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Abstract
This paper addresses multi-channel active noise control
(MCANC) on the basis of deep ANC, which performs active
noise control by employing deep learning to encode the opti-
mal control parameters corresponding to different noises and
environments. The proposed method trains a convolutional re-
current network (CRN) to estimate the real and imaginary spec-
trograms of all the canceling signals simultaneously from the
reference signals so that the corresponding anti-noises cancel
or attenuate the primary noises in an MCANC system. We eval-
uate the proposed method under multiple MCANC setups and
investigate the impact of the number of canceling loudspeakers
and error microphones on the overall performance. Experimen-
tal results show that deep ANC is effective for MCANC in vari-
ous scenarios. Moreover, the proposed method is robust against
untrained noises and works well in the presence of loudspeaker
nonlinearity.

Index Terms: multi-channel active noise control, deep learn-
ing, deep ANC, quiet zone, loudspeaker nonlinearity

1. Introduction
Active noise control (ANC) is a noise cancellation methodology
based on the principle of acoustic superposition; specifically,
noise is canceled by generating another noise with the same
amplitude but opposite phase [1]. It has been used in appli-
cations such as headphones [2], automobiles [3], airplanes [4],
and medical equipment [5]. A recent trend extends the control
region of ANC to achieve noise cancellation at multiple spatial
points or within a spatial zone [6, 5, 7]. However, the perfor-
mance of single-channel ANC is degraded when it comes to
noise control in a spatial noise environment [8]. MCANC that
employs multiple controllers, loudspeakers and microphones
has, therefore, been introduced to achieve ANC in such sce-
narios.

A general MCANC system with I reference microphones,
J canceling loudspeakers, and K error microphones is shown
in Figure 1. The active noise controller takes the reference
signals and error signals, sensed by the reference microphones
and error microphones respectively, as inputs to adapt weights
so that the canceling signals generated can superpose with
the primary noises at the error microphones. Convention-
ally, MCANC is accomplished by optimizing controller weights
through adaptive algorithms so that the sum of the error signals
is minimized. Adaptive filtering algorithms such as filtered-
x least mean square (FxLMS) and its extensions are the most
commonly used ANC algorithms and have been extended to
MCANC modules [1, 9, 8]. Fast affine projection [10], mixed-
error [7], and spline adaptive filter [11] algorithms have been
proposed to address MCANC problems.

Standard adaptive filters based MCANC algorithms work
by estimating J × K secondary paths (i.e. from loudspeak-

Figure 1: Diagram of a general I×J×K multi-channel active
noise control system. pik denotes the primary path from the ith

reference microphone to the kth error microphone. sjk denotes
the secondary path from the jth canceling loudspeaker to the
kth error microphone.

ers to error microphones) during an initial stage and using the
estimated secondary paths to update controllers. Each of the
canceling loudspeakers is controlled by an adaptive controller,
resulting in I × J controllers [8, 11]. To achieve noise con-
trol over multiple points or within a relatively large zone, more
loudspeakers need to be utilized and the computational com-
plexity of MCANC algorithms grows accordingly [11]. Nu-
merous efforts have been made to alleviate the computational
complexity of MCANC algorithms [10, 7, 12]. However, the
reduction of complexity usually comes at the expense of noise
attenuation performance [13].

In addition, many studies assume that the ANC systems are
linear. However, nonlinear effects in sensors and acoustic paths
are commonplace in practical ANC systems [14]. The most
common nonlinearity in an ANC system is the saturation effect
caused by the limited quality of loudspeakers [15]. It has been
shown that a small nonlinearity in a secondary path can have
a significant impact on behavior of linear adaptive filters [16].
Having multiple loudspeakers could therefore negatively impact
the overall performance.

In a previous study, we have formulated ANC as a super-
vised learning problem and proposed a deep learning approach,
called deep ANC, to address nonlinear ANC problem [17]. It
has been shown in [17] that deep ANC can be trained to achieve
ANC no matter whether the reference signal is noise or noisy
speech and generalizes well to different types of noises. Be-
sides, a delay-compensated training strategy is introduced to
tackle the processing latency issue of frequency-domain ANC.
However, this study deals with only single-channel ANC.

This study extends deep ANC to address MCANC prob-
lems. The resulting method, called deep MCANC, is investi-
gated for active noise control at multiple spatial points (multi-
point ANC) and within a spatial zone (generating a quiet zone).
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Figure 2: Diagram of (a) the deep MCANC approach, and (b)
CRN based deep MCANC. Subscripts r and i denote real and
imaginary spectra of signals, respectively.

Different from traditional MCANC methods that need to esti-
mate multiple secondary paths and adaptive controllers individ-
ually, the proposed method trains a CRN (convolutional recur-
rent network) [18] to encode the optimal control parameters of
an MCANC system and output multiple canceling signals si-
multaneously. Comparisons with adaptive filter methods under
different MCANC setups are carried out, and a systematic in-
vestigation is provided on the impact of the number of loud-
speakers and error microphones on the overall performance.

The remainder of this paper is organized as follows. Section
2 presents the deep learning approach to MCANC. Experiments
and comparisons are given in Section 3. Section 4 concludes the
paper.

2. Method description
2.1. Signal model

A general I×J×K MCANC system is shown in Figure 1. This
system consists of I ×K primary paths and J ×K secondary
paths. It uses a set of J canceling signals {y1, y2, · · · , yJ} to
generate anti-noises and cancel or attenuate primary noises at
the error microphones. Ignoring the function of loudspeakers,
the anti-noise generated by the jth canceling loudspeaker and
received by the kth error microphone can be written as

ajk(n) = sjk(n) ∗ yj(n) (1)

where j = 1, 2, · · · , J , k = 1, 2, · · · ,K. Let dk(n) denote
the primary noise sensed by the kth error microphone, the cor-
responding error signal is given by

ek(n) = dk(n)−
∑J

j=1 sjk(n) ∗ yj(n) (2)

2.2. Deep learning for MCANC

The proposed method uses supervised learning for MCANC.
Rather than estimating the multiple secondary paths and active
noise controllers individually, it trains a deep neural network
to directly approximate the optimal multi-channel active noise
controller so as to minimize the total energy of all the error
microphones under different situations. The diagram of deep
learning based MCANC is given in Figure 2. The overall ap-
proach is to estimate J canceling signals simultaneously from
the I reference signals so that the corresponding anti-noises at-
tenuate the primary noises at the K error microphones.

Figure 3: Deep ANC for noise attenuation within a sphere with
a radius of r to generate a quiet zone.

In the proposed method, we use reference signals as inputs
and set the ideal anti-noises as training targets. To achieve com-
plete noise cancellation, the ideal anti-noise received at each
error microphone should be the same as the corresponding pri-
mary noise. During training, the outputs of deep MCANC, can-
celing signals, are passed through the secondary paths to gener-
ate anti-noises. The loss function calculated from all the error
signals is used for model training, as is shown in Figure 2(a).
We utilize CRN as the learning machine and the diagram of it
is given in Figure 2(b). The CRN is an encoder-decoder ar-
chitecture, where the encoder and decoder comprise five con-
volutional layers and five deconvolutional layers, respectively.
Between them is a two-layer LSTM with a group strategy [19],
where the group number is set to 2. A detailed description of
the CRN architecture is provided in [18] except that the number
of input and output channels are changed to 2I and 2J , respec-
tively.

2.3. Features, training targets, and loss function

Deep MCANC utilizes the real and imaginary spectrograms
of reference signals as inputs to estimate the complex spectro-
grams of canceling signals. The reference signals xi(t) sampled
at 16 kHz are divided into 20-ms frames with a 10-ms over-
lap between consecutive frames. Then a 320-point short time
Fourier transform is applied to each time frame to produce the
real and imaginary spectrograms of xi(t), which are denoted
as Xir(m, c) and Xii(m, c), respectively, within a T-F unit at
time m and frequency c.

To attenuate the primary noises at error microphones, the
ideal anti-noises are used as the training targets. The CRN is
trained to output the real and imaginary spectrograms of the
canceling signals, (Yjr(m, c) and Yji(m, c)), which are sent to
the inverse Fourier transform to derive waveform signals yj(t).
The anti-noises are then generated by passing the estimated can-
celing signals through the secondary paths using (1).

MCANC is trained to minimize the error signals received
at all the error microphones and the loss function is defined as

∑K
k=1

∑L
n=1 e2k(n)

KL
(3)

where ek(n) is defined as (2), L is the length of the error signal.

2.4. Proposed method for generating a quiet zone

Besides achieving noise attenuation at multiple spatial points
(locations of error microphones), deep ANC can be trained to
achieve ANC within a spatial zone using one or multiple cancel-
ing loudspeakers and plenty of error microphones. The general
strategy is given in Figure 3. We train the deep ANC in an RIR-
independent way by exposing the model to a variety of RIRs
sampled within a spatial zone during training. To be specific,
we simulate the quiet zone as a sphere with a radius of r and
randomly select K points within the sphere as the locations of
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the error microphones. We call these error microphones virtual
error microphones since they are only used during model train-
ing. Once the model is trained, they can be removed during the
inference stage.

In order to achieve better noise attenuation within the quiet
zone, more virtual error microphones are needed during training
stage to cover as many positions within the zone as possible.
This, however, leads to an increase in the amount of calculation
since more error signals need to be calculated to get the loss
function. For efficient training, a modified loss is introduced
for this scenario, given as

∑K′
k=1

∑L
n=1 e2k(n)

K′L (4)

where K′ < K. Instead of calculating all the K error sig-
nals for each training sample, the modified loss only calculates
K′ of them, i.e., loss function of the modified training strat-
egy is calculated from a randomly selected size-K′ subset of
{e1(n), e2(n), · · · , eK(n)} each time. The model trained with
the modified loss sufficiently saves the amount of calculation
while still covers all the K positions within the zone.

3. Experimental results
3.1. Experimental setup

To train a noise-independent model, the training set is cre-
ated by using 10000 non-speech environmental sounds from a
sound-effect library (http://www.sound-ideas.com) [20]. Bab-
ble noise, factory noise, engine noise, and speech-shaped noise
(denoted as SSN) from the NOISEX-92 dataset [21] are used for
testing. The testing noises are unseen during training, and hence
evaluate the generalization ability of the proposed method. We
create 20000 training signals and 100 test signals. Each noise
signal is generated by randomly cutting a 3-second-long signal
from the original noise.

The primary and secondary paths are simulated as room im-
pulse responses (RIRs) using the image method [22]. Many
studies have shown the effectiveness of ANC systems for ac-
tive noise canceling in enclosed rooms [23, 24, 25]. We sim-
ulate a rectangular enclosure of size 3 m × 4 m × 2 m and
consider MCANC systems with single reference microphone, J
canceling loudspeakers, and K error microphones, J = 1, 2, 3,
K = 1, 2, 3, for multi-point ANC scenario. The reference mi-
crophone is located at the position (1.5, 1, 1) m, the three can-
celing loudspeakers are located at the positions (1.5, 2.5, 1) m,
(1.6, 2.5, 1) m, (1.4, 2.5, 1) m, respectively, and the three er-
ror microphone are located at the positions (1.5, 3, 1) m, (1.5,
3, 1.1) m, (1.4, 3, 1) m, respectively. In the following experi-
ments, 1×m× n ANC system denotes the setup that uses the
first m (m ≤ 3) loudspeakers and first n (n ≤ 3) error micro-
phones described here. For the quiet zone scenario, we use the
same J loudspeakers and set the center of the quiet zone at the
position (1.5, 3, 1) m. Five reverberation times (T60s) 0.15 s,
0.175 s, 0.2 s, 0.225 s, 0.25 s are used for generating RIRs. The
RIRs with reverberation time 0.2 s are used for testing.

The model is trained using the AMSGrad optimizer [26]
with a learning rate of 0.001 for 30 epochs. Performance of
MCANC method is evaluated in terms of normalized mean
square error (NMSE), which is defined as

NMSE = 10 log10[
∑L

n=1 e
2(n)/

∑L
n=1 d

2(n)] (5)

The value of NMSE is usually below zero and a lower value
indicates better noise attenuation.

Table 1: Performance comparison with different ANC setups
and noises.

1× 1× 1 1× 2× 1 1× 2× 2

Babble
FxLMS -5.83 -7.26 -6.20 -6.38
PMl-FxLMS -6.05 -7.42 -6.60 -6.79
Deep ANC -12.08 -16.27 -12.93 -13.34

Factory
FxLMS -5.86 -7.32 -6.14 -6.36
PMl-FxLMS -6.01 -7.51 -6.54 -6.78
Deep ANC -11.71 -14.73 -12.26 -12.39

Figure 4: Average NMSE for deep learning based 1 × 2 × 1
ANC system with different noises and untrained RIRs with dif-
ferent T60s. The NMSE results for the trained T60 of 0.2 s are
included as a reference.

Table 2: Average NMSE of deep learning based MCANC for
multi-point ANC with different number of canceling loudspeak-
ers and error microphones.

Babble Factory

1× 1× 1 1× 2× 1 1× 3× 1 1× 1× 1 1× 2× 1 1× 3× 1
-12.08 -16.27 -15.52 11.71 -14.73 -14.20

1× 1× 2 1× 2× 2 1× 3× 2 1× 1× 2 1× 2× 2 1× 3× 2
-8.41 -12.93 -14.55 -7.94 -12.26 -13.53
-9.27 -13.34 -13.78 -8.70 -12.39 -12.55

1× 1× 3 1× 2× 3 1× 3× 3 1× 1× 3 1× 2× 3 1× 3× 3
-8.17 -8.36 -12.62 -7.65 -8.21 -12.00
-8.73 -9.45 -11.69 -8.22 -8.99 -10.93
-8.16 -9.72 -13.34 -7.57 -9.13 -12.11

3.2. Comparison with FxLMS based methods

We first compare the deep learning based MCANC with FxLMS
and post-masking-based FxLMS (PMl-FxLMS) [27] under a
single-channel ANC setup (1 × 1 × 1) and two MCANC se-
tups (1× 2× 1 and 1× 2× 2). FxLMS is the most commonly
used ANC algorithm and PMl-FxLMS is a recently proposed
algorithm that modifies FxLMS for faster convergence and bet-
ter noise attenuation [27]. As is shown in Table 1, the pro-
posed deep learning based method consistently outperforms the
other methods under different setups. Figure 4 gives the aver-
age NMSE of deep learning based MCANC when tested with
different noises and RIRs generated with different T60 values.
It shows that the proposed method generalizes well to untrained
noises and RIRs.

3.3. Deep MCANC for multi-point ANC

This part explores the impact of the number of loudspeakers and
microphones on the deep learning based MCANC for multi-
point ANC. We compare nine different ANC setups and present
the results in Table 2. For an MCANC system with n error mi-
crophones, we measure the average NMSE at each microphone
and provide all the n values in the table. It is seen from the table
that with a fixed number of error microphones, the noise atten-
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Table 3: Performance of deep learning based MCANC for gen-
erating a quiet zone with different training strategies. r (cm) is
the distance from testing positions to the center of the zone.

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 Ave

Babble
Loss in (3) -10.65 -10.60 -10.31 -9.62 -9.46 -7.38 -9.67
Loss in (4) -10.49 -10.41 -10.15 -9.44 -8.97 -7.22 -9.45

Factory
Loss in (3) -9.92 -9.89 -9.60 -8.94 -8.81 -6.66 -8.97
Loss in (4) -9.89 -9.83 -9.54 -8.84 -8.42 -6.52 -8.84

Figure 5: Performance of deep learning based MCANC for gen-
erating a quiet zone with different number of virtual error mi-
crophones K and babble noise. The values shown on the left of
the bar chat are the average values achieved within the zone.

Table 4: Performance of deep learning based MCANC for gen-
erating a quiet zone with different number of loudspeakers.

r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 Ave

Babble
J=1 -10.49 -10.41 -10.15 -9.44 -8.97 -7.22 -9.45
J=2 -14.15 -14.16 -13.27 -11.74 -11.53 -9.02 -12.31
J=3 -15.53 -15.59 -15.51 -14.37 -13.69 -11.59 -14.38

Factory
J=1 -9.89 -9.83 -9.54 -8.84 -8.42 -6.52 -8.84
J=2 -12.86 -12.87 -12.15 -10.79 -10.60 -8.25 -11.25
J=3 -14.09 -14.15 -14.08 -13.17 -12.59 -10.87 -13.16

uation performance improves with the increase of the number
of canceling loudspeakers. Meanwhile, more canceling loud-
speakers are needed to achieve noise cancellation at more spa-
tial points.

3.4. Deep MCANC for generating a quiet zone

This part studies the performance of deep learning based
MCANC for generating a quiet zone. We simulate the quiet
zone as a sphere and set the radius of it to r = 5 cm, which
is appropriate, for example, for around one ear of a driver in-
side a vehicle. For testing, besides the center of the quiet zone
(r = 0 cm), the performance is also evaluated at locations on
spheres of different radius (r = 1, 2, 3, 4, 5 cm). Ten different
locations are randomly generated for each test case and the av-
erage results are reported. Unless otherwise stated, the number
of virtual error microphones is set to K = 100.

We first compare the performance of 1×1×100 ANC sys-
tems trained with the loss function given in (3), and the mod-
ified loss in (4) (K′ is set to 20% of K). The results given
in Table 3 show that the two training strategies achieve com-
parable results. We will use the modified loss in the following
experiments considering that the modified loss function is more
efficient for model training.

Figure 5 presents the performance of the proposed method
for generating the same quiet zone but with different K. It is
used to show the impact of the number of virtual microphones
on the quiet zone performance. Noted that the case with K = 1,

Table 5: Performance of deep learning based MCANC in the
present of loudspeaker saturation nonlinearity.

Babble Factory

η2 ∞ 0.1 0.5 ∞ 0.1 0.5

1× 2× 1 -16.43 -16.46 -16.43 -15.54 -15.57 -15.54
1× 1× 100 -9.64 -9.57 -9.64 -8.90 -8.66 -8.87

which is actually a single-channel ANC system, is trained by
putting one error microphone at the center of the sphere. Case
“K = 1” achieves better NMSE than other cases at r = 0 cm.
But its performance drops significantly when tested on positions
that are farther from the center point of the zone. Using more
virtual microphones achieves better noise attenuation within the
zone but the improvement becomes insignificant when K >
100 for the quiet zone of a radius of 5 cm.

Table 4 shows the quiet zone performance with different
number of canceling loudspeakers. Similar to the multi-point
ANC scenario, having more canceling loudspeakers helps im-
prove the overall performance in the quiet zone scenario. The
average noise attenuation tested with babble noise is improved
to −12.31 dB when using 2 loudspeakers, and the performance
is further improved by 2.07 dB when J = 3.

3.5. Nonlinear MCANC

This part studies the performance of deep MCANC in the pres-
ence of nonlinear distortions. We follow the setup given in
[17, 28, 29] and simulate the loudspeaker saturation nonlinear-
ity using the scaled error function (SEF) [30]

fSEF(y) =
∫ y

0
e
− z2

2η2 dz (6)

The loudspeaker signal is generated by passing a canceling sig-
nal through the SEF function, η2 defines the strength of non-
linearity. The SEF becomes linear as η2 tends to infinity and
becomes a hard limiter as η2 tends to zero. We retrain the
deep ANC models using four loudspeaker functions, which are
η2 = 0.1 (severe nonlinearity), η2 = 1 (moderate nonlinear-
ity), η2 = 10 (soft nonlinearity), and η2 = ∞ (linear). A
randomly selected loudspeaker function is used for each input
signal during training. For testing, we use both trained and un-
trained loudspeaker functions, the results are given in Table 5.
The results for the quiet zone case (1 × 1 × 100) are the aver-
age NMSE achieved within the zone. It can be seen that deep
learning based MCANC models can be trained to handle both
linear and nonlinear cases and the performance generalizes well
to untrained saturation effect nonlinearity (η2 = 0.5).

4. Conclusion
This paper proposes a deep MCANC method. We have eval-
uated the performance of the proposed method for noise at-
tenuation in two scenarios: multi-point ANC and generating a
quiet zone, and examined the influence of the number of cancel-
ing loudspeakers and error microphones on the overall perfor-
mance. Experimental results under multiple setups show that
the proposed deep learning method is effective for MCANC
and the active noise control performance generalizes well to un-
trained noises, RIRs, and saturation nonlinearities.
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