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Robust Speaker Identification in Noisy
and Reverberant Conditions
Xiaojia Zhao, Yuxuan Wang, and DeLiang Wang, Fellow, IEEE

Abstract—Robustness of speaker recognition systems is crucial
for real-world applications, which typically contain both additive
noise and room reverberation. However, the combined effects of
additive noise and convolutive reverberation have been rarely
studied in speaker identification (SID). This paper addresses this
issue in two phases. We first remove background noise through
binary masking using a deep neural network classifier. Then we
perform robust SID with speaker models trained in selected rever-
berant conditions, on the basis of bounded marginalization and
direct masking. Evaluation results show that the proposed system
substantially improves SID performance over related systems in a
wide range of reverberation time and signal-to-noise ratios.

Index Terms—Deep neural network, ideal binary mask, noise,
reverberation, robust speaker identification.

I. INTRODUCTION

R OBUSTNESS of automatic speaker recognition is critical
for real-world applications. In daily acoustic environ-

ments, additive noise, room reverberation and channel/handset
variations conspire to pose considerable challenges to such
systems. A lot of research has been devoted to dealing with
individual challenges. For example, speakers can be modeled
in multiple noisy environments to reduce the mismatch be-
tween training and test conditions [26]. Speech enhancement
methods, such as spectral subtraction, have been explored for
noise-robust speaker recognition [38]. Computational auditory
scene analysis (CASA) was recently employed to remove
noise [43]. Speaker features such as modulation spectral fea-
tures [6] and those incorporating phase information [41] have
shown robustness against reverberation. Blind dereverberation
algorithms have been used to restore the anechoic signal or
the early reflections of reverberant speech [33]. Borgstrom and
McCree modeled the effect of reverberation as a channel-wise
convolution of short-time spectral envelopes [3]. In this study,
the room impulse response (RIR) is characterized as a causal
low-pass filter in the modulation envelope domain, and linear
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prediction inverse modulation transfer function is estimated
to remove the effect of reverberation. Alternatively, one can
deliberately introduce reverberation to speaker models to
reduce the mismatch caused by reverberation [1]. By and
large, the speaker recognition community has focused on
channel variations in speaker verification. The National In-
stitute of Standards and Technology (NIST) has conducted a
series of speaker recognition evaluations (SRE) since 1996.
State-of-the-art systems include joint factor analysis [18] and
i-vector based techniques [5].
However, efforts have rarely been made on the combined ef-

fects of noise and reverberation. May et al. [24] and Gonzalez-
Rodriguez et al. [9] studied the combined effects using binaural
cues and microphone arrays. Garcia-Romero et al. [7] and Kr-
ishnamoorthy and Prasanna [20] reported results in noisy and
reverberant conditions separately but not together. It is worth
noting that studies on human listeners suggest the combined ef-
fects of noise and reverberation degrade speech intelligibility to
a greater degree than individually [13], [27].
In this study, we explore the combined effects of noise and

reverberation in monaural speaker identification (SID). We deal
with reverberation by training models in noise-free reverberant
conditions, while assuming little knowledge of the amount of
reverberation in the test data. Meanwhile, noise is suppressed
through a CASA approach that segregates speech by binary
time-frequency (T-F) masking. We perform binary classifica-
tion using a deep neural network (DNN). We utilize a CASA
mask for SID in two ways, namely bounded marginalization and
direct masking. The outputs of the two methods are combined
to make the final SID decision.
The rest of the paper is organized as follows. Section II gives

an overview of the system and discusses front-end processing
including DNN-based mask estimation. Bounded marginaliza-
tion and direct masking are introduced in Section III, followed
by evaluations in Section IV. We conclude this paper in
Section V.

II. SYSTEM OVERVIEW AND FRONT-END PROCESSING

Fig. 1 shows the schematic diagram of the proposed system.
Noisy speech is first passed through a DNN classifier to pro-
duce a binary T-F mask. Simultaneously we extractgammatone
features (GF) and gammatone frequency cepstral coefficients
(GFCC) [34]. Each of the multiple training conditions pro-
duces one set of speaker models that is utilized independently.
GF-based speaker models are fed to the bounded marginaliza-
tion module, while GFCC-based speaker models to the direct
masking module. Local decisions corresponding to different
training conditions are first combined within each module
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Fig. 1. Schematic diagram of the proposed speaker identification system.

and subsequently between two modules to make the final SID
decision. Below, we describe auditory features and discuss
the different definitions of a CASA mask in the noisy and
reverberant conditions. Then DNN-based binary masking is
described.

A. Auditory Features

Two auditory features are employed in our system. One is GF
in the spectral domain and the other one is GFCC in the cepstral
domain. They are chosen primarily because of their robustness
relative to other commonly used speaker features such as mel-
frequency cepstral coefficients (MFCC) [43].
Noisy and reverberant speech is first passed through a

64-channel gammatone filterbank to create a two-dimensional
cochleagram [37]. Each frame of the cochleagram is rectified
using the cubic root operation to generate a GF vector. We
apply discrete cosine transform to GF to derive GFCC. Detailed
feature extraction can be found in [43].

B. Mask Definitions in Noisy and Reverberant Conditions
Amain computational goal of CASA is the ideal binary mask

(IBM), where each element corresponds to a T-F unit in the
cochleagram and indicates whether the corresponding unit is
dominated by target or interference [36]. In this paper, the target
refers to the speech signal, and the interference the background
of the target speech. The IBM is defined as follows:

(1)

refers to the local signal-to-noise ratio (SNR) of the
T-F unit in time frame and frequency channel . LC denotes an

SNR threshold called local criterion. Given premixed target and
interference signals, the IBM can be readily constructed. The
IBM concept is motivated by the auditory masking phenomenon
and is the optimal binary mask in terms of SNR gain [22].
What constitutes the target signal is not a straightforward

question in noisy and reverberant conditions. For example, the
entire reverberant speech can be considered as the target and
the reverberant noise as interference [16]. We call this the Re-
verberant IBM ( ). Meanwhile, one can choose only the
early reflections of the reverberant speech as the target and ev-
erything else (i.e. late reverberation and reverberant noise) as
interference [32]. The resulting definition is named Early-Re-
verberant IBM ( ). If we treat only the direct path of the
reverberant speech as the target, we can obtain Direct-Sound
IBM ( ) [23]. We explore these three IBMs in Section IV.

C. Mask Estimation via DNN

The definition of the IBM is based on the prior information
of target and interference. In practice, we have to estimate the
IBM. Recent work in CASA employs supervised classification
for IBM estimation. Gaussian mixture models (GMMs) [19] and
support vector machines (SVMs) [11] have been used in ane-
choic conditions. Motivated by their superior performance [39],
we employ DNNs for mask estimation in this study. The em-
ployed mask estimation system is detailed below.
We use the standard generative-discriminative procedure to

train DNNs. First, the DNNs are pretrained using restricted
Boltzmann machines (RBMs) in an unsupervised and layerwise
fashion. An RBM is a two-layer neural network with a visible
layer and hidden layer , and a stack of RBMs forms a very
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powerful generative model [15]. The joint probability of an
RBM is defined based on an energy function :

(2)

where is a normalization term called partition function. More
specifically, raw features are used to train the first RBM. We
then take the hidden activations from the first RBM to train
the second RBM, and so on. Since the inputs (raw features) are
usually real valued, we employ a Gaussian-Bernoulli RBM for
the first layer and Bernoulli-Bernoulli RBMs for all subsequent
layers. Assuming visible units are Gaussian random variables
with unit variance, we can define the energy function E for this
Gaussian-Bernoulli RBM as:

(3)

where and are the th and th unit of and , and
are the bias for and , respectively, and is the symmetric
weight between and .
Training an RBM requires maximizing the joint proba-

bility (2) with respect to network weights. Once pretrained,
the weights from a stack of RBMs are used to initialize a
standard feedforward network, which is then discriminatively
fined-tuned using the backpropagation algorithm. Since our
target labels are binary, we use the cross-entropy objective
function for backpropagation:

(4)
where indexes training samples, is the label of sample
and is the corresponding network prediction (posterior

probability).
Our separation system works as follows. We extract fea-

tures from the cochleagram and train a subband classifier for
each frequency channel to estimate the target-dominance of
each T-F unit, where the training labels are provided by the
IBM. Since a decision needs to be made for each T-F unit,
we extract unit-level features from the subband signal within
each T-F unit. In this study, we use the complementary feature
set proposed in [40], which consists of amplitude modulation
spectrogram, RASTA-PLP, MFCC and pitch-based features.
We used the DNNs described above as the subband classifiers.

III. RECOGNITION METHODOLOGY AND SYSTEM DESIGN

Over the past few decades, the GMM has been the pre-
dominant approach for speaker modeling [30]. The GMM
framework along with the universal background model
(UBM) [31] is adopted for speaker modeling in this study. The
feature space of a speaker is described as a linear combination
of multivariate Gaussians that represent broad acoustic classes.
Such Gaussians are usually parameterized with diagonal co-
variance matrices. Given speaker models, we employ different
recognition methods by incorporating binary masking. At each
frame, a binary mask divides the T-F units into two groups. One
group consists of reliable T-F units with the label of 1 while
the remaining unreliable T-F units, with the label of 0, form

the other group. Multiple methods have been developed to deal
with unreliable T-F units group such as marginalization, recon-
struction, and direct masking. We use bounded marginalization
and direct masking as two modules.

A. Bounded Marginalization Module

The basic idea of marginalization is to base recognition on
reliable T-F units while removing the impact of unreliable ones.
Conventional marginalization integrates over unreliable T-F
units in the entire range of feature values, e.g. minus infinity to
positive infinity. Bounded marginalization sets realistic lower
and upper bounds for the integration, which has proven benefi-
cial [25], [43]. Its analytical form is written as follows [4], [43].

(5)

Here denotes the set of reliable T-F units and the set
of unreliable ones. The likelihood of a frame vector
produced by a speaker can be calculated by integrating

the probability density function of with respect to , from
the lower bound (i.e. low) to the upper bound (i.e. high). The
integration can be carried out in each of the Gaussians of
the GMM. Specifically, we perform bounded marginalization
on the GF features with a CASA mask specifying the reliable
and unreliable T-F units.

B. Direct Masking Module

Direct masking is a recently proposed technique for coupling
binary masking and speech recognition [12]. In direct masking,
one simply attenuates the noise-dominant T-F units using a con-
stant gain, instead of estimating them as done in feature recon-
struction. Cepstral features are then calculated directly from this
masked representation or from the resynthesized target signal.
Results have shown that this leads to competitive recognition
performance compared to bounded marginalization and feature
reconstruction. Therefore, we use direct masking in this study.
When the IBM is available, we retain target-dominant T-F

units and attenuate noise-dominant T-F units by 26 dB. For
estimated binary masks, we have found that using the outputs
of the DNNs directly performs better than converting them to
binary values. GFCC features for speaker recognition are ex-
tracted from the resynthesized target signal, which is obtained
by applying the ratio mask (i.e. DNN output) to the mixture.

C. Reverberant Model Training

Speaker models trained in anechoic and noise-free conditions
do not generalize well to reverberation. To characterize speaker
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feature distributions in such conditions, we train speaker models
from reverberant environments.
Reverberation is usually characterized in terms of reverbera-

tion time ( ), which describes the amount of time for the di-
rect sound to decrease by 60 dB. Room reverberation is typically
modeled as a convolution between a direct signal and an RIR
which characterizes a specific reverberant condition. An RIR is
determined by many factors such as geometry of the room, lo-
cations of sound sources and receivers.
To simplify the experimental settings while assuming little

prior knowledge of testing reverberation, we simulate re-
verberant environments covering a plausible range of . In
this study, the range is chosen from 0s (anechoic condition)
up to 1s, covering daily room environments [21]. These re-
verberant conditions are chosen as the representatives of the
range and expected” to generalize to ’s between these rep-
resentative values. We train a set of speaker models in each
of the conditions. Each set of speaker models characterizes
a unique reverberant condition and is used independently for
speaker recognition.

D. Multi-condition Fusion and Module Combination

In each of the two modules, SID decisions from the sets
of speaker models are first fused to generate module output. We
then combine the outputs of the two modules to make the final
SID decision. This design is elaborated below.
For an unknown test reverberant condition, each of the re-

verberant training conditions correlates with the test condition
differently. The speaker models from the best matching condi-
tions should be used. However, these correlations are unknown
without ground truth information. Reverberation classification
has been proposed to classify the test reverberant condition as
one of the training conditions and select speaker models from
the chosen condition for recognition [1], [29]. There are two
problems with this idea. The first one occurs when the test con-
dition does not match any of the training conditions. A hard
classification is unlikely to work well. The second is that the
idea was tested only in noise-free reverberant conditions. It is
more challenging to perform such a classification task when
background noise is present. Instead of reverberation classifi-
cation, we propose to fuse the contributions from all training
conditions. If done well, we expect that the best matching con-
dition will dominate the fusion. If none of the training condi-
tions match the test condition well, this fusion could leverage
multiple contributions. As the score ranges from these condi-
tions could be very different, we normalize before fusing them
to make the final SID decision. The normalization is described
in the following equation,

(6)

where refers to the output of a single training condition, which
is a vector of scores with the number of elements equal to the
number of speakers used in training. denotes the normalized
score vector. We combine the normalized score vectors using
a simple summation. We have also explored several other com-
bination strategies and none of them significantly outperforms

this simple summation. The fusion is performed in both bounded
marginalization and direct masking modules.
The two modules address SID in noise from different per-

spectives. The bounded marginalization module works in the
spectral domain and utilizes some information from unreliable
T-F units. On the other hand, the direct masking attenuates un-
reliable T-F units uniformly and employs GFCC in the cepstral
domain. GF and GFCC exhibit complementary properties for
noise-robust SID [43]. We have observed that the errors of the
two modules tend not to agree and the underlying speaker often
achieves high scores in both modules. Hence, we combine these
two modules to further improve SID performance. Similar to
within-module fusion, we first apply score normalization (see
(6)) and then simply add the module scores.

IV. EVALUATION AND COMPARISON

A. Experimental Setup

We randomly drew 300 speakers from the 2008NIST Speaker
Recognition Evaluation dataset (short 2 part of the training set).
Each speaker has a telephone conversation excerpt of 5 minutes
in total duration. We apply simple energy-based voice activity
detection to remove the large chunks of silence in the excerpt.
Then we divide the recording into 5s long pieces. Two pieces
with the highest energy are selected as the test data in order to
provide sufficient speech information. The remaining pieces are
used for training. On average there are about 20 training utter-
ances per speaker. We employ theMatlab implementation of the
image method of Allen and Berkley [2] to simulate room rever-
beration [10]; results with recorded impulse responses are given
in Section IV.E. The range of is varied from 0 to 1s, which
covers a broad range of realistic reverberant environments [21].
We simulate three rectangular rooms to obtain 3 ‘s: 300, 600
and 900 ms. For each , we simulate 5 RIRs by randomly po-
sitioning a speech source and a receiver with the source-to-re-
ceiver distance fixed at 2 m. Each training utterance is con-
volved with the 5 RIRs. Each speaker is modeled in these three

‘s separately using the GMM-UBM framework [31]. Test
RIRs, on the other hand, are obtained from 7 simulated rooms
corresponding to 7 ‘s from 300 ms to 900 ms with the in-
crement of 100 ms. Details of the simulated rooms are shown in
Table I. We simulate 3 pairs of RIRs in each room ( ) by ran-
domly positioning a speech source, a noise source and a receiver
with both source-to-receiver distances fixed at 2 m. The relative
location of each source to the receiver determines an RIR. This
results in 21 pairs of RIRs in total. Each test utterance is con-
volved with 2 pairs of RIRs that are randomly selected from the
21 pairs RIR library. Specifically, for each pair, the RIR cor-
responding to the speech source is used to convolve with the
target speech and the other one with interference. Factory noise,
speech shape noise (SSN) and destroyer engine room noise from
the Noisex-92 database are used as interference [35]. We gen-
erate 5 SNRs for each noise from 0 to 24 dB with the increment
of 6 dB. In total, each SNR of each noise has
test trials.
We use two-hidden-layer DNNs, which strike a balance

between performance and computational overhead [39]. We
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TABLE I
SIZES OF THE SIMULATED RECTANGULAR ROOMS

train DNNs separately for bounded marginalization and direct
masking. The IBM is used to provide training labels. The IBM
compares the local SNR of each T-F unit with the LC, which
is typically set to 0 dB to indicate which source is stronger.
Recent studies on speech intelligibility [32] and robust speech
recognition [28], however, have shown that an LC of 0 dB is not
always optimal, which is confirmed by our SID experiments.
We will elaborate how LC is determined in the following sub-
section. We also compare the three reverberant IBM definitions
in terms of SID performance. The DNN training set is created
by mixing 50 utterances from 50 randomly selected speakers
with the 3 noises, 3 training ‘s (300, 600, and 900 ms), and
5 SNR conditions (-5, 0, 5, 10 and 15 dB). At each , the
5 training RIRs are divided into two groups: three are used to
create the DNN training set and the remaining two for a cross
validation set. In other words, the 50 DNN training utterances
are convolved with 3 selected RIRs. The remaining 2 RIRs are
used to distort another 10 randomly selected training utterances
to create a validation set for DNN training. For each RIR, we
randomly choose a noise source position within the same room
to derive an RIR for the noise. This gives us noisy and rever-
berant DNN training and validation sets. Note that the RIRs
used for speaker modeling as well as DNN training/testing do
not overlap with the RIRs of SID evaluations. The DNNs are
supervisedly fine-tuned using stochastic gradient descent with
the objective function given in (4).
We extract 64-dimensional GF for bounded marginalization

and 22-dimensional GFCC features for direct masking. We also
extract 22-dimensional MFCC features for the sake of compar-
ison. Speaker models are adapted from a 1024-component UBM
that is trained by pooling training data from all the enrolled
speakers [31]. For each speaker, we train 3 sets of models in the
three reverberant training conditions for GF, GFCC and MFCC
respectively. In addition, we train a set of anechoic models for
each feature to generate benchmark performance.
We perform SID in selected frames with some target infor-

mation. We refer to the frames containing at least one reliable
T-F unit as “active frames”. To balance the number of selected
frames and the number of reliable T-F units per frame to qualify
for selection, we use as the selection criterion the smaller of
half of the number of all frequency channels (i.e. 32) and the
median number of reliable T-F units of all active frames for a
noisy and reverberant speech utterance. Given an active frame,
it will be selected if its number of reliable units is greater than
the criterion.

Fig. 2. SID accuracy (%) using with different LCs. BM denotes
bounded marginalization, DM direct masking. (a) BM performance. (b) DM
performance. Each point in the figure is averaged across all the test SNRs.
Anechoic denotes speaker models trained in the anechoic condition. 300 ms,
600 ms and 900 ms denote speaker models trained in the corresponding .
Multi-condition Fusion combines the local decisions from the four sets of
speaker models.

TABLE II
OPTIMAL LCS (dB) FOR DIFFERENT IBM DEFINITIONS

B. IBM Comparisons

Regarding different IBM definitions as discussed in
Section II.B, one important issue is which IBM is most
effective for SID. A related issue is LC values in the IBM
definition.
To address these issues, we set up a small experiment by

randomly selecting 50 speakers from the TIMIT corpus. Each
speaker has 10 utterances in total, 8 of which are used for
training and the remaining 2 for testing. Training and testing
data are mixed with newly simulated RIRs following the same
procedure as described earlier except that the sampling fre-
quency is 16000 Hz (8000 Hz for the NIST SRE dataset). Only
factory noise is used in this experiment and the SNRs of the test
set are -6, 0, 6, 12 and 18 dB. Ten RIRs are randomly selected
from the 21 test RIR pairs, so there are test
trials for each SNR condition.
Fig. 2 gives an example of . We vary LC to generate

different IBMs for the two modules separately. Results are av-
eraged across the 5 SNRs. The figure indicates that an LC of
-12 dB is the optimal choice for bounded marginalization. On
the other hand, direct masking favors an LC of -18 dB. Note that
the plateau of each plot is relatively wide and it shows that the
proposed SID system is robust to LC choices. It is worth men-
tioning that the proposedmulti-condition fusion idea works well
as expected. We conduct similar experiments on the other two
IBM definitions. Our obtained optimal LCs are listed in Table II.
An example of the three IBM definitions is shown in Fig. 3.

The left plot in each panel was created with an LC of 0 dB. It
retains a reasonable number of 1s in . However, it gets
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Fig. 3. Illustrations of 3 IBM definitions on a TIMIT sentence with 0 dB SNR
and 500 ms . (a) with two LCs, 0 dB on the left and -4 dB on
the right. (b) with two LCs, 0 dB on the left and -4 dB on the right.
(c) with two LCs, 0 dB on the left and -12 dB on the right. 1 is shown
as white and 0 as black.

sparser for , and has very few 1s. This is ex-
pected as and treat part or all the reverber-
ated speech as interference, and their effective SNRs are much
lower than . As we choose the optimal LCs for bounded
marginalization (the right plots), more 1s show up, and the three
IBMs now exhibit similar patterns.
Next we explore the utilities of the three IBM definitions with

their optimal LCs for SID. As shown in Table III, the proposed
system outperforms the individual modules for all three IBM
definitions. produces the best performance in all the cat-
egories. The other two IBM definitions achieve comparable per-
formance. It remains to be seen if the performance advantage of

holds when estimated IBMs are employed and a larger
dataset like the NIST SRE is used.

C. Performance with Estimated IBM

We now establish benchmark SID performance of the NIST
SRE dataset. We apply anechoic speaker models to the anechoic
and all reverberant test sets where noise is excluded. As shown

TABLE III
SID ACCURACY (%) OF THE THREE IBM DEFINITIONS.
PERFORMANCE IS AVERAGED CROSS ALL THE SNRS

TABLE IV
BENCHMARK SID PERFORMANCE (%) OF ANECHOIC SPEAKER

MODELS. NOISE IS EXCLUDED IN THE TEST SET

TABLE V
BENCHMARK SID PERFORMANCE (%) OF REVERBERANT SPEAKER MODELS IN
THE REVERBERANT TEST SET. NOTE THAT THE FIRST COLUMN IS THE SAME AS
THE LAST COLUMN OF TABLE IV AS BOTH USE ANECHOIC SPEAKER MODELS

TO RECOGNIZE REVERBERANT TEST DATA

in Table IV, MFCC-based models achieve the best performance
in both anechoic and reverberant conditions. When reverbera-
tion is included in the test set, the performance of all anechoic
speaker models drops substantially due to the mismatch. After
reverberation is included in speaker models, the performance is
shown in Table V. As shown in the table, the introduction of
reverberation in the training data significantly improves perfor-
mance for all the features. The GF-based models even outper-
form MFCC-based models in some cases. Models trained in the

of 600 ms achieves the best performance, probably because
it lies in the middle of the test range.
Now we evaluate the proposed system in the noisy and

reverberant test set. We use GF for the bounded marginal-
ization module. Both GFCC and MFCC are used in the
direct masking module. When estimated IBMs are used, we
notice that the inclusion of anechoic speaker models in the
multi-condition fusion stage does not help at all due to their
substantial performance gap from reverberant speaker models.
Therefore, we only fuse the reverberant speaker models in each
module. Table VI shows the SID performances of the proposed
methods: the direct masking module with MFCC and GFCC,
the bounded marginalization module with GF, and the com-
bined system. On average, the bounded marginalization module
outperforms the direct masking module for both MFCC and
GFCC. The direct masking module with GFCC substantially
outperforms that of MFCC at the low SNRs, likely due to the
better noise robustness of GFCC features [43]. As the SNR
increases, MFCC closes the gap and even outperforms GFCC.
In the combined system, we employ the direct masking module
with GFCC. The combined system outperforms individual
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TABLE VI
SID ACCURACY (%) OF THE PROPOSED SYSTEM USING .
MFCC_DM DENOTES THE DIRECT MASKING MODULE WITH MFCC
FEATURES. GFCC_DM DENOTES THE DIRECT MASKING MODULE WITH

GFCC FEATURES. GF_BM DENOTES THE BOUNDED MARGINALIZATION

MODULE. COMB. SYST. DENOTES THE PROPOSED SYSTEM

TABLE VII
SID PERFORMANCE (%) SUMMARY OF THE PROPOSED SYSTEM

WITH DIFFERENT IBM DEFINITIONS

modules in every test condition. For example, the combined
system outperforms both modules by around 10% for factory
noise at 6 dB.
Table VII lists the SID results of the proposed system with

the three IBM definitions. Compared to Table III, the advantage
of no longer exists. It is likely due to the quality of
estimated masks. has very low LCs (-12 and -18 dB),
which introduce substantial amounts of noise to the reliable T-F
units, making it difficult for mask estimation. The performances
of the other two IBMs definitions are still close. These results
suggest that it is easier to estimate .

D. Comparison with Related Systems

We pointed out that there was little study on the combined
effects of reverberation and noise for SID. It is thus difficult to
find comparison systems. As a result, we adapt a few related
systems for the sake of comparison which should still provide
useful perspectives on the relative performance of our model.
The first related system, labeled as “Multi-conditional Training”

in Fig. 4, was designed for robust speaker verification using
i-vector based techniques [7]. Each speaker is modeled as a
GMM adapted from the UBM. A supervector is obtained by
concatenating the means of Gaussians, and Garcia-Romero et
al. [7] map the supervector to a lower-dimensional factor named
an i-vector (or identity vector) (see also [5]). This system fo-
cuses on how to train frommultiple training conditions followed
by a combination to deal with noise and reverberation. A top
performing scheme trains Gaussian probabilistic linear discrim-
inant analysis models in both reverberant and noisy conditions.
We implement this scheme for comparison due to its effec-
tiveness and simplicity. In their experiments, multi-conditional
training data were created by adding 3 types of noise: babble,
car and helicopter, at 0 dB, 6 dB, 10 dB and 20 dB SNRs. Addi-
tional training data were produced by convolving clean speech
with simulated RIRs at 100 ms, 300 ms and 500 ms reverbera-
tion times. Totally there are 16 training conditions, including the
anechoic condition. In the implementation of this method, we
use 19-dimensional MFCC features and their delta features to
be consistent with the comparison system. Speaker models are
trained by pooling training data from not only the reverberant
training conditions we use, but also anechoic and noisy condi-
tions (factory noise, destroyer engine room noise and SSN) in
a wide range of SNRs (0, 6, 12, 18 and 24 dB). The second
system, labeled as “Reverb. Classification”, was designed to
deal with reverberation alone [1], [29]. It trains speaker models
in multiple reverberant conditions separately. Given a test ut-
terance, it first identifies the closest training condition and uses
the models of that condition to perform speaker recognition, as
detailed in Section 2.2 of [1] and Section 3.4 of [29]. Since it
only deals with noise-free reverberant speech, we apply our es-
timated CASA masks for noise suppression as front-end pro-
cessing for this comparison system. More specifically, we use
the UBMs trained separately in the 3 rooms to perform reverber-
ation classification on noise-suppressed speech, which is consis-
tent with [1] and [29]. The third system, labeled as “Speech En-
hancement”, uses a state-of-the-art speech enhancement algo-
rithm to suppress noise [14].We use the source code of this algo-
rithm from the authors to enhance the test speech. The last one,
labeled as “Baseline”, directly recognizes the test data using
MFCC-based anechoic speaker models.
The performance comparison of all these systems along with

the proposed system that employs is shown in Fig. 4.
The proposed system outperforms all the related systems in all
the test conditions. The second best performing system is the
reverberation classification method, which is partly due to the
effectiveness of the supplied CASA masks. As a state-of-the-art
system in noisy and reverberant conditions, the multi-condi-
tional training method does a reasonable job at high SNRs, but
not at low SNRs. Although the speech enhancement algorithm
was proposed to deal with noisy speech in anechoic conditions,
it exhibits reasonable performance in the reverberant environ-
ments, as shown by the large improvement over the MFCC
baseline, particularly for the engine noise and SSN. It even out-
performs multi-conditional training at low SNRs. It could be
the smearing effect of late reverberation on speech spectrum is
somewhat similar to the corruption by SSN, which can be effec-
tively attenuated by speech enhancement.
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Fig. 4. SID comparisons of the proposed system with related systems under
factory noise, destroyer engine room noise and speech shape noise using simu-
lated RIRs.

E. Evaluation with Real Impulse Responses

The results reported so far are generated using simulated
RIRs. We now test our system using RIRs recorded in real
rooms to assess its utilities in real environments. We use
the RIRs collected in Bell Labs [42]. There are three ‘s
(300 ms, 500 ms and 900 ms) and 4 RIRs are collected at each

corresponding to 4 microphone positions. We observe that
the actual values of these RIRs are probably much higher
than the given values according to our measurements. For
example, the RIRs of 900 ms would have a of s
as reported in [8]. In this study, we use RIRs from the ‘s
of 300 ms and 500 ms. We use the third and fourth RIRs of
each to create the training set of speaker models. To create
the test set, we use the first RIR to convolve with speech and
the second one with noise. We then switch these two to get
another setting. Therefore we have 2 RIR pairs for each .
Each test utterance is randomly convolved with 1 of the 2 pairs
at each . The NIST dataset is employed and the remaining
experimental setup stays the same as with simulated RIRs.
Note that we use the DNNs trained on simulated RIRs for mask
estimation. In other words, there is no retraining of DNNs using
real RIRs.
Fig. 5 shows an example of the IBM estimation on real RIRs.

As can be seen, the DNNs generalize reasonably well to real
RIRs, which is encouraging. This is consistent with [17], where
an MLP-based mask estimation algorithm shows similar gener-
alization results. As in Section IV.D., we compare the proposed
system with four related systems over 3 noise types and perfor-
mance is shown in Fig. 6. The proposed system outperforms the

Fig. 5. Comparison of and estimated of an utterance mixed with
SSN and real RIR ( ms) and dB.

Fig. 6. SID comparisons of the proposed system with related systems under
factory noise, destroyer engine room noise and speech shape noise using real
RIRs.

related systems in all the test conditions. Compared to simulated
RIRs (see Fig. 4), the MFCC baseline is much worse. Even in
the noise-free reverberant condition, the MFCC baseline only
achieves 56.5% accuracy, which is around 20% lower than with
the simulated RIRs. Similarly, the absolute performance of all
systems including the proposed system all decreases. This indi-
cates that the real acoustic environments are more challenging
than simulated ones for speaker recognition. Overall, the pro-
posed system and the related systems show similar performance
trends in simulated and real reverberant environments.

V. DISCUSSION

The combined effects of noise and reverberation have been
studied in human listeners [13], [27], and the results indicate that
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they pose a greater challenge than individual effects. This study
addresses the combined effects in the domain of robust speaker
identification. Our benchmark performance suggests that rever-
beration alone poses a challenge for traditional SID systems al-
ready, as shown in the reduced performance of an MFCC base-
line from 97.83% to 77.08% using simulated RIRs. Even in the
least noisy situation (24 dB SNR), the combined effects further
reduce the performance to 58.67% with SSN.
The multi-condition fusion idea investigated here alleviates

the problem that it is difficult to accurately match training and
testing reverberant conditions. We have observed that the best
performing training condition tends to dominate the fusion
results, rendering classification of testing reverberant condi-
tions less significant. Module combination further leverages
the complementary advantages of noise-robust SID approaches
and features, consistent with our previous study on noise-ro-
bust SID [43]. The noise susceptibility of MFCC makes it
a poor choice for the direct masking module. Nonetheless,
its promising results at high SNRs warrant further study to
incorporate it into the proposed system.
IBM estimation in noisy and reverberant condition is a very

challenging task. Except for [17], little research has been done
on this topic. MLPs, SVMs and DNNs have shown promising
results on IBM estimation in noisy conditions alone, and this
study further considers reverberant conditions by using DNNs
due to their performance. The overall mask estimation quality
clearly has room to improve, and further improvement can be
expected as general IBM estimation progresses.
As shown in Table III, outperforms . How-

ever, estimated IBMs in Table VII outperform estimated
. retains T-F units with significant amounts of

late reverberation that are detrimental to recognition due to its
noise-like characteristics. On the other hand, is able to
capture speech onsets that are relatively robust to reverbera-
tion. This may explain the advantage of . During mask
estimation, the local SNRs of onset-related T-F units are quite
low, as indicated by the choice of very low LCs. Therefore the
derived features are unlikely discriminative to achieve good
mask estimation performance. The T-F units mainly containing
late reverberation in also do not contain discriminative
features. However, the resulting missing errors in es-
timation would not be nearly as harmful as those for
estimation. This could explain why estimated yields
better performance.
We have demonstrated the utilities of our system using

RIRs recorded in real environments. It is encouraging to see
that DNNs trained on simulated RIRs generalize well to real
RIRs. However, we observe that speaker models trained using
simulated RIRs perform less well with real RIRs, maybe be-
cause speaker models are built from frame-level features which
are distorted differently by simulated and real RIRs. On the
other hand, mask estimation makes decisions based on energy
comparisons, which are not much affected by the differences.
Further studies should examine frame-level feature mismatch
between simulated and real RIRs.
To conclude, we have investigated the combined effects of

noise and reverberation in SID. We employ speaker models
trained inmultiple reverberant conditions to account for themis-

match created by reverberation. Noise is dealt with using DNN-
based CASA separation and two recognition methods which to-
gether yield substantial performance improvement over related
systems in a wide range of reverberation time and SNRs.
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