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ABSTRACT  

We propose a speech enhancement algorithm based on 
single- and multi-microphone processing techniques. The 
core of the algorithm estimates a time-frequency mask 
which represents the target speech and use masking-based 
beamforming to enhance corrupted speech. Specifically, in 
single-microphone processing, the received signals of a 
microphone array are treated as individual signals and we 
estimate a mask for the signal of each microphone using a 
deep neural network (DNN). With these masks, in multi-
microphone processing,  we calculate a spatial covariance 
matrix of noise and steering vector for beamforming. In 
addition, we propose a masking-based post-filter to further 
suppress the noise in the output of beamforming. Then, the 
enhanced speech is sent back to DNN for mask re-
estimation. When these steps are iterated for a few times, we 
obtain the final enhanced speech. The proposed algorithm is 
evaluated as a frontend for automatic speech recognition 
(ASR) and achieves a 5.05% average word error rate (WER) 
on the real environment test set of CHiME-3, outperforming 
the current best algorithm by 13.34%. 
 

Index Terms—post-filtering, beamforming, deep neural 
networks, speech enhancement, spectral masking1 
 

1. INTRODUCTION 
 
In real-world environments, ASR systems are severely  
interfered by background noise. To deal with this problem, 
speech enhancement or separation [3] is often used as a 
frontend to suppress noise and reduce the acoustic mismatch 
between training and testing. However, it is challenging for 
speech enhancement to suppress noise without introducing 
speech distortion. Another way is to collect noisy speech as 
much as possible and directly train an ASR system on large-
scale training data. Apparently, it has high costs for 
collecting and labeling data. A compromise is to combine 
these two approaches, and such methods show the state-of-
the-art environmental robustness for ASR. 
                                                 
This research was supported in part by a China National Nature Science 
Foundation grant (No. 61365006), an AFRL contract (FA8750-15-1-0279), 
an NSF grant (IIS-1409431), and the Ohio Supercomputer Center. The 
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Speech enhancement can be divided into single- and 
multi-microphone processing in general. Traditional single-
microphone speech enhancement mainly utilizes the 
statistical information of speech or noise. Recently, deep 
learning was introduced to speech enhancement/separation 
[14], and it typically learns a mapping from noisy features to 
a time-frequency (T-F) mask or target speech [15]. The 
biggest issue for supervised speech enhancement is 
generalization to new noises, since test and training 
conditions can be quite different. On the other hand, 
direction information is effective for separating the sound 
sources coming from different directions, and it can be 
captured in a multi-microphone situation. Beamforming, or 
spatial filtering, is the dominant approach for multi-
microphone speech enhancement.  

A beamformer is often parameterized by a steering vector 
for the target direction. A common approach to obtaining a 
steering vector is by using the direction of arrival (DOA) 
and microphone array geometry with the assumption of 
plane wave propagation. Recently, masking-based 
beamforming [9][17] has been studied. The advantage of 
this method is that it can work without the knowledge of 
microphone array geometry and shows robustness to real 
noisy environments. The main idea is to use the principal 
eigenvector of the target speech covariance matrix as the 
steering vector. To compute the covariance matrix, a T-F 
mask is estimated by spatial vector clustering.  

We propose a masking-based speech enhancement 
algorithm by combining single- and multi-microphone 
processing. In single-microphone processing, a DNN is 
trained to map the spectral features to a T-F mask. In multi-
microphone processing, the estimated mask is used to 
calculate the noise covariance matrix and steering vector, 
with which minimized variance distortionless response 
(MVDR) beamformer [5] is employed for speech 
enhancement. In this case, the performance of beamforming 
depends on the accuracy of the mask estimate. On the other 
hand, the beamformer exhibits stable noise suppression and 
can help to get a better mask estimate. Based on this 
observation, our proposed method iterates masking and 
beamforming. The application of the proposed method to 
robust ASR shows very good results on the CHiME-3 
corpus and it outperforms the current best algorithm [17] 
significantly. 
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 Fig. 1. Schematic diagram of the proposed speech enhance-
ment algorithm. 
 

In the following section, we describe the relation to 
previous works. Section 3 presents our speech enhancement 
algorithm. Experimental results are given in Section 4. We 
conclude the paper in Section 5. 
 

2. RELATION TO PRIOR WORKS  
The proposed method can be viewed as a robust 
beamformer using a T-F mask to estimate a steering vector 
and spatial noise covariance matrix. In [9], a mask is 
obtained by an unsupervised method, i.e. spatial vector 
clustering. In each frequency channel, a complex GMM is 
used to describe the distribution of the spatial vectors of a 
microphone array. The GMM has two Gaussian components 
that describe the noise and noisy speech respectively. With 
the mask derived from the posterior probabilities of each 
component, noise and noisy speech covariance matrices are 
computed. The steering vector corresponds to the principal 
eigenvector of the target speech covariance matrix obtained 
by subtracting the noise covariance matrix from the noisy 
speech covariance matrix. Finally, the enhanced speech is 
obtained by using MVDR beamforming. In [8], a mask is 
obtained by a supervised method, where speech-dominated 
and noise-dominated masks are estimated by using bi-
directional Long Short-Term Memory (BLSTM). With these 
two masks, they enhance the noisy speech by using a 
generalized eigenvalue (GEV) beamformer [16] with an 
optional distortion reduction filter.  

Different from the above methods, the proposed method 
employs DNN to perform supervised T-F masking, and the 
target speech covariance matrix is obtained in an adaptive 
way. Our iterative procedure plays an important role in 
improving the mask estimation. In addition, a masking-
based post-filtering is proposed to further boost the 
performance. 
 

3. SYSTEM DESCRIPTION  
The proposed system is shown in Fig. 1. In the stage of 
initial mask estimation, we treat the microphone array as 
several independent microphones and generate a mask for 
each microphone input using one DNN model. Then an 
initial mask is constructed by taking the maximum value 
across the multiple masks of each T-F unit. With the initial 
mask, the steering vector and noise covariance matrix are 
calculated. We obtain the enhanced speech by applying 
MVDR beamforming and post-filtering to the microphone 

array signals. To refine the estimated mask, we feed the 
enhanced speech into the DNN again. This process is 
iterated for several times to obtain the final enhanced speech. 
 
3.1. Single-microphone Processing 
 For the supervised speech enhancement, there are three 
key factors, i.e. training targets, features and learning 
machines. Here, we employ the IRM as the training target, 
which is defined as [11] 

,ݐ)ܯܴܫ ݂) = ට ௦మ(௧,௙)
௦మ(௧,௙)ା௡మ(௧,௙)                           (1) 

where ݏଶ(ݐ, ݂)  and ݊ଶ(ݐ, ݂)  denote the speech and noise 
energy in a particular T-F unit, respectively. Eq. (1) is 
closely related to the Wiener filter which is the optimal 
estimator in the power spectrum domain [11].  

Discriminative features are very important for learning 
machines. In this study, we use a set of complementary 
features consisting of amplitude modulation spectrogram 
(AMS), relative spectral transform and perceptual linear 
prediction (RASTA-PLP) and Mel-frequency cepstral 
coefficients (MFCC). The feature set used here is similar to 
the one in [15], while we exclude the cochleagram and delta 
features. Since useful information is carried across time 
frames, a symmetric 9-frame context window is used to 
splice adjacent frames into a single feature vector. We train 
a feed-forward DNN to map the input feature vector to the 
IRM of the central frame. At the test stage, the estimated 
IRM is used for beamforming and post-filtering. 
 
3.2. Multi-microphone Processing 
 
3.2.1. MVDR beamformer 

The MVDR beamformer is to minimize the noise energy 
while imposing linear constraints to maintain the energy 
from the target direction. In the short-time Fourier transform 
(STFT) domain, the received signal can be expressed as: 

,ݐ)ܡ ݂) = ,ݐ)ݏ(݂)܋ ݂) + ,ݐ)ܖ ݂)                         (2) 
where ݐ)ܡ, ݂) and ݐ)ܖ, ݂) are STFT vectors of the received 
signals and noises of a microphone array at time frame ݐ and 
frequency channel ݂ , respectively. ݐ)ݏ, ݂)  represents the 
STFT of the speech source, ݐ)ݏ(݂)܋, ݂) stands for the direct 
path part of the received speech signal and ܋(݂)  is the 
steering vector of the microphone array. 

For frequency channel ݂, the MVDR beamformer aims to 
find a weight vector ܟ(݂) that can minimize the average 
output power of the beamformer while maintaining the 
energy along the look direction. This optimization problem 
can be formulated as Eq. (3). To express it more concisely, 
we omit the notation of frequency ݂  in the rest of this 
section. 

୭୮୲ܟ = argminܟሼܟுΦ୬ܟሽ ,     s. t.    ܟு܋ = 1         (3) 
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where ܪ  denotes the conjugate transpose and Φ୬  is the 
spatial covariance matrix of the noise. The well known 
solution of this optimization problem is: 

= ୭୮୲ܟ    ஍౤షభ܋
 (4)                                 ܋ಹ஍౤షభ܋

The enhanced speech signal ̃(ݐ)ݏ is produced by applying 
the linear filter ܟ୭୮୲ to the microphone signal vector using 
Eq. (5). Therefore, the key step of MVDR beamforming is 
to accurately estimate ܋ and Φ୬. 

(ݐ)ݏ̃ = ୭୮୲ுܟ  (5)                             (ݐ)ܡ
 
3.2.2. Steering vector estimation 

Steering vector is traditionally obtained by using DOA 
estimation and microphone array geometry [2]. When SNR 
level is low, it is pretty hard to estimate the DOA accurately. 
In contrast, the mask-based approach [9] calculates the 
spatial covariance matrix of target speech signal and uses its 
principal eigenvector as the estimated steering vector. We 
follow this idea but with refinements. 

First, we calculate the noisy speech and noise covariance 
matrix using Eq. (6) and (7), respectively. 

Φ୷(ݐ) =  ு                               (6)(ݐ)ܡ(ݐ)ܡ
Φ୬(ݐ) = ଵ

∑ ൫ଵି௠(௟)൯೟శಽ೗స೟షಽ
∑ ൫1 − ݉(݈)൯ܡ(݈)ܡ(݈)ு௧ା௅௟ୀ௧ି௅         (7) 

where ݉ is the estimated IRM from the DNN, and ܮ (set to 
10 in this study) is the half window size. The covariance 
matrix of the target speech is obtained by subtracting the 
noise covariance matrix from the noisy speech covariance 
matrix, see Eq. (8). 

Φ୶ = Φ୷ − Φ୬ = ଵ
் ∑ ቀΦ୷(ݐ) − Φ୬(ݐ)ቁ௧்ୀଵ         (8) 

The estimated steering vector can be obtained by first 
performing eigenvector decomposition on Φ୶  and then 
extracting the eigenvector corresponding to the maximum 
eigenvalue. In [9], it can be viewed as Φ୬(ݐ) is calculated 
on the entire signal or on a fixed-length segment. That may 
not be a good strategy for non-stationary noises. Instead, we 
adopt an adaptive way, using the neighboring (2 × ܮ + 1) 
frames to calculate Φ୬(ݐ) , as shown in Eq. (7). In our 
experiments, this adaptive approach leads to much better 
performance, especially for non-stationary noises. 
 
3.3. Post-filtering 
 Due to the resolution issue of the MVDR beamformer 
and the inaccuracy of the steering vector estimate, the noise 
reduction is not sufficient enough. In contrast, IRM can 
accomplish higher noise reduction than the MVDR 
beamformer, therefore its integration in the beamformer 
output would probably lead to SNR gain. However, directly 
applying the IRM to the beamformer output is very sensitive 
to the IRM estimation error. Instead, we propose a post-
filtering method. For each frequency channel, we first 

calculate the global SNR, ܴܿܵܰ(݂),  using estimated mask 
by Eq. (9), and then use it to compute a threshold, λ(݂). 
Finally, we obtain the gain of the post-filter, g(ݐ, ݂), by Eq. 
(11). 

ܴܿܵܰ(݂) =  10logଵ଴ ∑ ௠(௧,௙)௦̃(௧,௙)మ೅೟సభ
∑ ൫ଵି௠(௧,௙)൯௦̃(௧,௙)మ೅೟సభ               (9) 

λ(݂) =  ଵ
ଵାୣ୶୮ ((௖ௌேோ(௙)ିఈ) ఉ⁄ )                   (10) 

g(ݐ, ݂) = ,ݐ)݉  ݂)஛(௙)                    (11) 
where ݉(ݐ, ݂)  and ̃ݐ)ݏ, ݂)  are the estimated IRM and 
spectrum of the beamformer output. Eq. (10) is a sigmoidal 
function, so the threshold λ(݂)  is between [0,1]. We use 
parameters ߙ  and ߚ   to adjust the shape of the sigmoidal 
function. Through cross-validation, their values are set to -5 
and 2, respectively. 

From Eq. (10), we can see that  λ(݂) would be close to 0 
when ܴܿܵܰ(݂) is high, making g(ݐ, ݂) being close to 1 no 
matter what ݉(ݐ, ݂) is. Otherwise, g(ݐ, ݂) is close to ݉(ݐ, ݂) 
when ܴܿܵܰ(݂) is low.  The final enhanced spectrum is the 
product of g(ݐ, ݂) and ̃ݐ)ݏ, ݂).  
 

4. EXPERIMENTAL RESULTS 
 
We evaluate the proposed speech enhancement algorithm on 
ASR tasks using the CHiME-3 dataset [2]. The proposed 
algorithm is used as a frontend for ASR systems. 
 
4.1. Dataset 
 The CHiME-3 challenge uses a read speech corpus based 
on the speaker-independent medium-vocabulary (5k) subset 
of the Wall Street Journal (WSJ0) corpus [6]. There are two 
types of data in CHiME-3. The first one is "Real data" - 
speech data recorded in real noisy environments (on a bus, 
cafe, pedestrian area, and street junction) uttered by actual 
talkers. The second one is "Simulated data" - noisy 
utterances that have been generated by artificially mixing 
clean speech data with noisy backgrounds. The ultimate 
goal is to recognize the real data. All the submitted systems 
in the challenge are ranked according to their performance 
on the real subset of the test data [2]. 

The training set is composed of 8738 (1600 real + 7138 
simulated) noisy utterances. The development set and test 
set include 3280 (1640 real + 1640 simulated) and 2640 
(1320 real + 1320 simulated) noisy utterances in the four 
different environments, respectively. All of these data are 
simulated or recorded to form six-channel signals for each 
utterance. Details of the data sets and regulations can be 
found in [2]. 
 
4.2. DNN Training 
 

As mentioned in subsection 3.1, we build a DNN for 
mask estimation. The DNN has three hidden layers each 
with 1024 rectified linear units (ReLUs) [12]. Sigmoidal 
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units are used in the output layer since the IRM is bounded 
between 0 and 1. The DNN weights are randomly initialized 
and the adaptive gradient algorithm (AdaGrad) [4] is 
utilized for optimization. The momentum is set to 0.5 for the 
first 5 epochs and 0.9 for the remaining 25 epochs (30 
epochs in total).  

We use the simulated training data to train the DNN, as 
the IRM can only be derived on simulated data. The multi-
microphone input signals are treated as individual single-
channel signals. The total number of the noisy utterances for 
training is therefore 7138×6. We use the simulated 
development set for early stopping and hyper-parameter 
tuning. Its total number is 1640×6. 
 
4.3. Speech Recognition  

To facilitate the comparison, we use two DNN-based 
ASR systems, denoted as ASR-1 and ASR-2, to evaluate the 
ASR performance. ASR-1 is the baseline system provided in 
the official CHiME-3 package. It is trained on the noisy 
utterances at the fifth channel by using the standard training 
procedure in the Kaldi toolkit [13], i.e. pre-training, cross 
entropy training, state-level Minimum Bayes Risk (sMBR) 
training and language model re-scoring. The details of the 
baseline system can be found in the official training recipes1. 
ASR-2 is built in the same way, but using the noisy 
utterances of all the six channels. Apparently, much more 
data is used for acoustic modeling, and the resulting acoustic 
model is found to be more robust.  

As frontend processing, the official weighted delay-and-
sum beamformer is used for comparison. We test its 
performance using ASR-1 and ASR-2 backend systems. The 
weighted delay-and-sum beamformer is implemented using 
the BeamformIt toolkit [1] where the DOA estimate is 
obtained from GCC-PHAT [10] and a two-step Viterbi post-
processing technique is used to avoid instabilities. 

We also compare the proposed approach with two other 
masking-based beamforming algorithms. The first one, 
proposed by Higuchi et al. [9][17], utilizes a clustering 
method for mask estimation. Their ASR system uses a more 
advanced deep convolutional neural network (CNN) for 
acoustic modeling. A recurrent neural network (RNN) 
language model is employed for lattice re-scoring. Their 
acoustic models are trained on the noisy utterances from all 
the six microphones. After unsupervised speaker adaptation, 
their system achieves the best results in the CHiME-3 
challenge. The second one, proposed by Heymann et al. 
[7][8], utilizes BLSTM for mask estimation. When training 
BLSTM, they augment the simulated data to get better mask 
estimation. Their ASR system is the one provided in the 
official CHiME-3 package, which is almost the same as 
ASR-1.  

The proposed algorithm without iterative procedure is 
also included for comparison. The results are all listed in 
Table 1. The proposed speech enhancement algorithm 
                                                 
1 Available at https://github.com/kaldi-asr/kaldi/tree/master/egs/chime4/s5_6ch 

achieves 5.05% WER on the real environment test set using 
ASR-2 as the backend. It outperforms the previous best 
system [17] by 13.34% relatively (5.05% vs. 5.83%). 
Although two ASR systems have different acoustic models, 
both of them are trained using the same data, i.e. the noisy 
utterances from all the six microphones, and the language 
models are both RNNLMs.  

When ASR-1 is used as the backend, the performance of 
the proposed algorithm achieves 6.17% WER on the real 
environment test set which is still better than the others, 
except for the system of Higuchi et al.. Without the iterative 
procedure, the proposed algorithm exhibits noticeable 
performance degradation, i.e. 5.42% WER, on the real test 
data. It indicates that the iterative procedure is effective for 
noise reduction.  
 
Table 1. WERs (%) for different systems on CHiME-3 

Speech 
enhancement 

(frontend) 
ASR system 
(backend) 

Development Evaluation 
simu real simu real 

BeamformIt ASR-1 6.77 5.75 10.91 11.47 
ASR-2 6.08 5.07 9.47 9.88 

Heymann et al.2 ASR-1 5.01 4.53 5.60 7.45 
Higuchi et al. CNN-based 3.63 3.45 4.46 5.83 

Proposed ASR-1 4.59 4.02 5.01 6.17 
ASR-2 3.53 3.49 3.98 5.05 

Proposed without 
iterative 

procedure ASR-2 3.37 3.46 3.88 5.42 
 

5. CONCLUSION 
 
We have proposed a speech enhancement algorithm that 
combines single- and multi-microphone processing and 
evaluated its performance in a robust ASR task. 
Experimental results show that, as a frontend, the proposed 
algorithm greatly improves ASR performance. Our ASR 
results significantly outperform the current best system on 
the CHiME-3 dataset . 

It should be mentioned that our ASR system is relatively 
simple, and includes no speaker adaptation. By including 
advanced techniques in ASR, we believe that the ASR 
performance can be further improved. 
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