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Abstract
We formulate active noise control (ANC) as a supervised

learning problem and propose a deep learning approach, called
deep ANC, to address the nonlinear ANC problem. A convo-
lutional recurrent network (CRN) is trained to estimate the real
and imaginary spectrograms of the canceling signal from the
reference signal so that the corresponding anti-noise can elimi-
nate or attenuate the primary noise in the ANC system. Large-
scale multi-condition training is employed to achieve good gen-
eralization and robustness against a variety of noises. The deep
ANC method can be trained to achieve active noise cancella-
tion no matter whether the reference signal is noise or noisy
speech. In addition, a delay-compensated strategy is intro-
duced to address the potential latency problem of ANC sys-
tems. Experimental results show that the proposed method is
effective for wide-band noise reduction and generalizes well to
untrained noises. Moreover, the proposed method can be trained
to achieve ANC within a quiet zone.
Index Terms: Active noise control, deep learning, deep ANC,
spatial ANC, nonlinear distortion

1. Introduction
Active noise control is a noise cancellation methodology based
on the principle of superposition of acoustic signals. The goal
of ANC systems is to generate an anti-noise with the same am-
plitude and opposite phase of the primary (unwanted) noise in
order to cancel or attenuate the primary noise [1]. Traditionally,
an active noise controller is implemented using adaptive filters
in a recursive way to optimize filter characteristics by minimiz-
ing an error signal. Filtered-x least mean square (FxLMS) and
its extensions are the most widely used active noise controllers
due to their simplicity, robustness and relatively low computa-
tional load [2]. However, nonlinear distortions are inevitably in-
troduced to the anti-noise in applications of ANC due to the lim-
ited quality of electronic devices such as amplifiers and loud-
speakers. LMS based methods are fundamentally linear and fail
to identify the underlying filter accurately in the presence of
nonlinearities. Even a small nonlinearity can have a significant,
negative impact on the FxLMS behavior [3].

Many adaptive nonlinear ANC algorithms have been pro-
posed to address nonlinear distortions. The Volterra expan-
sion [4, 5] and tangential hyperbolic function based FxLMS
(THF-FxLMS) [6] have been shown to be effective for mod-
eling mild nonlinearities for nonlinear ANC. Other algorithms
such as bilinear FxLMS, filtered-s LMS, and leaky FxLMS have
been investigated to address nonlinearity [7]. However, their
performance is limited in the presence of strong nonlinearities.
Neural networks have also been introduced to address nonlin-
ear ANC [8], considering their ability in handling nonlinear re-
lations. A multilayer perceptron is introduced in [9] for active
control of vibrations. The studies in [10] and [11] use func-
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Figure 1: Diagram of a single-channel feedforward ANC sys-
tem, where P (z) and S(z) denote the frequency responses of
primary path and secondary path, respectively.

tional link artificial neural network to handle the nonlinear ef-
fect in ANC. Other nonlinear adaptive models such as radial
basis function networks [12], fuzzy neural networks [13], and
recurrent neural networks [14] have been developed to further
improve the ANC performance. These neural network architec-
tures for nonlinear ANC utilize online adaptation or training to
characterize an optimal controller and thus can still be regarded
as adaptive algorithms.

ANC aims to output a canceling signal to eliminate or at-
tenuate the primary noise. In this paper, we propose a new
approach, named deep ANC, to address ANC, particularly the
nonlinear ANC problems. Deep learning is capable of model-
ing complex nonlinear relationships and can potentially play an
important role in addressing nonlinear ANC problems. Specif-
ically, a convolutional recurrent network (CRN) [15] is trained
to estimate the real and imaginary spectrograms of a canceling
signal from the reference signal. The subsequent anti-noise is
obtained by passing the canceling signal through a loudspeaker
and secondary path. Finally, the error signal is used to calculate
the loss function for training the CRN model.

To the best of our knowledge, this paper represents the first
study to formulate ANC as a supervised learning problem and
use deep learning to address it. Our study makes four main
contributions. First, complex spectral mapping is employed to
estimate both magnitude and phase responses for accurate esti-
mation [16,17], and large-scale multi-condition training is used
to attenuate a variety of noises and cope with the variations in
acoustic environments. Second, in addition to attenuating noise
from the noise input, we propose to train deep ANC to selec-
tively attenuate the noise components of a noisy speech sig-
nal and let the underlying speech pass through. Namely, deep
ANC in principle is able to maintain the target signal embedded
in noise by selectively canceling the noise components of the
noisy signal. Third, we introduce a delay-compensated training
strategy to tackle a shortcoming of frequency-domain ANC al-
gorithms: processing latency. Fourth, we expand deep ANC to
perform ANC within a small spatial zone (in order to produce
a quiet zone). This is a more useful but more challenging task
compared to ANC at a given spatial location.

The remainder of this paper is organized as follows. Sec-
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Figure 2: Diagram of (a) the deep ANC approach, and (b) CRN
based deep ANC.

tion II presents the deep ANC approach. Evaluation metrics
and experimental results are shown in Section III. Section IV
concludes the paper.

2. Deep ANC
2.1. Signal model

A typical feedforward ANC system is shown in Figure 1, and
it consists of a reference microphone, a canceling loudspeaker,
and an error microphone. The reference signal x(t) is picked up
by a reference microphone. The canceling signal y(t) generated
by the ANC is passed through the canceling loudspeaker and the
secondary path to get the anti-noise a(t). The corresponding
error signal sensed by the error microphone is defined as:

e(t) = d(t)− a(t) (1)

= p(t) ∗ x(t)− s(t) ∗ fLS{wT (t)x(t)}

where t is the time index, d(t) is the primary signal received
at the error microphone, w(t) represents the active noise con-
troller, fLS{·} denotes the transfer function of the loudspeaker,
∗ denotes linear convolution, and the superscript T means trans-
pose. Furthermore, p(t) and s(t) denote the impulse responses
of the primary and secondary path, respectively.

Adaptive algorithms alleviate the effect of the secondary
path by filtering the reference signal with an estimate of the
secondary path Ŝ(z) before feeding it to the controller [18].
The secondary path is usually estimated during an initial stage
with separate procedures and the performance of ANC methods
depends largely on the accuracy of Ŝ(z) estimation.

2.2. Deep learning for active noise control

Different from traditional ANC methods that need to estimate
the secondary path and active noise controller individually, deep
ANC uses supervised learning and trains a deep neural network
to directly approximate an active noise controller to minimize
the error signal under different situations. The diagram of deep
ANC is shown in Figure 2(a). The overall approach is to es-
timate a canceling signal from the reference signal so that the
corresponding anti-noise attenuates the primary noise. In the
proposed method, we use reference signal as the input and set
the ideal anti-noise as the training target. To achieve complete
noise cancellation, the ideal anti-noise should be the same as
the primary noise. During training, the output of deep ANC is
passed through the loudspeaker and the secondary path to gen-
erate the anti-noise. The loss function calculated from the error
signal is used for training the model.

Formulating ANC as a supervised learning problem is non-
trivial. There are two conceptual obstacles to such a formula-
tion. First, it is not straightforward to define what the training

target should be for a deep neural network (DNN). Although the
ideal canceling signal for attenuating a primary noise is known,
it cannot be used directly as the desired output of the DNN due
to the existence of the loudspeaker and the secondary path (see
Figure 2). Second, the primary and secondary paths can be
time-varying and the transfer function that the DNN needs to
approximate can be different for different acoustic conditions.
This seems to imply that a supervised learning model needs to
predict a one-to-many mapping, an impossible job. These ob-
stacles may explain why ANC has not been approached from
the deep learning standpoint. However, as detailed in the next
section, we have access to the ideal anti-noise to supervise DNN
training, and the DNN can be trained to estimate, for a given in-
put, some average of the different outputs for different scenar-
ios. With these observations, ANC can be formulated as a deep
learning task.

2.3. Feature extraction and training target

The reference signal x(t) is sampled at 16 kHz and divided
into 20-ms frames with a 10-ms overlap between consecutive
frames. Then a 320-point short time Fourier transform (STFT)
is applied to each time frame to produce the real and imagi-
nary spectrograms of x(t), which are denoted as Xr(m, c) and
Xi(m, c), respectively, within a T-F unit at time m and fre-
quency c. The proposed CRN based deep ANC takes Xr(m, c)
and Xi(m, c) as input features for complex spectral mapping.

To attenuate the primary noise at the error microphone, the
ideal anti-noise (the primary noise) is used as the training tar-
get. The CRN is trained to output the real and imaginary spec-
trograms of the canceling signal Yr(m, c) and Yi(m, c). Which
are sent to the inverse Fourier transform to derive a waveform
signal y(t). The anti-noise is then generated by passing the can-
celing signal through the loudspeaker and secondary path.

2.4. Two training strategies and their loss functions

Deep ANC can be trained to achieve noise cancellation no mat-
ter whether the reference signal is noise or noisy speech by us-
ing proper training data and loss functions. Two training strate-
gies are introduced for the deep ANC in this study:

Deep ANC trained with noise: We use noise signal n(t)
as the reference signal and train the deep ANC to attenuate the
primary noise. The loss function is defined as:

Loss1 = [
∑L

n=1 e
2(t)]/L (2)

where L is the length of the signal, e(t) is defined in (1). The
model trained this way aims to cancel any signals received at the
reference microphone and create a relatively silent surrounding.

Deep ANC trained with noisy speech: The deep ANC is
trained to cancel surrounding noise while still catching speech
signal. The reference signal used to train the deep ANC system
is a mixture of noise n(t) and speech v(t), and the correspond-
ing primary signal d(t) is

d(t) = p(t) ∗ [v(t) + n(t)] (3)
= p(t) ∗ v(t) + p(t) ∗ n(t)

where p(t)∗n(t) and p(t)∗v(t) are, respectively, the noise and
speech components of the primary signal. In order to attenuate
only noise components and let speech pass through, the training
target should be set to the noise components and the ideal error
signal is equivalent to p(t) ∗ v(t). The loss function is defined
as:

Loss2 = {
∑L

n=1[e(t)− p(t) ∗ v(t)]
2}/L (4)
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Figure 3: Diagram of the delay-compensated strategy.

2.5. Learning machine

The proposed deep ANC employs CRN for complex spectral
mapping, as is shown in Figure 2(b). The CRN is an encoder-
decoder architecture, where the encoder and decoder comprise
five convolutional layers and five deconvolutional layers, re-
spectively. Between them is a two-layer LSTM with a group
strategy [19], where the group number is set to 2. A detailed
description of the CRN architecture is provided in [15, 20]. We
employ exponential linear units (ELUs) [21] in all convolutional
and deconvolutional layers except the output layer. Linear ac-
tivation is used in the output layer for spectrogram estimation.
The model is trained using the AMSGrad optimizer [22] with a
learning rate of 0.001 for 30 epochs.

2.6. Delay-compensated training

The proposed approach uses real and imaginary spectrograms
as inputs and outputs and it can be regarded as a frequency-
domain ANC algorithm. However, the frequency-domain ANC
algorithms usually cause a time delay between the input and
output of ANC [23].

A delay-compensated training strategy is proposed for the
deep ANC as an alternative to address this problem. The main
idea is to train a model to predict the canceling signal a few
frames in advance. A diagram of this strategy is shown in Fig-
ure 3, where N denotes the total number of frames in an input
signal, M denotes the number of frames we want to predict in
advance. Specifically, the input signal is first revised by padding
M frames of zeros in the front. Then a cut ofN frames from the
revised input is used as the new input signal to train the model.
Since the target signal is kept unchanged, it is equivalent to use
the input signal to predict M future frames of the target. In our
experiments, the input signal is windowed into 20-ms frames
with 10-ms frame shift. Using the delay-compensated training
can save 10×M ms for the system.

3. Experimental results
3.1. Performance metrics

Performance of the proposed method is evaluated in terms of
normalized mean square error (NMSE), short-time objective
intelligibility (STOI) [24] and perceptual evaluation of speech
quality (PESQ) [25]. NMSE is defined as:

NMSE = 10 log10[
∑L

n=1 e
2(t)/

∑L
n=1 d

2(t)] (5)

The value of NMSE is usually below zero and a lower value
indicates better noise attenuation. STOI and PESQ are obtained
by comparing the error signal e(t) with the speech component
of the primary signal, p(t)∗v(t). A higher score indicates better
intelligibility and quality.

3.2. Experiment setting

To train a noise-independent model, we use 10000 noises from
a sound-effect library (http://www.sound-ideas.com) to create

the training set [26]. Engine noise, factory noise and babble
noise from NOISEX-92 dataset [27] are used for testing. These
testing noises are unseen during training and they are used to
evaluate the generalization ability of the proposed method.

The physical structure of an ANC system is usually mod-
eled as a rectangular enclosure to show the effectiveness of
ANC systems for noise canceling [28–30]. In our experiments,
we simulate a rectangular enclosure of size 3 m × 4 m × 2 m
and use the image method [31] to generate impulse responses
(IRs) of primary and secondary paths. The reference micro-
phone is located at the position (1.5, 1, 1) m, the canceling
loudspeaker is located at the position (1.5, 2.5, 1) m and the
error microphone is located at the position (1.5, 3, 1) m. Five
reverberation times (T60s) 0.15 s, 0.175 s, 0.2 s, 0.225 s, 0.25
s are used for generating the IRs and the length of the them is
set to 512. The IRs with reverberation time 0.2 s are used for
testing.

Saturation effects produced by the loudspeakers are the
most important nonlinearity in ANC systems [3, 32]. In the re-
lated studies of nonlinear ANC, the loudspeaker saturation is
represented by the scaled error function (SEF) [6, 33]:

fSEF(y) =
∫ y

0
e
− z2

2η2 dz, (6)

where y is the input to the loudspeaker, η2 defines the strength
of nonlinearity. The SEF becomes linear as η2 tends to infin-
ity and becomes a hard limiter as η2 tends to zero. To inves-
tigate the robustness of the proposed method against nonlinear
distortions, four loudspeaker transfer functions are used during
training stage, which are η2 = 0.1, η2 = 1, η2 = 10, and
η2 =∞ (linear). For testing, we use both trained and untrained
loudspeaker transfer functions.

The deep ANC is trained to handle cases when the reference
signal is either noise or noisy speech. To achieve this, we gen-
erate 20000 training signals and 100 test signals for each case.
Each noise signal is created by randomly cut a 6-second-long
signal from the 10000 noises. The speech signal used to gener-
ate the noisy speech is obtained from the TIMIT dataset [34] by
randomly choosing 200 speakers (100 male speakers and 100
female speakers). To create a noisy speech, utterances from a
randomly selected speaker are mixed with a random noise cut
from the 10000 noises at a signal-to-noise ratio (SNR) randomly
chosen from [5, 10, 15, 20] dB. The signals received at the er-
ror microphone are simulated by using randomly selected loud-
speaker transfer function and IRs during training.

3.3. Performance of deep ANC trained with noise

We first evaluate the performance of deep ANC system trained
with noise, which is denoted as CRN n. The proposed method
is compared with FxLMS [2] and THF-FxLMS [6] in a lin-
ear system (η2 = ∞) and two nonlinear systems (η2 = 0.5,
η2 = 0.1). The filter length of the comparison methods is set
to 512 (equals to the length of IRs) and the step sizes of them
are set to the values given in [35, 36] to ensure stable updating
process and good noise attenuation. Table 1 shows the average
NMSE of 100 testing signals, where CRN n-1, and CRN n-2
denote the models trained with the delay-compensated strategy
to predict 1 and 2 frames in advance, respectively. It is seen
from this table that the performance of FxLMS is decreased
when it comes to nonlinear systems. THF-FxLMS models the
secondary path as a nonlinear model and it achieves good noise
attenuation in different nonlinear systems. The deep ANC sys-
tem outperforms comparison algorithms and generalizes well to
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Table 1: Performance comparison with respect to different
noises and nonlinear distortions.

Noise type Engine Factory Babble
η2 ∞ 0.5 0.1 ∞ 0.5 0.1 ∞ 0.5 0.1
FxLMS -6.78 -5.26 -4.54 -5.88 -4.73 -1.67 -6.04 -4.32 -3.37
THF-FxLMS – -6.70 -6.55 – -5.86 -5.75 – -6.02 -5.97
CRN n -11.07 -10.98 -10.60 -9.58 -9.50 -9.17 -9.49 -9.45 -9.27
CRN n-1 -9.60 -9.53 -9.25 -8.47 -8.42 -8.19 -8.80 -8.76 8.62
CRN n-2 -7.93 -7.89 -7.72 -6.97 -6.94 -6.81 -7.00 -7.00 -6.89
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Figure 4: Average NMSE for CRN n with engine noise, η2 =
0.1, and untrained IRs generated with different T60s.
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Figure 5: Power spectrum density of ANC methods with engine
noise and loudspeaker nonlinearity η2=0.1.

untrained noises and untrained nonlinearity (η2 = 0.5). In addi-
tion, using delay-compensated strategy obtains acceptable noise
attenuation while the overall performance is dropped slightly.
The results in Figure 4 show that the performance of deep ANC
generalizes well to untrained IRs generated with different T60s.
We plot the power spectrum density (PSD) curves in Figure 5
for further comparison. It can be seen that the proposed method
can achieve wide-band noise reduction while comparison meth-
ods are only effective for noise attenuation at lower frequencies.

3.4. Performance of deep ANC trained with noisy speech

This part studies the performance of the deep ANC in situations
when the reference signal is a noisy speech. The model trained
this way is denoted as CRN ns. Comparison results when tested
with engine noise and nonlinear system with η2 = 0.1 are given
in Table 2, where CRN ns-1 and CRN ns-2 denote the CRN ns
model trained with the delay-compensated strategy to predict 1,
and 2 frames in advance, respectively. “Unprocessed” denotes
the results when there is no ANC. The second column in Ta-
ble 2 shows the NMSE values when tested with noise signals.
It can be seen that the performance of CRN ns is comparable
to that of CRN n when tested in the noise only situation even
though the former model is trained with noisy speech. For sit-
uations with noisy speech, traditional methods and CRN n fo-
cus on minimizing error signal (attenuating reference signal),
and therefore distort the speech component as reflected by sub-
stantially lower STOI and PESQ values than unprocessed noisy
speech. CRN ns can improve STOI and PESQ values and the
performance of CRN ns-1 and CRN ns-2 is comparable to that
of CRN ns with a small decrease in terms of PESQ values. The
CRN n performs best in terms of NMSE in both the noise only
and noisy speech situations. This is to say, besides attenuating
noise, the CRN n model is capable of attenuating noisy speech.

Table 2: Performance comparison for the reference signal is
noisy speech with loudspeaker nonlinearity η2 = 0.1 and en-
gine noise.

Noise SNR = 5 dB SNR = 15 dB
η2 = 0.1 NMSE STOI PESQ NMSE STOI PESQ NMSE
Unprocessed – 0.79 1.95 0 0.94 2.61 0
FxLMS -4.54 0.71 1.84 -2.30 0.71 1.90 -0.36
THF-FxLMS -6.55 0.69 1.73 -3.89 0.74 1.92 -1.58
CRN n -10.60 0.72 1.71 -8.75 0.83 2.02 -8.66
CRN ns -10.00 0.84 2.26 – 0.96 3.00 –
CRN ns-1 -8.31 0.85 2.24 – 0.96 2.95 –
CRN ns-2 -7.04 0.84 2.14 – 0.96 2.87 –

Table 3: Performance of deep ANC for generating a quiet zone
with engine noise and loudspeaker nonlinearity η2 = 0.1.

η2 = 0.1 CRN n CRN ns
Reference signal Noise Noisy speech (SNR = 15 dB)

NMSE STOI PESQ
Unprocessed – 0.94 2.63
r = 0 -9.44 0.96 2.88
r = 2 -9.49 0.96 2.90
0≤ r ≤5 -8.32 0.96 2.88

3.5. Quiet zone

Besides achieving noise attenuation at a spatial location, a more
challenging task would be to achieve ANC within a small spa-
tial zone [37]. To produce a quiet zone, we first simulate the
spatial zone as a sphere with a radius of 5 cm. Then we ran-
domly select 100 points inside the sphere as the locations of
error microphone and generate 100 pairs of IRs as primary and
secondary paths by using the image method [31]. 20000 train-
ing signals for noise only and noisy speech situations are cre-
ated with these 100 pairs of IRs and the CRN n and CRN ns
models are retrained with these signal. Three test sets, with 100
signals in each set, are generated to evaluate the performance of
these models. The results are given in Table 3, where “r = 0”
denotes the case where the error microphone is placed at the
center point of the sphere, “r = 2” denotes the case with the
microphone placed within the sphere and 2 m away from the
center point. For the case “0 ≤ r ≤ 5”, we randomly place
the error microphone at 10 different points within the sphere
and use the corresponding 10 pairs of IRs for testing. Gener-
ally speaking, the ANC models trained this way would achieve
noise attenuation at any point within this sphere and generate a
quiet zone.

4. Conclusion
In this paper, we have proposed a deep learning based approach
to address the ANC problem with nonlinear distortions. The
proposed deep ANC approach can be trained to not only can-
cel noise, but also selectively attenuate the noise components of
noisy speech. We have also introduced a delay-compensated
training strategy and investigated the proposed approach for
spatial ANC. Systematic evaluations show the effectiveness and
robustness of deep ANC for noise attenuation in noise only and
noisy speech situations, and the trained DNN model general-
izes well to different noises and acoustic environments. With
this first successful demonstration, we anticipate that subse-
quent work will establish deep learning as a main approach to
ANC with elevated performance.
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