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Cochannel Speaker Identification in Anechoic
and Reverberant Conditions

Xiaojia Zhao, Yuxuan Wang, and DeLiang Wang, Fellow, IEEE

Abstract—Speaker identification (SID) in cochannel speech,
where two speakers are talking simultaneously over a single
recording channel, is a challenging problem. Previous studies
address this problem in the anechoic environment under the
Gaussian mixture model (GMM) framework. On the other hand,
cochannel SID in reverberant conditions has not been addressed.
This paper studies cochannel SID in both anechoic and rever-
berant conditions. We first investigate GMM-based approaches
and propose a combined system that integrates two cochannel
SID methods. Second, we explore deep neural networks (DNNs)
for cochannel SID and propose a DNN-based recognition system.
Evaluation results demonstrate that our proposed systems signifi-
cantly improve SID performance over recent approaches in both
anechoic and reverberant conditions and various target-to-inter-
ferer ratios.
Index Terms—Cochannel speaker identification, deep neural

network (DNN), Gaussian mixture model (GMM), reverberation,
target-to-interferer ratio.

I. INTRODUCTION

I N DAILY acoustic environments, the sound arriving at our
ears often comes from multiple sources. One common sce-

nario is multiple speech signals impinging on the ears at the
same time. On the other hand, we are able to focus on the speech
signal from a conversation partner while ignoring the acoustic
signal from the other talkers in the environment. How to mimic
this ability is known as the “cocktail party problem” [1]. The
perceptual organization displayed here is termed auditory scene
analysis [2]. Motivated by auditory organization, computational
auditory scene analysis aims for segregation by exploiting au-
ditory scene analysis principles [3]. To separate speech signals
from multiple talkers, one can place microphones at different
locations and take advantage of the time and intensity differ-
ences of the recordings. The task, however, becomes consid-
erably more challenging with a single microphone. Cochannel
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speech is such a case where two speakers are recorded in a single
communication channel. Unlike a conversation, the speakers are
not aware of each other, resulting in large amounts of overlap-
ping speech.
The studies of cochannel speech can be categorized by

different objectives such as separating two signals, recognizing
each signal or revealing speaker identities. If one could per-
fectly separate the two underlying signals, standard speaker
and speech recognition can be subsequently applied. However,
cochannel speech separation itself is a challenging problem.
It has been studied through unsupervised and supervised
methods. Unsupervised approaches usually operate without
speaker identities or models. A recently proposed unsupervised
approach clusters speech segments into two groups by max-
imizing the ratio of between and within class variances [4].
Supervised approaches usually assume that speaker identities
are available, or perform cochannel speaker identification (SID)
to obtain the identities. Then it employs the corresponding
speaker models for separation. Many studies have focused on
model-based cochannel separation. Roweis models the interac-
tion of two speakers with a factorial hidden Markov model and
derives a mask to separate two signals [5]. Reddy and Raj [6]
use Gaussian mixture models (GMM) for speaker modeling.
They solve the separation problem in two ways. One directly
reconstructs the speech signals using minimum mean squared
error estimation. The other estimates a softmask indicating the
probability of each time-frequency (T-F) unit belonging to one
speaker. Then speech signals are resynthesized with the soft-
mask. To address the speaker gain mismatch between training
and test data, Hu and Wang propose an iterative algorithm
that first estimates speech signals and the target-to-interferer
ratio (TIR) [7]. Then it adjusts speaker models based on the
estimated TIR for a refined separation. These two steps iterate
until convergence.
The aforementioned supervised methods assume that the

speaker identities are available and focus solely on speech sep-
aration. Other work conducts cochannel SID as a front-end for
separation, or jointly with separation. Compared to cochannel
speech recognition, one advantage of cochannel SID is that it
only needs a subset of homogenous speech segments to infer
speaker identities. Such segments are called usable speech [8].
TIR and frame based spectral autocorrelation ratio estimation
has been used to detect usable speech. Shao and Wang uti-
lize a multi-pitch tracker to find frames with only one pitch
point and treat them as usable speech [9], [10]. How to group
usable speech across time into two streams is deemed as a
sequential grouping problem. Shao and Wang jointly search
all the grouping hypothesis and speaker candidates to get the
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Fig. 1. Schematic diagrams of two proposed cochannel speaker identification systems.(a) GMM-based system. (b) DNN-based system.

optimal one. Mowlaee et al. propose to treat cochannel SID and
separation as an iterative process [11]. Later they improve the
performance by fusing adapted GMM and Kullback-Leibler
divergence scores [12]. Hershey et al. get the best speech recog-
nition performance thanks in part to excellent performance
of cochannel SID and separation [13]. Their SID system first
creates a short list of most probable speaker candidates. The
top speaker is then paired with the rest for expectation-maxi-
mization (EM) based gain estimation. The output is the speaker
pair whose gain adapted model maximizes the likelihood of the
test utterance. Their system achieves the average SID accuracy
better than 98%. Li et al. take a very similar SID approach [14].
It adds a few constraints to the generation of the short list. The
top speaker model is directly combined with each of the rest
and the combined models are used for SID directly without
the EM step. The refined system yields an accuracy greater
than 99%. These two may be regarded as the state-of-the-art
cochannel SID methods.
Deep neural networks (DNNs) have recently attracted much

attention due to their excellent performance in phone recogni-
tion, handwritten digits recognition, face recognition, etc. [15],
[16]. Researchers begin to study how to incorporate DNN in
speaker recognition. Chen and Salman propose to use DNN
to learn speaker specific characteristics from mel-frequency
cepstral coefficients (MFCC) [17]. Their study demonstrates
that a representation learned from DNN can capture intrinsic
speaker information and outperform MFCC in speaker related
tasks including speaker verification. Senoussaoui et al. replace
GMM with Boltzmann machines for speaker verification [18].
Although the performance is not state-of-the-art, it is worth fur-
ther study since Boltzmann machines are an important part of
DNN pretraining. Another study by Garimella and Hermansky
uses auto-associative neural networks to extract speaker spe-
cific low dimensional representation, i-vectors [19], which are
subsequently fed to a standard speaker verification system for
hypothesis testing [20]. Lei et al. propose a novel DNN-based
framework for extracting sufficient statistics during i-vector

extraction [21]. The DNNs used by them are trained for auto-
matic speech recognition, which incorporates speech content
information into the statistics. Significant relative improvement
is observed by adopting this framework. We employ DNN
as a front-end for mask estimation in noisy and reverberant
environments [22]. The estimated masks are fed to missing
feature speaker identification, yielding good performance. We
point out that DNN has not been utilized in cochannel SID to
our knowledge.
State-of-the-art cochannel SID systems report nearly perfect

performance on the speech separation challenge (SSC) corpus
[13], [14]. This corpus [23], however, was tailored for robust
speech recognition rather than speaker recognition. The relative
small vocabulary and common words between training and
testing reduce the difficulty of the SID task [24]. In this study,
we employ a speaker recognition evaluation (SRE) dataset of
the National Institute of Standards and Technology (NIST). We
first explore two GMM-based methods: one jointly performs
cochannel SID and separation [10] and the other is a two-stage
system producing the state-of-the-art cochannel SID perfor-
mance on the SSC corpus [14], [25]. The two methods are
combined for further improvement. Then, we propose the first
DNN-based cochannel SID system working in both anechoic
and reverberant conditions. It trains a frame level multi-class
DNN classifier that outputs the posterior probability of a frame
being dominated by each speaker. Frame level decisions are
integrated to make the final decision.
The rest of the paper is organized as follows. Section II gives

a system overview. We formulate the cochannel SID problem
and introduce the proposed methods in Section III, followed by
evaluations in Section IV. We conclude this paper in Section V.

II. SYSTEM OVERVIEW

Fig. 1 shows the schematic diagrams of two proposed sys-
tems. The first is a GMM-based system that combines two
cochannel SID methods. One method jointly conducts SID
and separation. Specifically, we first hypothesize a pair of
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speakers. Then we search for the optimal assignment of speech
segments given the speaker pair. The speaker pair with the
highest likelihood is chosen as the output. The corresponding
optimal assignment provides a solution to cochannel separa-
tion. The other method is a two-stage system that yields the
state-of-the-art performance on the SSC corpus. The first stage
creates a short list of most probable speaker candidates (e.g.
top 10). The second stage combines the top speaker model with
each of the rest and calculates a likelihood score for each com-
bination at the frame level. Scores are integrated across frames
and the output is the speaker combination with the best score.
We then combine the SID scores from the two methods to get
the final output. Details of the combination will be discussed in
the next section.
The second proposed system is DNN-based. It trains a

DNN using frame level features. The output layer has the
same number of nodes as speakers. Only the two nodes cor-
responding to the underlying speakers have non-zero training
labels. During testing, the frame level output is aggregated
across time to generate the final output.

III. PROBLEM FORMULATION AND IDENTIFICATION
METHODOLOGY

In this section, we formulate the cochannel SID problem and
present the proposed systems.

A. Problem Formulation
Given an observation , the goal of cochannel SID is to get

the two underlying speakers and that generate the obser-
vation. This can be formulated as searching for the speaker pair
with the highest posterior probability.

(1)

Here and denote a pair of speaker candidates. We apply
the Bayes formula to convert the posterior probability to the
likelihood of a joint distribution of two speakers, with the as-
sumption that all speaker pairs are equally probable. is not
dependent on speakers and can thus be dropped from the calcu-
lation. The question now becomes how to calculate likelihoods
of a joint distribution.
Shao and Wang have introduced a variable , to (1), to assign

each speech segment to one of the two speaker sources [9], [10].
The derivation is shown as follows.

(2)

Here denotes a speech segment, the set of all segments, and
an assignment vector of the same length as . Each element of
is a binary label corresponding to a segment. For example, 1

indicates that the segment is generated by one speaker and 0 oth-
erwise. The number of assignments is exponential with respect
to the number of segments. The summation over all assignments
is approximated as a max operation, assuming that the optimal
assignment dominates the summation. By assuming that seg-
ments are independent, the problem reduces to finding the best
assignment for each segment and the likelihood of the utterance
is the multiplication of segment likelihoods. The speaker pair
with the highest likelihood is the SID output. The corresponding
optimal assignment also gives a solution to the cochannel sepa-
ration problem by organizing segments into two groups. In other
words, this method jointly performs cochannel SID and sepa-
ration, so we name it joint SID & separation (JSS). We point
out that the max operation reduces the time complexity from

to where is the number of speakers
and is the number of segments.
Another way directly approximates the joint distribution. For

example, one can use sum ormax of single speaker distributions
to approximate the joint distribution.

(3)

or

(4)

As can be seen, the max approximation of (4) is equivalent to
the last step of (2). We compare the performance of the two
operations in Section IV-B.
Li et al. have proposed a two-stage algorithm that produces

state-of-the-art performance on the SSC corpus [14], [25]. The
first stage ranks speakers according to their posterior probabili-
ties given the observation. The likelihood of each frame given
a speaker model is calculated as follows.

(5)

Here a variable, gain, is introduced to represent energy/inten-
sity levels. is the weight of a specific gain. Speakers are
modeled as GMMs where denotes a Gaussian component.
, and are the weight, mean and standard deviation of

the th Gaussian, respectively. Log-spectral features are used as
speaker features, so gains are equivalent to additive constants of
the features, reflected in the Gaussian means. The gain, a scalar,
is added to each element of . The posterior probability of each
speaker given is calculated as follows.

(6)
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where is the speaker index. and are prior proba-
bilities. Assuming that all the speakers are equally probable, the
priors can be eliminated. Frame level posterior probabilities are
aggregated across time to obtain utterance level probabilities.

(7)

where is the frame index. Before the aggregation, a threshold
(e.g. 0.9) is applied to retain the top frames.
Speakers are ranked based on the scores from (7). The top

ten speakers are kept for the second stage where the top speaker
is combined with each of the remaining nine. The weight of
a composite Gaussian component is the product of the indi-
vidual component weights. The means of individual compo-
nents are compared and the mean and variance corresponding
to the larger mean are kept as the mean and variance of the
composite component. The composite GMMs are used for stan-
dard speaker recognition to get the best speaker pair. The time
complexity is quadratic with respect to the number of Gaussian
components and gains. Supposing Gaussian components and
gain levels for each speaker, there would be com-

posite components. A faster composition method is proposed
to reduce the time complexity. For each speaker pair, the best
gain and Gaussian component are identified first and treated as
the base gain and component. The base component and gain are
then combined with the other speaker’s components at different
gain levels. In this way, the complexity is linear with respect to
the number of components and gains. We will further discuss
the computational complexity in Section V. We point out that
the composition operates on a per frame basis.
Li et al.’s two-stage algorithm is a fine-tuned version of Her-

shey et al.’s SID system [13]. The first stage is almost the same
with some differences on the Gaussian likelihood calculation
and frame aggregation. Hershey et al.’s system keeps 6 most
probable speakers from stage one and pairs the top speaker with
each of the rest. In the second stage, Hershey et al.’s system
uses a max-based EM algorithm to estimate the optimal gains
for each speaker pair. The pair whose gain adapted models max-
imize the likelihood of the test utterance is selected as the output.
Overall, the two systems yield the best performance on the SSC
corpus with Li et al.’s average performance around 1% higher.

B. Combination Method
The methods discussed above solve the cochannel SID

problem from different perspectives. JSS targets not only SID
but also speech separation. Although it is logical to introduce
an assignment variable, the hard assignment on segments may
not work well for segments with large amounts of overlap.
The direct approximation of the joint distribution using sum or
max might not satisfy the underlying distribution. On the other
hand, Li et al. assign a probability to each speaker at a frame,
which avoids a hard classification. It also takes different TIR
scenarios into account via the gain variable. As for speaker
features, JSS operates on cepstral features, while Li et al. work
in the log-spectral domain. As observed in our noise robust
SID study, cepstral features and spectral features may offer
complementary advantages for speaker identification [24]. We
therefore propose to combine these two methods.

TABLE I
ILLUSTRATION OF THE TWO PROPOSED COMBINATION METHODS

There are many ways to combine the two methods. We have
explored several ideas and the two best are shown in Table I. The
major difference is how the short list of 10 speakers is derived.
The first method uses JSS to get the short list, while the second
uses the first stage of Li et al. Subsequently the short lists are
fed to the second stage of Li et al., whose scores are combined
with the JSS scores to make the final decision.

C. DNN-based Cochannel SID
The aforementioned methods are GMM-based. In this sec-

tion, we formulate cochannel SID as a discriminative learning
problem, where we directly learn a mapping from cochannel
observations to the corresponding speak identities. Specifically,
we treat cochannel SID as a multi-class classification problem
and employ DNN as the learning machine. To our knowledge,
this is the first study of DNN-based cochannel SID.
We use frame level log-spectral features as input. To encode

temporal context, we splice a window of 11 frames of features to
train the DNN. The training target of the DNN is the true speaker
identities. We use soft training labels where the two underlying
speakers each have a probability of generating the current frame.
The sum of their probabilities equals one, whereas the other
speakers have zero probabilities. We compare frame level en-
ergy of two speakers and use their ratio for the soft labels. More
specifically, we construct the ideal binary mask (IBM) [26] and
derive the mixture cochleagram [3]. The IBM is a binary matrix
with each element corresponding to a T-F unit in the cochlea-
gram. An element of label 1 indicates that the corresponding
T-F unit is dominated by one speaker and 0 otherwise. Frame
level energy of each speaker is readily calculated from the mix-
ture cochleagram according to the IBM.
The DNN employed in our study is a deep multilayer percep-

tron. The DNN uses three hidden layers, each having 1024 sig-
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moidal hidden units. The standard backpropagation algorithm
coupled with dropout regularization (dropout rate 0.2) is used
to train the network. No unsupervised pretraining is used, as
we have sufficient labeled data. We use the adaptive gradient
descent along with a momentum term as the optimization tech-
nique. A momentum rate of 0.5 is used for the first 5 epochs,
after which the rate increases to 0.9. We use a softmax output
layer and cross-entropy as the loss function.

D. Model Training

In this study, we deal with both anechoic and reverberant test
conditions. For the anechoic condition, we use anechoic data
to train GMMs and DNNs. However, such models do not gen-
eralize well to reverberant conditions. Thus, we directly model
speakers in the reverberant environments.
The degree of reverberation is typically indicated by re-

verberation time ( ), the time taken for a direct sound
to attenuate by 60 dB [27]. Reverberation is modeled as a
convolution between a room impulse response (RIR) and a
direct sound signal. An RIR characterizes a specific reverberant
environment and is determined by factors such as the geometry
of the room, and locations of sound sources and receivers.
Assuming no knowledge of test reverberant conditions, we
simulate representative reverberant training conditions
covering a plausible range of . Our previous study has
shown that this technique has reasonable generalization [22].
We prepare training data in each of the conditions. GMMs
are trained using single speaker data while DNNs are trained
with cochannel data mixed at different TIRs. Details are given
in the next section.

IV. EVALUATION AND COMPARISON

A. Experimental Setup

We randomly select 100 speakers from the 2008 NIST SRE
dataset (short2 part of the training set). The telephone conver-
sation excerpt of each speaker is roughly 5 minutes long. Large
chunks of silence in the excerpt are removed. Then we divide
the recording into 5 s pieces. Two pieces with the highest en-
ergy are used for tests in order to provide sufficient speech
information. The rest is used for training. Note that there is
no overlap between training and testing utterances. The reason
we cut training and testing utterances from the same recording
is to avoid channel mismatch, which is common in the NIST
dataset but not addressed in this study. Mixing two speakers to
create cochannel utterances results in, on average, about 50% of
cochannel utterances containing overlapping speech from both
speakers; the overlapping percentage increases to 2/3 for rever-
berant cochannel utterances considered in this study (see below)
as reverberation smears speech envelopes. Overall each speaker
has about 20 training utterances. More details of the evaluation
corpus can be found in [22].
A Matlab implementation of the image method of Allen and

Berkley is used to simulate room reverberation [28], [29]. We
focus on the range up to 1 s that covers realistic reverberant
conditions [27]. Three rooms are simulated to obtain 3 training

’s: 300, 600 and 900 ms. For each , we generate 5 RIRs

by randomly positioning the source and receiver while keeping
their distance fixed at 2 m. Each training utterance is convolved
with the 5 RIRs of each room to create reverberant training data.
Seven rooms are simulated to obtain 7 test ’s from 300 ms
to 900 ms with a step size of 100 ms. We randomly generate 3
pairs of RIRs at each where each pair provides one RIR for
the target and one for the interferer. In total there are 21 pairs of
test RIRs. Note that the RIRs are different between training and
testing even when they are generated with the same .
For JSS, we extract 22-dimensional MFCC as speaker fea-

tures. Speaker models are adapted from a 1024-component uni-
versal background model (UBM) trained by pooling training
data from all the speakers [30]. For Li et al., we extract 64-di-
mensional log-spectral features for GMM training. Specifically,
a 64-channel gammatone filterbank is employed as the front-
end. The filter output is converted to cochleagram [3]. We take
the log operation on the cochleagram to get the features. For
anechoic conditions, a 256-component GMM is trained for each
speaker [31]. Another 256-component GMM is trained using the
reverberant training data by convolving the anechoic training
data with the RIRs at 3 ’s. Note that Li et al.’s system uses
traditional GMM training where models are directly learned
from training data, instead of being adapted from a UBM. Our
implementation follows their approach.
DNNs are trained using cochannel training data. Instead of

one DNN per speaker, we train a universal DNN for all the
speakers. We include training data from every speaker pair for
a complete coverage. For anechoic conditions, we create 10
anechoic cochannel utterances per speaker pair at 3 TIRs (-5,
0 and 5 dB). In total, there are 4950 speaker pairs and 49500
cochannel training utterances per TIR. For reverberant condi-
tions, we create 10 reverberant cochannel utterances at each
of the 3 ’s and 3 TIRs. In total, there are 49500 cochannel
training utterances per TIR and per .
Cochannel test set covers all possible speaker pairs. For each

pair, we create two anechoic utterances and two reverberant ut-
terances at -5, 0 and 5 dB TIRs. There are totally 9900 ane-
choic test utterances and 9900 reverberant test utterances per
TIR. Each reverberant cochannel test utterance is created using
a randomly selected RIR pair from the 21 RIR pair library.

B. Frame Selection for JSS and Max vs. Sum

Shao and Wang employed a multi-pitch tracking algorithm
to identify frames with only one pitch point [9], [10]. JSS op-
erates on such frames. The rationale is that the single pitch
frames should contain voiced speech from one speaker, and ei-
ther unvoiced speech or nothing from the other speaker. Usu-
ally voiced speech has stronger energy, and is more character-
istic of speaker identity. However, such a hard decision ignores
unvoiced speech and overlapping voiced speech, which could
be helpful for cochannel SID. We conduct the following exper-
iments to investigate whether overlapping voiced speech and
unvoiced speech are helpful for cochannel SID.
Evaluations are performed on the SSC corpus. We use Praat

[32] to extract ground truth pitch from the premixed signals. We
apply JSS to different types of frames and treat each frame as a
segment. The results are shown in Table II, where SID accuracy
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TABLE II
SID ACCURACY (%) OF JSS IN DIFFERENT TYPES OF FRAMES. MAX OPERATION IS USED TO

APPROXIMATE THE JOINT DISTRIBUTION EXCEPT FOR THE LAST ROW (SUM OPERATION)

TABLE III
SID ACCURACY (%) ON SSC CORPUS

is measured as the percent of cochannel utterances where both
speakers are correctly identified.
The average number of frames per utterance is 192 for the

SSC corpus. Out of them, 75 are 1 pitch frames while 117 have
either 2 pitch points or none. The 0 pitch frames correspond to
unvoiced speech or silence, and the performance in such frames
is around 60%, which is the worst. The 2 pitch frames yield
slightly better performance than the 1 pitch frames, probably
because the max approximation models voiced+voiced speech
better than voiced+unvoiced speech or single voiced speech
frames and there are more 2 pitch frames (6 on average). One
important observation is that the combination of 0 pitch and
2 pitch frames further lift the performance to 91%. The com-
bination of all types of frames yields the best performance.
The above results are generated using the max operation. We

also run the same experiments using sum operation. The perfor-
mance profile is very similar, and the best performance is ob-
tained by combining all types of frames, shown in the last row
of Table II. Clearly themax approximation gives much better re-
sults, and therefore we use the max operation and perform SID
on all the frames in the following sections.

C. Performance on SSC Corpus
The state-of-the-art cochannel SID systems of Hershey et al.

and Li et al. have reported performance on the SSC corpus. This
corpus consists of 17000 training utterances from 34 speakers.
Each training utterance is created following a fixed grammar:
command, color, preposition, letter, number, and adverb. Each
of the six positions has a small number of word choices. The
cochannel test set comprises six TIRs from -9 dB to 6 dB. There
are 600 test utterances for each TIR, and the test utterances
follow the same grammar and share the same vocabulary as the
training utterances.

TABLE IV
SID ACCURACY (%) ON NIST SRE DATASET WITH 50 SPEAKERS

We evaluate on this dataset first in order to make a direct
comparison. Table III gives the SID results. As can be seen,
our implementation of Li et al.’s two-stage system achieves
the same average performance as in their paper. Both combina-
tion methods produce comparable performance to the state-of-
the-art methods. The first method is slightly worse than Li et al.
This is likely because the short list from JSS is not as reliable
as that from Li et al., as indicated by their respective perfor-
mances (96.1% vs. 99.0%). The DNN-based system yields the
best results, although the performance gain is probably not sta-
tistically significant. Since the results are nearly perfect, there
is not much room to improve and we can conclude that the pro-
posed systems work comparably well.
As mentioned earlier, the nearly perfect SID performance

might be caused by the easiness of the SSC corpus for cochannel
SID. We now turn to the NIST SRE dataset.

D. Performance on NIST SRE Dataset with 50 Speakers

First we test on a subset of 50 speakers with 1225 speaker
pairs, to be roughly comparable with the SSC corpus in terms
of speaker number. We create two cochannel utterances for each
pair at each of 3 TIRs, -5 dB, 0 dB and 5 dB. In total, there are
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TABLE V
SID ACCURACY (%) ON NIST SRE DATASET WITH 50 SPEAKERS IN OVERLAPPING (OVL) AND NON-OVERLAPPING (NOVL) INTERVALS

2450 test trials per TIR. The performance is given in Table IV.
As shown in the table, there is a substantial drop of perfor-
mance compared to the SSC corpus, confirming that the SSC
corpus is rather easy for cochannel SID evaluation. For this
dataset, JSS outperforms Li et al. by an average of 4.3%. The
proposed combination methods significantly outperform the in-
dividual methods. We also evaluate the DNN-based cochannel
SID system, which outperforms the better combination perfor-
mance by almost 9%.
To get a deeper understanding of the performance differences

among various methods, we break down SID results into two
parts: in overlapping speech intervals and in non-overlapping
intervals. We use a simple energy based speech activity detector
to check the existence of speech in the two premixed utterances
comprising a cochannel signal. Overlapping intervals denote
frames where both speakers have speech activity. Non-overlap-
ping intervals include mostly single voice frames and a small
number of silent frames. The corresponding performance is re-
ported in Table V.
Not surprisingly, non-overlapping intervals consistently yield

substantially better SID performance than overlapping intervals.
For both kinds of interval, the best performance comes from the
DNN-based method. Both combination methods underperform
Li et al. in overlapping intervals due to the poor performance
of JSS. However, they significantly outgain JSS and Li et al. in
non-overlapping intervals.
In overlapping intervals, the performance at 0 dB is signifi-

cantly better than the other two TIRs. It indicates that all these
methods work better when the two underlying speakers have
comparable energy. When one speaker’s energy is significantly
stronger than the other, it is relatively easy to get the stronger
one correct, but more difficult to get the weaker one right. In
non-overlapping intervals, the performance differences among
different TIRs are small, as each speaker can be identified using
its non-overlapping speech segments regardless of the TIR.
Since the overall performance integrates speaker information
in both non-overlapping and overlapping intervals, it outper-
forms the better SID scores in non-overlapping or overlapping
intervals as shown by comparing the results in Tables IV and V.
Next we test in the reverberant conditions, and the results are

shown in Table VI. As can be seen, the performances of all the
methods degrade in the reverberant conditions. JSS drops by
about 30%. Li et al.’s is slightly more robust, but still drops by
more than 20%. Like in Table IV, both combination methods
outperform the state-of-the-art performance. In addition, the
proposed DNN-based system continues to perform the best,
outperforming the better combination by more than 11%.

TABLE VI
SID ACCURACY (%) ON REVERBERANT NIST SRE DATASET

WITH 50 SPEAKERS

We perform the same performance breakdown as Table V and
the results are given in Table VII. A similar trend to Table V is
observed. All of these methods yield much better performance
during non-overlapping intervals. This is notable considering
the fact that the non-overlapping intervals account for only
1/3 of cochannel speech in the reverberant conditions (see
Section IV-A).

E. Performance on NIST SRE Dataset with 100 Speakers

The SID task becomes more challenging as the number of
speakers (classes) increases. To quantify cochannel SID depen-
dency on number of speakers, we have performed cochannel
SID evaluation by increasing the number of speakers from 50 to
100, quadrupling the number of classes to 4950. The SID results
shown in Table VIII demonstrate that the combination methods
outperform the individual ones, albeit by a smaller extent. As
in the previous results, the default DNNs which have 3 hidden
layers with 1024 nodes each outperform the best combination.
With the increase of speaker size as well as training data size, we
have also explored a few different DNN configurations. As we
increase the number of units from 1024 to 2048 for each hidden
layer, the SID performance improves by around 4.5%. There is
a slight improvement as we expand the number of hidden layers
from 3 to 5 without changing the hidden layer size, for either
1024 or 2048 hidden units. Further enlargement of the DNN size
is expected to improve the performance even more, but at the
expense of substantially increased computational complexity.

F. Further Comparison

In this section, we report an additional comparison by evalu-
ating GMMs trained on cochannel speech. As discussed in the
previous sections, the DNN-based approach trains on cochannel
speech. The state-of-the-art GMM-based approach and our pro-
posed combination systems all train models on single speaker
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TABLE VII
SID ACCURACY (%) ON REVERBERANT NIST SRE DATASET WITH 50 SPEAKERS IN OVERLAPPING (OVL) AND NON-OVERLAPPING (NOVL) INTERVALS

TABLE VIII
SID ACCURACY (%) ON REVERBERANT NIST SRE DATASET

WITH 100 SPEAKERS

speech, and the models are combined (e.g. Li et al.) or com-
pared (e.g. JSS) to model cochannel speech. It is logical to
train GMMs on cochannel speech directly to have a fair com-
parison with the DNN-based approach. In our current experi-
mental setup, each speaker has cochannel training speech mixed
with the other 99 speakers at three TIRs and three ’s (for
the reverberant case). In total, each speaker has

cochannel training utterances in the anechoic condition
and cochannel training utterances in the re-
verberant condition. We use these cochannel training speech to
replace the single speaker ones for GMM models. We test these
models on the 50 speaker set in the following ways.
1) Baseline: directly apply the models to cochannel test

speech. The top two scoring speakers are the output.
2) JSS (Cochannel): apply the models in JSS.
3) Li et al. (Cochannel): apply the models in Li et al.
4) GMM Combination Method 1&2 (Cochannel): apply the

models in the two combination methods.
Table IX shows the performance of these methods in the ane-

choic test condition. As can be seen, the baseline is substantially
worse than the other methods. Compared with Table IV, JSS is
comparable while Li et al.’s performance significantly drops. As
Li et al. depend on combining single speaker models to model
cochannel speech, further combining cochannel speaker models
would not make much sense. On the other hand, JSS does not
have such constraint. Similarly, the GMM combination method
that depends on JSS for the top 10 list is comparable with that
in Table IV, but the other one depending on Li et al. suffers a
significant performance decrease.
Performance on the reverberant test set is given in Table X.

The trend is similar to Table IX. The baseline system continues

TABLE IX
SID ACCURACY (%) ON NIST SRE DATASET WITH 50 SPEAKERS

USING COCHANNEL GMM MODELS (CF. TABLE IV)

TABLE X
SID ACCURACY (%) ON REVERBERANT NIST SRE DATASET WITH 50

SPEAKERS USING COCHANNEL GMM MODELS (CF. TABLE VI)

to substantially underperform other methods. JSS and its corre-
sponding combinationmethod yield comparable performance to
Table VI. Li et al.’s method and its corresponding combination
method both perform worse by around 6%.
Overall, our observations suggest that GMM-based speaker

models trained on cochannel speech do not produce obvious
performance improvement.

G. Scalability Study of GMM-based and DNN-Based
Approaches on Cochannel SID
The previous subsection indicates that there is a substantial

performance drop as the number of speakers goes up. This is ex-
pected as SID is more prone to error with more speaker models
to choose from. An interesting question is whether GMM and
DNN based approaches show different scalability to speaker set
size. In addition, does reverberation impact scalability? The fol-
lowing experiments are conducted to address these issues.
Li et al. and the default DNN configuration (i.e. 3 hidden

layers with 1024 units each) are employed to represent
GMM-based and DNN-based approaches respectively. We
choose an anechoic test condition and the reverberant test
conditions with of 600 ms. We systematically increase the
number of speakers from 10 to 100 and make sure the only
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Fig. 2. Scalability of DNN and GMM-based approaches with respect to the
number of speakers.

varying variable is the number of speakers. The resulting per-
formance is shown in Fig. 2. There are a number of observations
from Fig. 2. GMM and DNN-based approaches both work very
well with the small speaker set of 10, even in the reverberant
conditions. Both approaches show a decline of performance
with the increase of speaker set size. Reverberation exacerbates
the degradation. Overall, the DNN-based approach declines
at a much slower pace than the GMM-based approach in the
anechoic condition, indicating better scalability to speaker
set size. However, none of them scale well in the reverberant
conditions, although the DNN-based approach holds a sizeable
advantage.

V. DISCUSSION

Cochannel SID is an important problem with real applica-
tions. Previous studies approach this problem from different
perspectives such as the utilization of usable speech, and joint
SID and cochannel separation. State-of-the-art methods achieve
almost perfect performance on the SSC corpus. This study in-
vestigates whether these methods work on a standard speaker
recognition corpus. The results suggest that the problem gets
considerably more difficult on the 2008 NIST SRE dataset, as
illustrated by a performance drop of more than 20% with Li
et al.’s system.
Usable speech based methods usually ignore the overlap-

ping speech and focus on homogenous speech segments. Our
study demonstrates that “non-usable” speech is also helpful
for cochannel SID. The joint speaker distributions are often
approximated by some combination of individual speaker
distributions. The difficulty of directly modeling the interaction
lies in computational complexity, as pointed out by Hershey et
al. For speakers and gain conditions, a complete coverage
includes speaker and gain combinations. Assuming
a component GMM for each combination, each test frame
requires Gaussian likelihood computations. Li
et al. greatly reduces the complexity using individual speaker
models. Its first stage requires Gaussian likelihood
computations to derive a short list of top 10 speakers. With
the second stage working with a constant number of speaker

models, the total computational complexity of Li et al. is
. On the other hand, DNN trains a single neural network

for all speakers. For a hidden layer network with units
each, the computational complexity is

, where denotes the computations among
the hidden layers, and and the input ( indicates
feature dimensionality) and the output layer, respectively. By
treating , , , , and as predetermined constants, the
time complexities of Li et al. and our proposed DNN system are
both , in other words, linear with respect to the number
of speakers.
Scalability is a concern for real applications as the number

of speakers may not be small. The performance is expected to
degrade because the number of speaker pairs increases quadrati-
cally. Our study shows that the DNN-based approach maintains
good performance as speaker set size grows from 10 to 100 in
the anechoic condition. However, scalability becomes an issue
for both DNN and GMM-based approaches in reverberant con-
ditions. One possible explanation is that the smearing effects of
reverberation make speaker features (such as pitch) more alike
and thus reduce the discriminability of the GMM models and
the DNN classifiers.
We have also explored hard training labels for the DNN.

Specifically, the two underlying speakers have a label of 1
and everyone else 0. In order to train the DNN with the hard
labels, we use sigmoidal output units and explore loss functions
of mean squared errors and cross-entropy. The two functions
produce similar performance that is significantly better than the
combination methods but consistently worse than using soft
training labels.
The i-vector based approach represents the state-of-the-art in

recent speaker verification research. One might wonder why
we are not using this approach for our cochannel SID task.
There are several reasons. First, the i-vector based approach has
been primarily used for speaker verification, which is different
from cochannel SID. Second, i-vectors excel in dealing with the
channel mismatch between training and testing, and this study is
not concerned with this challenge. Third, the i-vector based ap-
proach is designed for single-speaker speech; to our knowledge,
there has been no attempt of applying it to cochannel speech.
The lack of an existing i-vector based study on cochannel SID
makes it difficult to conduct a comparison with our proposed
method. Finally, the i-vector based approach is effective for long
utterances and its application to short utterances (e.g. 5 s) is a
known challenge. On the other hand, our study focuses on short
speech excerpts. With these said, however, how to extend the
i-vector method to cochannel SID is an interesting topic for fu-
ture research.
As mentioned earlier, this study is concerned with SID chal-

lenges presented by competing voice and room reverberation.
We do not address channel mismatch in this paper although it
is a widely studied topic in speaker verification. Although the
NIST SRE dataset contains channel mismatch between training
set and test set, our experimental design avoids such a mismatch
by creating our own corpus from the training set.
This paper has a number of contributions. First, we address

cochannel SID in reverberant conditions, a topic that has not
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been studied before. We extend GMM-based methods and de-
velop a combination system that outperforms these state-of-
the-art methods. Our next contribution lies in the use of DNN for
cochannel SID. Our proposedDNN system substantially outper-
forms the state-of-the-art SID methods and their extended com-
binations.We have also explored training GMM speaker models
on cochannel speech but obtained no significant performance
improvement. Furthermore, we reveal the scalability of GMM-
based and DNN-based approaches with respect to number of
speakers.
Since this is the first study of applying DNN to cochannel

SID, there will likely be room for future improvement. For
instance, training features and labels should be systematically
examined, and DNN architecture may be optimized. Additional
preprocessing, such as speech dereverberation [33], may be
used to improve scalability in reverberant conditions. With its
excellent performance on cochannel SID, DNN represents a
promising direction to pursue noise and reverberation robust
SID, as well as speaker verification tasks.
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