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Abstract 
Supervised learning has exhibited great potential for speech 
separation in recent years. In this paper, we focus on separating 
target speech in reverberant conditions from binaural inputs 
using supervised learning. Specifically, deep neural network 
(DNN) is constructed to map from both spectral and spatial 
features to a training target. For spectral features extraction, we 
first convert binaural inputs into a single signal by applying a 
fixed beamformer. A new spatial feature is proposed and 
extracted to complement spectral features. The training target is 
the recently suggested ideal ratio mask (IRM). Systematic 
evaluations and comparisons show that the proposed system 
achieves good separation performance and substantially 
outperforms existing algorithms under challenging multi-
source and reverberant environments. 
Index Terms: binaural speech separation, room reverberation, 
deep neural network (DNN), beamforming. 

1. Introduction 
In real-world environments, speech signal is usually degraded 
by concurrent sound sources and their reflections from the 
surfaces in physical space. Separating the target speech in such 
an environment is important for many applications such as 
hearing aid design, robust automatic speech recognition (ASR) 
and mobile communication. However, speech separation 
remains a considerable challenge despite extensive research 
over decades. 

Since target speech and background noise usually overlap in 
time and frequency, it is hard to remove the noise without 
speech distortion in monaural separation. However, speech and 
interfering sources are often located at different positions of the 
physical space, and one can exploit the spatial information for 
speech separation by using two or more microphones. Many 
algorithms are proposed in the literature. Fixed and adaptive 
beamformers are common signal processing techniques for 
multi-microphone speech separation [18]. The delay-and-sum 
beamformer is the simplest and most widely used fixed 
beamformer, and it can be steered to a specific direction by 
adjusting the phase for each microphone and adds the signals 
from different microphones. One limitation of a fixed 
beamformer is that it needs a large array to achieve high-fidelity 
separation. The minimized variance distortionless response 
(MVDR) [5] beamformer is a representative adaptive 
beamformer, which minimizes the output energy while 
imposing linear constraints to maintain energies from the 
direction of the target speech. Compared with fixed 
beamformers, adaptive beamformers provide better 
performance in certain conditions, like strong and relatively few 
interfering sources. However, adaptive beamformers are more 
sensitive than fixed beamformers to microphone array errors 
such as sensor mismatch and mis-steering, and to correlated 

reflections arriving from nontarget directions [1]. The 
performance of both fixed and adaptive beamformers 
diminishes in the presence of room reverberation. 

Localization-based clustering [12][23] is a popular method 
for unsupervised binaural separation. In general, two steps are 
taken. The localization step is to build the relationship between 
source locations and interaural parameters, such as interaural 
time difference (ITD) and interaural level difference (ILD), in 
individual time-frequency (T-F) units. The separation step is to 
assign each T-F unit into a different sound source by clustering 
or histogram picking. In [12], these two steps are jointly 
estimated by using an expectation-maximization algorithm. 

Treating speech separation as a supervised learning problem 
has become popular in recent years, particularly since deep 
neural networks (DNNs) were introduced for supervised 
monaural speech separation [20]. Pertilä and Nikunen [14] used 
spatial feature and DNN for multichannel speech separation. 
Recently, Jiang et al. [9] extract binaural and monaural features 
and train a DNN for each frequency band to perform binary 
classification. Their results show that even a single monaural 
feature can improve separation performance in reverberant 
conditions when interference and target are very close to each 
other. 

In this study, we address the problem of binaural speech 
separation in reverberant environments. The proposed system 
is supervised in nature, and employs DNN. Both spatial and 
spectral features are extracted to provide complementary 
information for speech separation. Motivated by recent analysis 
of training targets, our DNN training aims to estimate the IRM. 
In addition, we conduct feature extraction on full-band signals 
and train only one DNN to predict the IRM across all 
frequencies. In the following section, we present our DNN-
based binaural speech separation system. The evaluation, 
including a description of comparison methods, is provided in 
Section 3. We present the experimental results and comparison 
in Section 4, and conclude the paper in Section 5. 

2. System description 
The proposed system is illustrated in Figure 1. Binaural input 
signals are generated by placing the target speaker in a 
reverberant space with many other simultaneously interfering 
talkers forming a spatially diffuse, speech babble. To separate 
the target speech from the background noise, the left-ear and 
right-ear signals are first fed into two modules to extract the 
spectral and spatial features separately. In the upper module, a 
beamformer is employed to preprocess the two-ear signals to 
produce a single signal for spectral feature extraction. In the 
lower module, the left-ear and right-ear signals are first 
decomposed into T-F units independently. Then, the spectral 
and spatial features are combined to form the final features. Our 
computational goal is to estimate the IRM. We train a DNN to 
map the final features to the IRM. After obtaining a ratio mask
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Figure 1: Schematic diagram of the proposed binaural separation system. 

from the trained DNN, the waveform signal of the target speech 
is synthesized from the sound mixture and the mask [19]. 

2.1. Features extraction 
2.1.1. Spectral features 
We employ the delay-and-sum (DAS) beamformer to process 
the left-ear and right-ear signals into a single signal before 
extracting monaural spectral features. The rationale for 
proposing beamforming before spectral feature extraction is 
twofold. First, beamforming enhances the target signal, and 
second, it avoids an adhoc decision of having to choose one side 
for monaural feature extraction, as done in [9] for instance. 

After beamforming, we extract amplitude modulation 
spectrum (AMS), relative spectral transform and perceptual 
linear prediction (RASTA-PLP) and mel-frequency cepstral 
coefficients (MFCC). In [21], these features are shown to be 
complementary and have been successfully used in DNN-based 
monaural separation. It should be mentioned that the 
complementary feature set originally proposed in [21] is 
extracted at the unit level. We extract the complementary 
feature set at the frame level as done in [22]. 
2.1.2. Spatial features 
We first decompose both the left-ear and right-ear signals into 
cochleagrams [19]. Specifically, the input mixture is 
decomposed by the 64-channel gammatone filterbank with 
center frequencies ranging from 50 Hz to 8000 Hz on the 
equivalent rectangular bandwidth rate scale. The output of each 
channel is divided into 20-ms frame length with a 10-ms frame 
shift and half-wave rectified. With a 16 kHz sampling rate, the 
signal in a T-F unit has 320 samples. 

With binaural input signals, we extract two primary binaural 
features of ITD and ILD. The ITD is calculated from the 
normalized Cross Correlation Function (CCF) between the left- 
and right-ear signals, denoted by subscript l,r respectively. The 
CCF of a T-F unit pair, indexed by time lag τ, is defined as 
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In the above formula, � varies between -1 ms and 1 ms, ���,� 
and ���,� represent the left- and right-ear signals of the unit at 
channel �  and frame � , respectively, and �  indexes a signal 
sample of a T-F unit. For the 16 kHz sampling rate, the 
dimension of CCF is 33. In [9], CCF values are directly used as 
a feature vector to distinguish the signals coming from different 
locations. 

Here, we propose a new 2-dimensional (2D) ITD feature. The 
first dimension is the CCF value at an estimated time lag �̃, 
corresponding to the direction of the target speech, which can 
be estimated by DOA method. The second dimension is the 
maximum value of CCF, which reflects the coherence of the left 
and right ear signals, and has been used for selecting binaural 
cues for sound localization [4]. The reasons for proposing these 
two features are as follows. The maximum CCF value is used 
to distinguish directional sources from diffuse sounds. For a 

directional source, the maximum CCF value should be close to 
1, whereas for a diffuse sound it is close to 0. The CCF value at 
the estimated target direction is to differentiate the target speech 
and the interfering sounds that come from different directions. 
Specifically, we have 

���(�, �) = � ���(�, �, �̃)
max� ���(�, �, �)  �                       (2) 

ILD corresponds to the energy ratio in dB, and it is calculated 
for each unit pair as below 
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To sum up, the spatial features in each T-F unit pair are 
composed of 2D ITD and 1D ILD. We concatenate all the unit-
level features at a frame to form the frame-level spatial feature 
vector. For 64-channel cochleagrams, the total dimension is 192 
for each time frame. 

2.2. Training target 
We employ the ideal ratio mask (IRM) [22] as the training 
target, 

�#$(�, �) = � %�(�,�)
%�(�,�)&'�(�,�)                          (4) 

where *+(�, �)  and -+(�, �)  denote the speech and noise 
energy, respectively, in a given T-F unit. This mask is 
essentially the square-root of the classical Wiener filter, which 
is the optimal estimator in the power spectrum [10]. The IRM 
is obtained using a 64-channel gammatone filterbank. 

The IRM has been shown to be preferable to the Ideal Binary 
Mask (IBM) [22]. We employ the IRM in individual frames as 
the training target, which provides the desired signal at the 
frame level for supervised training. 

2.3. DNN training 
A DNN is trained to estimate the IRM using the frame-level 
features described earlier. The DNN includes 2 hidden layers, 
each with 1000 units. We find that this relatively simple DNN 
architecture is effective for our task. The rectified linear unit 
(ReLU) activation function [13] is used for the hidden layers 
and the sigmoid activation function is used for the output layer. 
The cost function is mean square error (MSE). Weights of the 
DNN are randomly initialized. The adaptive gradient algorithm 
(AdaGrad) [3] is utilized for back propagation. We also employ 
the dropout technique [16] on hidden units to avoid overfitting. 
The dropout rate is 0.5. The total number of training epochs is 
100. The batch size is 512. To incorporate temporal context, we 
use an input window that spans 9 frames (4 before and 4 after) 
to predict one frame of the IRM. 

3. Experimental setup 
3.1. Dataset 
For both training and test datasets, we generate binaural 
mixtures by placing the target speaker in a reverberant space 
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with many interfering speech sources simultaneously. A 
reverberant signal is generated by convolving a speech signal 
with a binaural room impulse response (BRIR). In this study, 
we use two sets of BRIRs. One is simulated by software, called 
BRIR Sim Set. The other is measured in real rooms, called BRIR 
Real Set. These sets were generated or recorded at the 
University of Surrey. 

The BRIR Sim Set is obtained from a room simulated using 
CATT-Acoustics modeling software. The simulated room is 
shoebox-shaped with dimensions 6m × 4m × 3m (length, width, 
height). The reverberation time (T60) was varied in the range 
[0, 1] second with 0.1s increments by changing the absorption 
coefficient of all six surfaces. The impulse responses are 
calculated with the receiver located at the center of the room at 
a height of 2 m and the source at a distance of 1.5 m from the 
receiver. The sound source was placed at the head height with 
azimuth between -90o and 90o spaced by 5o. 

The BRIR Real Set is recorded in four rooms with different 
sizes and reflective characteristics, and their reverberation 
times are 0.32s, 0.47s, 0.68s and 0.89s. The responses are 
captured using a head and torso simulator (HATS) and a 
loudspeaker. The loudspeaker was placed around the HATS on 
an arc in the median plane with a 1.5 m radius between ±90o 
and measured at 5o intervals. 

To generate a diffuse multitalker babble (see [11]), we use 
the TIMIT corpus [6] which contains 6300 sentences, with 10 
sentences spoken by each of 630 speakers. Specifically, 10 
sentences of each speaker in the TIMIT corpus are first 
concatenated. Then, we randomly choose 37 speakers, one for 
each source location as depicted in Fig. 1. A random slice of 
each speaker is cut and convolved with the BRIR corresponding 
to its location. Finally, we sum the convolved signals to form 
the diffuse babble, which is also non-stationary. The IEEE 
corpus [8] is employed to generate reverberant binaural target 
utterances, and it contains 720 utterances spoken by a female 
speaker. The target source is fixed at azimuth 0o, in front of the 
dummy head (see Fig. 1). To generate a reverberant target 
signal, we convolve an IEEE utterance with the BRIR at 0o. 
Finally, the reverberant target speech and background noise are 
summed to yield two binaural mixtures. 

For the training and development sets, we respectively select 
500 and 70 sentences from the IEEE corpus and generate 
binaural mixtures using BRIR Sim Set with 4 T60 values of 0s, 
0.3s, 0.6s and 0.9s; T60 = 0s corresponds to the anechoic 
condition. So, the training set includes 2000 mixtures. The 
remaining 150 IEEE sentences are used to generate the test set. 
To evaluate the proposed method, we use three sets of BRIRs 
to build test sets called simulated matched room, simulated 
unmatched room and real room. For the simulated matched-
room test set, we use the same simulated BRIRs as the ones in 
the training stage. For the simulated unmatched-room test set, 
the BRIR Sim Set with T60's of 0.2s, 0.4s, 0.8s and 1.0s are used. 
The real-room test set is generated by using BRIR Real Set. The 
SNR of the mixtures for training and test is set to -5 dB, which 
is the average at the two ears. It means that the SNR at a given 
ear may vary around -5 dB due to the randomly generated 
background noise and different reverberation times. In SNR 
calculations, the reverberant target speech, not its anechoic 
version, is used as the signal. 

3.2. Evaluation criteria 
We quantitatively evaluate the performance of speech 
separation by short-time objective intelligibility (STOI) [17]. 
This metric measures objective intelligibility by computing the 

correlation of short-time temporal envelopes between target and 
separated speech, resulting in a score in the range of [0, 1], 
which can be roughly interpreted as the percent-correct 
predicted intelligibility.  

3.3. Comparison methods 
We compare the performance of the proposed method with 
several other prominent and related methods for binaural 
speech separation. The first kind is beamforming and we choose 
DAS and MVDR beamformers for comparison. As described 
earlier, the DAS beamformer is employed as a preprocessor in 
our system. The MVDR beamformer minimizes the output 
energy while imposing linear constraints to maintain the energy 
from the direction of the target speech. Both the DAS and 
MVDR beamformer need the DOA (direction of arrival) 
estimation. Because the location of the target speaker is fixed 
in our evaluation, we provide the target direction to the 
beamformers, which facilitates the implementation. 

The next one is a joint localization and segregation approach 
[12], dubbed as MESSL, which uses spatial clustering for 
source localization. Given the number of sources, MESSL 
iteratively modifies Gaussian mixture models (GMMs) of 
interaural phase difference and ILD to fit the observed data. 
Across frequency integration is handled by linking the GMMs 
models in individual frequency bands to a principal ITD. 

The third comparison method employs DNN to estimate the 
IBM [9]. First, input binaural mixtures are decomposed into 64-
channel subband signals. At each frequency channel, CCF, ILD 
and monaural GFCC (gammatone frequency cepstral 
coefficient) features are extracted and used to train a DNN for 
subband classification. Each DNN has two hidden layers each 
containing 200 sigmoidal units. Weights of DNNs are pre-
trained with restricted Boltzmann machines. The subband 
binaural classification algorithm is referred as SBC in the 
following. 

4. Evaluation and comparison 
4.1. Simulated-room conditions 
In this test condition, we evaluate the performance of the 
proposed algorithm in the simulated rooms, which are divided 
into two parts: matched and unmatched conditions. As 
mentioned earlier, for matched-room conditions, test 
reverberated mixtures are generated by using the same BRIRs 
as in the training stage, where the T60s are 0.3s, 0.6s and 0.9s. 
For the unmatched-room conditions, the BRIRs for generating 
reverberated mixtures are still simulated ones, but the T60s are 
different from those in training conditions and take the values 
of 0.2s, 0.4s, 0.8s and 1.0s. The results of STOI are shown in 
Table I. Since left-ear and right-ear signals are very similar, we 
just list the STOI scores of the unprocessed mixtures at the left 
ear, referred to "MIXL". 

Table 1: Average STOI scores (%) of different methods in 
simulated matched-room and unmatched-room conditions 

 T60 MIXL DAS MVDR MESSL SBC Pro. 

M
at

ch
ed

-
ro

om
 

0.0s 58.00 63.56 63.75 65.92 63.65 74.66 
0.3s 53.13 58.61 58.78 58.66 62.79 74.88 
0.6s 44.08 50.82 50.84 51.89 55.08 68.53 
0.9s 44.58 48.20 48.15 48.46 53.37 65.39 
Avg. 49.05 55.30 55.38 56.23 58.72 70.87 

U
nm

at
ch

ed
-

ro
om

 

0.2s 55.28 61.80 61.91 60.52 64.68 74.95 
0.4s 47.98 54.46 54.64 55.91 59.02 70.40 
0.8s 39.99 47.06 47.01 47.12 54.27 65.92 
1.0s 39.05 45.21 45.01 46.05 51.64 62.82 
Avg. 45.58 52.13 52.14 52.40 57.40 68.52 
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Compared the unprocessed mixtures, the proposed system 
obtains the absolute STOI gain about 22% on average (i.e. from 
49% to 71%) in the simulated matched-room conditions and 23% 
in the simulated unmatched-room conditions. From Table 1, we 
can see that the proposed system outperforms the other 
comparison methods in anechoic and all reverberation 
conditions. DAS and MVDR have similar results, because the 
background noise is quite diffuse; it can be proven that MVDR 
and DAS become identical when noise is truly diffuse. For the 
supervised learning algorithms, both SBC and the proposed 
algorithm exhibit good generalization in the unmatched-room 
conditions. 

4.2. Real-room conditions 
In this test condition, we use the BRIR Real Set to evaluate the 
proposed separation system and compare it with other methods. 
The STOI results are given in Table 2. The proposed system 
achieves the best results in all four room conditions. Compared 
with unprocessed mixtures, the average STOI gain is about 20% 
(i.e. from 43% to 63%), which is consistent with that in 
simulated room conditions. 
Table 2: Average STOI scores (%) of different methods in real 

room conditions. 
Room MIXL DAS MVDR MESSL SBC Pro. 

A (0.32s) 47.49 53.71 53.84 54.39 53.37 66.70 
B (0.47s) 41.29 48.10 48.08 48.61 42.95 61.96 
C (0.68s) 44.33 51.31 50.86 52.11 54.13 64.78 
D (0.89s) 39.61 45.48 45.58 45.35 48.52 60.57 

Avg. 43.18 49.65 49.59 50.12 49.74 63.50 

From the above experimental results, we can see that the 
proposed algorithm outperforms SBC which is also a DNN-
based separation algorithm. One of the differences is that the 
proposed algorithm employs ratio masking for separation, 
while SBC utilizes binary masking. A simple way to turn a 
binary mask to a ratio mask in the context of DNN is to directly 
use the outputs of the subband DNNs, which can be interpreted 
as posterior probabilities with values ranging from 0 to 1. With 
such soft masks, SBC's average STOI scores are 63.25% for 
matched-room conditions, 61.96% for unmatched-room 
conditions and 55.80% for real-room conditions. These results 
represent significant improvements over binary masks, but they 
are still not as high as those of the proposed algorithm. 

4.3. Feature analysis 
Our binaural speech separation system uses both spectral and 
spatial features. For spectral features, the DAS beamformer is 
employed as a preprocessor. The spatial features are formed by 
combining the proposed 2D ITD and ILD. To evaluate the 
effectiveness of the features, we further compare several 
alternatives with the same DNN configuration and training 
procedure (see Section 2.3). 

One simple way to combine spectral and spatial analyses is 
to directly concatenate the left- and right-ear complementary 
features. We compare this feature vector with the proposed 
beamformed features and also single-ear monaural features 
(left-ear as in [9]). The interaural features are excluded here. 
Average STOI results are shown in Fig. 2(a). From the figure, 
we can see that extracting the spectral features on the output 
signal of the beamformer is better than concatenating the 
spectral features of the left- and right-ear signals. For spatial 
features, we compare the conventional ITD [15], CCF and the 
proposed 2D ITD. Since concatenating unit-level CCF vectors 
directly leads to a very high dimension, we perform principal 
component analysis (PCA) to reduce the dimension to 128, 

equal to the size of 2D ITD frame-level feature. The STOI 
results are shown in Fig. 2(b). We can see that the results with 
the conventional ITD are much worse than CCF plus PCA and 
the proposed 2D ITD. While proposed 2D ITD yields 
essentially the same results as CCF, it has an advantage of 
relative invariance to different target directions in addition to 
computational efficiency. 

 
(a)                                             (b)                       

Figure 2: Comparison of the different features. (a) Spectral 
features. (b) Spatial features. 

5. Conclusions 
In this work, we have proposed a DNN-based binaural speech 
separation algorithm which combines spectral and spatial 
features. DNN-based separation has shown its ability to 
improve speech intelligibility [7] even with just monaural 
spectral features. As demonstrated in previous work [9], 
binaural speech separation by incorporating monaural features 
represents a promising direction to further elevate separation 
performance. 

For supervised speech separation, input features and training 
targets are both important. In this study, we make a novel use 
of beamforming to combine left-ear and right-ear monaural 
signals before extracting spectral features. In addition, we have 
proposed a new 2D ITD feature. With the IRM as the training 
target, the proposed system outperforms representative binaural 
separation algorithms in non-stationary background noise and 
reverberant environments, including a DNN-based subband 
classification algorithm [9]. Another issue is generalization to 
untrained environments. Our algorithm shows consistent results 
in unseen reverberant noisy conditions. This strong 
generalization ability is partly due to the use of effective 
features. Although only one noisy situation is considered, the 
noise problem can be addressed through large-scale training [2]. 

In the present study, the target speaker is fixed to the front 
direction and sound localization is not addressed. For the 
proposed algorithm, two parts need the target direction. One is 
DAS beamforming and the other is calculation of 2D ITD. 
Sound localization is a well-studied problem [19]. Recently, 
DNN is also used for sound localization [11], although only 
spatial features are considered. We believe that incorporating 
monaural separation is a good direction to improve the 
robustness of sound localization in adverse environments. One 
way to incorporate monaural separation is to employ spectral 
features for initial separation, from which reliable T-F units are 
selected for sound localization. Moreover, separation and 
localization could be done iteratively, analogous to [24]. 
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