beamformer can be constructed as:

ŵ(f) =
Φ̂−1

N
(f)ĉ(f)

ĉ(f)H Φ̂−1
N

(f)ĉ(f)
(4)

where (·)H denotes conjugate transpose, Φ̂N (f) is the esti-
mated covariance matrix of overall interference (acoustic echo
and background noise), ĉ(f) is the estimated steering vector,
which is estimated as the principal eigenvector of the estimated

speech covariance matrix Φ̂s(f) [20, 21]. The estimated covari-
ance matrices of speech and overall interference are obtained
from the output of deep learning based MMAEC as

Φ̂S(f) =
1
T

∑
t Ŝ(t, f)ŜH(t, f) (5)

Φ̂N (f) = 1
T

∑
t N̂(t, f)N̂H(t, f) (6)

where Ŝ(t, f) is the STFT representation of estimated speech

signals and N̂(t, f) is the estimated overall interference ob-

tained as Y (t, f) − Ŝ(t, f), T is the total number of frames
used in the summation.

The beamformer is usually applied on microphone signal
Y (t, f) and the enhancement results are calculated from

Ybf(t, f) = ŵH(f)Y (t, f) (7)

Considering that MVDR beamformer performs spatial filtering
to maintain signals from the desired direction while suppress-
ing interferences from other directions, we proposed to use it
as a post-filter for further enhancement. The overall structure
of the deep learning based MMAEC is shown in Fig. 3. It is
implemented by feeding the output of deep learning based AEC
forward to the deep learning based beamformer with the latter
calculated using the same network. The further enhanced output
is obtained using

Ŝbf(t, f) = ŵH(f)Ŝ(t, f) (8)

3. Experiments
3.1. Experiment setting

The simulation setups for evaluation are designed as follows.
The near-end and far-end speech signals are generated using the
TIMIT dataset [22] by following the same way provided in [17].

RIRs are generated using the image method [23]. To investi-
gate RIRs generalization, we simulate 20 different rooms of size
a×b×c m (width×length×height) for training mixtures, where
a = [4, 6, 8, 10], b = [5, 7, 9, 11, 13], c = 3. For MCAEC
setup, the two microphones and the two loudspeakers are posi-
tioned at (a/2, b/2 + 0.05, c/2) m, (a/2, b/2 − 0.05, c/2) m,
(a/2, b/2+ 0.6, c/2+ 0.5) m, and (a/2, b/2− 0.6, c/2+ 0.5)
m, respectively. The near-end speaker is put at 20 random posi-
tions in each room with 1 meter apart from the center of the mi-
crophones. The setup of MMAEC consists of a uniform linear
array with four microphones and one loudspeaker. The center
of the microphone array is positioned at the center of the room
with 4 cm inter-microphone distance. Twenty pairs of positions
are simulated randomly for the loudspeaker and the near-end
speaker in each room, and the distance from the loudspeaker
and the near-end speaker to the center of the array are set to 0.6
m and 1 m, respectively. The reverberation time (T60) is ran-
domly selected from {0.2, 0.3, 0.4, 0.5, 0.6} s. For testing, we
simulate three untrained rooms of size 3 × 4 × 3 m (Room 1),
5 × 6 × 3 m (Room 2), 11 × 14 × 3 m (Room3), and set T60

to 0.35 s to generate test RIRs for both MCAEC and MMAEC
setups.

The most common nonlinear distortion generated by a loud-
speaker is the saturation type nonlinearity, which is usually sim-
ulated using the scaled error function (SEF) [24, 25]:

fSEF(x) =

∫ x

0

e
− z2

2η2 dz (9)

where x is the input to the loudspeaker, η2 represents the
strength of nonlinearity. The SEF becomes linear as η2 tends
to infinity and becomes a hard limiter as η2 tends to zero. To in-
vestigate the robustness of the proposed method against nonlin-
ear distortions, four loudspeaker functions are used during the
training stage: η2 = 0.1 (severe nonlinearity), η2 = 1 (mod-
erate nonlinearity), η2 = 10 (soft nonlinearity), and η2 = ∞
(linear).

Babble noise from NOISEX-92 dataset [26] is used as the
background noise and the algorithm proposed in [27] is em-
ployed to make the noise diffuse. The diffuse babble noise is
then split into two parts, the first 80% of it is used for training
and the remaining is used for testing.

We create 20000 training mixtures and 100 test mixtures
for both MCAEC and MMAEC setups. A loudspeaker sig-
nal is generated using a randomly selected far-end signal and
a loudspeaker function. Then a loudspeaker signal is convolved
with a randomly chosen training RIR for loudspeaker to gen-
erate an echo. A randomly chosen near-end utterance is con-
volved with an RIR for near-end speaker and then mixed with
the echo at a signal-to-echo ratio (SER) randomly chosen from
{−6,−3, 0, 3, 6} dB. The diffuse babble noise is added to the
mixture at a signal-to-noise ratio (SNR) randomly chosen from
{8, 10, 12, 14} dB. The SER and SNR, which are evaluated dur-
ing double-talk periods, are defined as:

SER = 10 log10
[∑

n s2(n)/
∑

n d2(n)
]

(10)

SNR = 10 log10
[∑

n s2(n)/
∑

n v2(n)
]

(11)

Test mixtures are created similarly but using different utter-
ances, noises, RIRs, SERs and SNRs.

The AMSGrad optimizer [28] and the mean squared error
(MSE) cost function are used to train CRN. The network is
trained for 30 epochs with a learning rate of 0.001. The per-
formance of MCAEC and MMAEC is evaluated in terms of
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Table 1: Performance of MCAEC methods in the presence of
double-talk, background noise with 3.5 dB SER, 10 dB SNR,
η2 = ∞ (linear system).

ERLE PESQ

RIRs Room1 Room2 Room3 Room1 Room2 Room3

Unprocessed - - - 2.12 2.13 2.17
SJONLMS 7.54 7.63 7.62 2.41 2.45 2.47
SJONLMS-PF 19.04 18.88 18.67 2.45 2.48 2.53
CRN 32.68 35.34 41.31 2.62 2.83 2.98

Table 2: Performance of MMAEC methods in the presence of
double-talk, background noise with 3.5 dB SER, 10 dB SNR,
η2 = ∞ (linear system).

ERLE PESQ

RIRs Room1 Room2 Room3 Room1 Room2 Room3

Unprocessed - - - 2.04 2.09 2.10
JONLMS 6.94 6.95 6.93 2.43 2.45 2.48
JONLMS-IBF 17.61 16.76 15.52 2.70 2.63 2.66

ŝ 25.92 32.94 33.99 2.66 2.89 2.94
ybf 2.77 5.48 2.24 2.18 2.41 2.21CRN
ŝbf 27.57 36.92 34.11 2.75 2.98 2.89

utterance-level echo return loss enhancement (ERLE) [1] for
single-talk periods and perceptual evaluation of speech quality
(PESQ) [29] for double-talk periods.

3.2. Performance of MCAEC methods

We first evaluate the performance of deep learning based
MCAEC. The proposed methods are compared with the stereo-
phonic version of joint-optimized normalized least mean square
algorithm [30] equipped with a coherence reduction tech-
nique proposed in [31] (SJONLMS). And post-filtering (PF)
[32] is employed to further suppress noises and residual echo
(SJONLMS-PF). The parameters of SJONLMS and PF are set
accordingly to the values given in [30, 31, 32]. The compari-
son results are given in Table 1. In general, the proposed CRN
based MCAEC method outperforms conventional methods and
the performance generalizes well to untrained RIRs.

3.3. Performance of MMAEC methods

This part studies the performance of deep learning based
MMAEC. We employ single-channel JONLMS [30] for each
microphone in the array as a baseline and then combine the
outputs with the ideal MVDR beamformer (JONLMS-IBF) for
solving the MMAEC problem. The ideal MVDR beamformer
(IBF) is calculated by substituting the true speech and inter-
ference components of the microphone signal (S(t, f) and
N(t, f)) into (6), (7), and (5). Therefore, it can be regarded
as a stronger baseline compared to other MVDR beamform-
ers. Three results are provided for each deep learning based
method, in which ŝ is the output of the reference microphone,
ybf and ŝbf are, respectively, the time-domain beamformed mi-
crophone signal and beamformed enhanced signal introduced
in Section 2.3. The comparison results are given in Table 2. As
can be seen from the table, deep learning based methods out-
perform traditional MMAEC methods in terms of ERLE and
PESQ. Single-channel outputs of deep learning based methods
(ŝ) are good enough for echo and noise removal while combin-
ing deep learning based beamformer as a post-filter (ŝbf) further
improves the overall performance in most of the cases.

Table 3: Performance of the proposed method in the presence
of double-talk, background noise and nonlinear distortions with
3.5 dB SER, 10 dB SNR, Room2, η2 = 0.1, and η2 = 0.5.

ERLE PESQ

Nonlinearity η2 = 0.1 η2 = 0.5 η2 = 0.1 η2 = 0.5

MCAEC
Unprocessed - - 2.11 2.13
CRN 34.86 34.72 2.82 2.83

MMAEC

Unprocessed - - 2.08 2.08
ŝ 33.15 33.05 2.89 2.88
ybf 5.49 5.46 2.40 2.40CRN
ŝbf 36.84 36.83 2.99 2.99

Table 4: Performance of the proposed method under untrained
speakers and moveable speakers conditions with 3.5 dB SER,10
dB SNR, Room 2, and η2 = 0.1.

Untrained speakers Moveable speakers

ERLE PESQ ERLE PESQ

MCAEC
Unprocessed - 2.10 - 2.10
CRN 35.57 2.83 35.65 2.76

MMAEC

Unprocessed - 2.06 - 2.06
ŝ 33.53 2.89 33.48 2.80
ybf 5.52 2.37 3.46 2.34CRN
ŝbf 37.10 2.99 34.97 2.93

3.4. Robustness of the proposed methods

This part tests the robustness of deep learning based methods to
nonlinear distortions, untrained speakers, and moveable speak-
ers. The results of CRN based MCAEC and MMAEC in sit-
uations with the saturation type nonlinear distortions are given
in Table 3. It is seen that deep learning based methods can be
trained to handle both linear and nonlinear cases and the perfor-
mance generalizes well to untrained nonlinearity (η2 = 0.5).
Table 4 shows the behavior of the proposed method when tested
with untrained speakers and moveable speakers. The test sig-
nals of untrained speakers are created by randomly selecting
10 pairs of untrained speakers from the TIMIT dataset. As for
moveable speakers, we simulate the case by changing the po-
sition of the near-end speaker (for example, from (1.5, 3, 1.5)
m to (1.7, 2.8, 2.0) m) at the middle point of a near-end utter-
ance and using the corresponding RIRs to generate a near-end
speech. The results in this table demonstrate high robustness of
the proposed methods.

4. Conclusion
We have proposed a deep learning approach to MCAEC and
MMAEC. Our approach overcomes the limitations of tradi-
tional methods and produces remarkable performance in terms
of ERLE and PESQ. Evaluation results show the effectiveness
of CRN based methods for removing echo and noise in cases
with and without nonlinear distortions, and the performance
generalizes well to untrained RIRs. Moreover, the proposed
methods can be extended to handle a general AEC setup with
an arbitrary number of microphones and an arbitrary number of
loudspeakers, which will be demonstrated in future research.

5. Acknowledgements
This research was supported in part by an NIDCD grant (R01
DC012048) and the Ohio Supercomputer Center.

1142



6. References
[1] G. Enzner, H. Buchner, A. Favrot, and F. Kuech, “Acoustic echo

control,” in Academic press library in signal processing: image,
video processing and analysis, hardware, audio, acoustic and
speech Processing. Academic Press, 2014.

[2] M. M. Sondhi, D. R. Morgan, and J. L. Hall, “Stereophonic acous-
tic echo cancellation-an overview of the fundamental problem,”
IEEE Signal processing letters, vol. 2, no. 8, pp. 148–151, 1995.

[3] J. Benesty, F. Amand, A. Gilloire, and Y. Grenier, “Adaptive fil-
tering algorithms for stereophonic acoustic echo cancellation,” in
1995 ICASSP, vol. 5. IEEE, 1995, pp. 3099–3102.

[4] S. Shimauchi, S. Makino, and J. Kojima, “Method and apparatus
for multi-channel acoustic echo cancellation,” Aug. 26 1997, uS
Patent 5,661,813.

[5] M. Schneider and W. Kellermann, “Multichannel acoustic echo
cancellation in the wave domain with increased robustness to
nonuniqueness,” IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 24, no. 3, pp. 518–529, 2016.

[6] J. Franzen and T. Fingscheidt, “An efficient residual echo sup-
pression for multi-channel acoustic echo cancellation based on
the frequency-domain adaptive Kalman filter,” in 2018 ICASSP.
IEEE, 2018, pp. 226–230.

[7] M. Luis Valero, “Acoustic echo reduction for multiple loudspeak-
ers and microphones: Complexity reduction and convergence en-
hancement,” Ph.D. dissertation, Friedrich-Alexander-University
of Erlangen-Nürnberg, 2019.

[8] W. Kellermann, “Strategies for combining acoustic echo cancel-
lation and adaptive beamforming microphone arrays,” in 1997
ICASSP, vol. 1. IEEE, 1997, pp. 219–222.

[9] W. Herbordt and W. Kellermann, “Limits for generalized sidelobe
cancellers with embedded acoustic echo cancellation,” in 2001
ICASSP, vol. 5. IEEE, 2001, pp. 3241–3244.

[10] S. Doclo, M. Moonen, and E. De Clippel, “Combined acoustic
echo and noise reduction using GSVD-based optimal filtering,” in
2000 ICASSP, vol. 2. IEEE, 2000, pp. II1061–II1064.

[11] G. Reuven, S. Gannot, and I. Cohen, “Joint noise reduction and
acoustic echo cancellation using the transfer-function generalized
sidelobe canceller,” Speech communication, vol. 49, no. 7-8, pp.
623–635, 2007.

[12] M. L. Valero and E. A. Habets, “Multi-microphone acoustic echo
cancellation using relative echo transfer functions,” in 2017 WAS-
PAA. IEEE, 2017, pp. 229–233.

[13] W. Herbordt, W. Kellermann, and S. Nakamura, “Joint optimiza-
tion of LCMV beamforming and acoustic echo cancellation,” in
2004 12th European Signal Processing Conference. IEEE, 2004,
pp. 2003–2006.

[14] W. Herbordt and W. Kellermann, “Gsaecacoustic echo cancella-
tion embedded into the generalized sidelobe canceller,” in 2000
10th European Signal Processing Conference. IEEE, 2000, pp.
1–4.

[15] C. M. Lee, J. W. Shin, and N. S. Kim, “DNN-based residual echo
suppression,” in 2015 INTERSPEECH, 2015.

[16] H. Zhang and D. L. Wang, “Deep learning for acoustic echo can-
cellation in noisy and double-talk scenarios,” in 2018 INTER-
SPEECH, 2018, pp. 3239–3243.

[17] H. Zhang, K. Tan, and D. L. Wang, “Deep learning for joint
acoustic echo and noise cancellation with nonlinear distortions.”
in 2019 INTERSPEECH, 2019, pp. 4255–4259.

[18] K. Sridhar, R. Cutler, A. Saabas, T. Parnamaa, H. Gamper,
S. Braun, R. Aichner, and S. Srinivasan, “ICASSP 2021 acous-
tic echo cancellation challenge: Datasets and testing framework,”
arXiv preprint arXiv:2009.04972, 2020.

[19] K. Tan and D. L. Wang, “A convolutional recurrent neural net-
work for real-time speech enhancement,” in Interspeech, 2018,
pp. 3229–3233.

[20] J. Heymann, L. Drude, A. Chinaev, and R. Haeb-Umbach,
“BLSTM supported GEV beamformer front-end for the 3rd
CHiME challenge,” in 2015 IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU). IEEE, 2015, pp. 444–
451.

[21] X. Zhang, Z. Wang, and D. L. Wang, “A speech enhancement
algorithm by iterating single- and multi-microphone processing
and its application to robust ASR,” in 2017 ICASSP. IEEE, 2017,
pp. 276–280.

[22] L. F. Lamel, R. H. Kassel, and S. Seneff, “Speech database devel-
opment: Design and analysis of the acoustic-phonetic corpus,” in
Speech Input/Output Assessment and Speech Databases, 1989.

[23] J. B. Allen and D. A. Berkley, “Image method for efficiently sim-
ulating small-room acoustics,” The Journal of the Acoustical So-
ciety of America, vol. 65, no. 4, pp. 943–950, 1979.

[24] F. Agerkvist, “Modelling loudspeaker non-linearities,” in Audio
Engineering Society Conference: 32nd International Conference:
DSP For Loudspeakers. Audio Engineering Society, 2007.

[25] H. Zhang and D. L. Wang, “A deep learning approach to active
noise control,” in 2020 INTERSPEECH in press, 2020.

[26] A. Varga and H. J. Steeneken, “Assessment for automatic speech
recognition: II. NOISEX-92: A database and an experiment to
study the effect of additive noise on speech recognition systems,”
Speech communication, vol. 12, no. 3, pp. 247–251, 1993.

[27] E. A. Habets, I. Cohen, and S. Gannot, “Generating nonstation-
ary multisensor signals under a spatial coherence constraint,” The
Journal of the Acoustical Society of America, vol. 124, no. 5, pp.
2911–2917, 2008.

[28] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam
and beyond,” arXiv preprint arXiv:1904.09237, 2019.

[29] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Per-
ceptual evaluation of speech quality (PESQ)-a new method for
speech quality assessment of telephone networks and codecs,” in
2001 ICASSP, vol. 2. IEEE, 2001, pp. 749–752.
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