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ABSTRACT:
Accurately detecting voiced intervals in speech signals is a critical step in pitch tracking and has numerous

applications. While conventional signal processing methods and deep learning algorithms have been proposed for

this task, their need to fine-tune threshold parameters for different datasets and limited generalization restrict their

utility in real-world applications. To address these challenges, this study proposes a supervised voicing detection

model that leverages recorded laryngograph data. The model, adapted from a recently developed CrossNet architec-

ture, is trained using reference voicing decisions derived from laryngograph datasets. Pretraining is also investigated

to improve the generalization ability of the model. The proposed model produces robust voicing detection results,

outperforming other strong baseline methods, and generalizes well to unseen datasets. The source code of the pro-

posed model with pretraining is provided along with the list of used laryngograph datasets to facilitate further

research in this area. VC 2024 Acoustical Society of America. https://doi.org/10.1121/10.0034445
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I. INTRODUCTION

A speech signal consists of voiced, unvoiced, and silent

intervals or segments. Detecting whether speech is voiced is

known as voicing detection. This task is a crucial step in

pitch estimation and benefits various speech processing

tasks, such as speaker recognition (Bai and Zhang, 2021),

computational auditory scene analysis (Wang and Brown,

2006), and speech recognition (Atal and Rabiner, 1976;

Zolnay et al., 2002). In deep learning, precise voicing detec-

tion contributes to enriching training data with essential con-

text and segmentation. This can be especially valuable in

situations where annotated data are limited. With voicing

information, the potential of deep learning in advancing

speech processing tasks can be further leveraged. It is

important to note that voicing detection is different from

voice activity detection (VAD), which aims to determine the

presence or absence of speech activity in an audio signal. In

contrast, voicing detection concerns detecting the voiced

portions of speech signals.

Voiced speech is produced by the vibration of the glot-

tis, creating periodic or semi-periodic pulses of air that reso-

nate through the vocal tract, while unvoiced speech is

aperiodic and produced when air flows through a narrow

constriction in a way to produce turbulence noise with no

glottis vibration (Stevens, 1998). Therefore, periodicity is

the determining factor for voiced and unvoiced segments. In

English, voiced sounds include all vowels and voiced conso-

nants such as /g/, /v/, and /z/, while unvoiced sounds include

unvoiced consonants such as fricatives (e.g., /f/) and stops

(e.g., /p/). Unvoiced speech accounts for approximately

20%–25% of all speech sounds in terms of both phoneme

occurrence and segment duration (Hu and Wang, 2008),

which highlights the significant role that unvoiced sounds

play in speech utterances. Further description of voiced and

unvoiced speech segments in English will be provided in

Sec. II.

Various approaches have been proposed to address

voicing detection, by analyzing the waveform or energy of

the signal or by examining spectral characteristics such as

the presence of harmonics and formants. Conventional

methods (Amado and Vieira Filho, 2008; Bachu et al.,
2010; De Cheveign�e and Kawahara, 2002; Haggard et al.,
1970; Hosoda et al., 2023; Zahorian and Hu, 2008; Talkin

and Kleijn, 1995; Van Immerseel and Martens, 1992; Wang

et al., 2022) include analyzing the short-term autocorrela-

tion sequence (De Cheveign�e and Kawahara, 2002), zero-

crossing rate (Amado and Vieira Filho, 2008), and energy of

the speech signal (Bachu et al., 2010), as well as a combina-

tion of these features with classification techniques like

thresholding (Talkin and Kleijn, 1995) and rule-based

approaches (Wang et al., 2022). Deep learning based

approaches for voicing detection often treat the task as part

of pitch tracking and train a multi-task model (Han and

Wang, 2014; Morrison et al., 2023; Subramani et al., 2024;

Tran et al., 2020; Zhang et al., 2022). Pitch contours

obtained from laryngograph data are commonly used as the

ground-truth for evaluating the performance of these algo-

rithms. However, existing methods for voicing detection

have limitations in robustness and generalizability. Signal

processing methods are sensitive to various types of noise,
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including device noise, and typically require ad hoc tuning

of a voicing decision threshold for each dataset, i.e., lacking

consistency (Amado and Vieira Filho, 2008; Bachu et al.,
2010; Talkin and Kleijn, 1995). While deep neural network

(DNN) methods (Ardaillon and Roebel, 2019; Kim et al.,
2018; Morrison et al., 2023; Singh et al., 2021) can perform

voicing detection on clean speech by applying a threshold to

the estimated periodicity, the sensitivity of this threshold

still presents a challenge. The optimal threshold can vary,

depending on the dataset used. Furthermore, the limited

training data can lead to generalization issues, resulting in

unreliable performance.

To address the above issues with existing methods, we

leverage multiple datasets that provide laryngograph record-

ings to train a voicing detection model. Specifically, the

voicing detection model is adapted from CrossNet

(Kalkhorani and Wang, 2024) and is trained using ground-

truth labels derived from the laryngograph data. Voicing

labels obtained from laryngograph recordings are generally

considered the gold standard for evaluating the accuracy of

voicing detection models. By gathering existing datasets

that contain laryngograph recordings, we obtain an adequate

amount of data to train the proposed model.

A laryngograph, also known as an electroglottograph, is

a medical device used for measuring the electrical activity

of the larynx during speech production. It is a non-invasive

device that is placed on the skin of the neck and detects

changes in the electrical impedance of the vocal folds as

they vibrate by emitting a high-frequency electrical signal

into the neck. These changes in impedance are used to create

a waveform that represents the movement of the vocal folds

during pronunciation. Compared to microphone recordings,

laryngograph recordings have several advantages for pro-

ducing accurate voicing decisions. First, the laryngograph

provides a direct measure of the vibration of the vocal folds,

which is the source of the voiced speech signal. This is more

accurate than methods that rely on indirect measures of

voicing, such as the spectral or temporal characteristics of

the speech signal. Second, the laryngograph is relatively

unaffected by variations in the amplitude or frequency of

the speech signal caused by acoustic noise or interference,

which can be a problem for voicing detection methods based

on microphone recordings. This makes the laryngograph a

reliable tool for detecting voicing, especially in adverse

acoustic environments. On the other hand, conducting lar-

yngograph recordings is a cumbersome job. As a result, pub-

licly accessible laryngograph data are limited, particularly

from the perspective of large-scale DNN training.

Even though the laryngograph is regarded as the gold

standard, it has certain limitations in capturing voicing

details. In voiced speech, the vocal folds open and close in a

quasi-periodic manner, transforming the glottal airflow into

a series of flow pulses, which correspond to the excitation

source of the speech signal. The electroglottographic (EGG)

signal provided by laryngograph, however, primarily reflects

the vocal fold contacting area. The exact moments of vocal

fold closure and opening cannot be precisely determined

from the EGG signal (Herbst, 2020; Herbst et al., 2014),

which can lead to potential timing discrepancies between

the EGG signal and the speech signal. Additionally, in soft-

onset voicing, vocal fold vibration and airflow modulation

often start before the EGG signal. Alternative recording

devices like throat microphones may help to overcome such

limitations (Sahidullah et al., 2018).

This paper presents a robust voicing detection model

for clean speech that achieves state-of-the-art performance

by leveraging multiple laryngograph datasets for training.

We find that the model trained on accessible laryngograph

datasets already yields good generalization. To further miti-

gate potential generalization issues, we conduct pretraining

on the large-scale Librispeech dataset (Panayotov et al.,
2015), which leads to improved and more robust voicing

detection performance. The contributions of our work can

be summarized as follows:

• We investigate the distinct characteristics of voiced and

unvoiced speech sounds and assess the feasibility of train-

ing on laryngograph datasets.
• We develop a supervised voicing detector that can accu-

rately estimate voicing in clean speech and show robust

performance across different corpora.
• Unlike previous methods, we leverage pretraining on the

Librispeech dataset to address the challenge of insuffi-

cient laryngograph data.
• We conduct a comprehensive evaluation of the proposed

method and comparison against other strong baselines.
• We release a pip-installable PYTHON library containing the

trained model, which can be used to generate reliable

ground-truth labels in cases where laryngograph data is

not available, along with compiled laryngograph datasets.

This paper is structured as follows. In Sec. II, we pro-

vide a description of voiced and unvoiced English speech

sounds and their characteristics. Sections III and IV describe

related works and publicly accessible laryngograph datasets.

Section V presents our voicing detection model. Sections VI

and VII describe our experimental setup and evaluations of

the proposed approach, including comparisons with existing

methods. Finally, Sec. VIII provides concluding remarks.

The source code and pretrained model used in this study are

provided at https://github.com/YIXUANZ/rvd.

II. VOICED AND UNVOICED SPEECH SOUNDS

How to distinguish between voiced and unvoiced

speech sounds? As discussed in Sec. I, the primary charac-

teristic is periodicity, which is evident as harmonic patterns

in the frequency domain. Therefore, detecting frames with

harmonic patterns in the spectrum of the speech signal

becomes an intuitive approach. Nonetheless, this task can be

difficult in certain scenarios. Unvoiced frames exhibit no

harmonic patterns in their spectrum and can be challenging

to distinguish from background noise. Although the pres-

ence of harmonic structure is a reliable indicator of a voiced

frame, it can be still difficult to recognize such harmonic
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patterns in frames located between voiced and unvoiced

intervals due to co-articulation effects. In such cases, har-

monic patterns may be ambiguous, even though harmonic

components still exist in the signal. In order to characterize

these ambiguous frames, one can utilize contextual cues to

make a determination. Linguistic features of the language

being spoken provide helpful clues in distinguishing voiced

and unvoiced speech segments. In English, phonemes are

classified as either voiced or unvoiced (Ladefoged, 2001).

Table I provides a catalog of the voiced and unvoiced pho-

nemes in English, where all vowels, approximants, and

nasals are voiced (Ladefoged, 2001). Certain consonants,

including stops, fricatives, and affricates, have pairs of

voiced or unvoiced sounds. It should be noted that the pho-

neme /h/ can be pronounced in either a voiced or unvoiced

way.

The use of a laryngograph provides an effective way to

distinguish between voiced and unvoiced frames empiri-

cally. As explained in Sec. I, laryngograph recordings pro-

vide a direct measurement of the vibrations from the source

of the voiced signal, which is relatively unaffected by ampli-

tude or frequency variations caused by environmental noise

or interference.

Figure 1 shows a comparison between the magnitude

spectrogram of a microphone recording and a laryngograph

waveform. The audio recording is from the FDA dataset

(Bagshaw et al., 1993) and corresponds to the utterance

“When forced to make a choice, Sarah chose ping-pong as

her favorite game.” We can observe that the laryngograph

spectrogram provides a clear distinction between voiced and

unvoiced intervals of the speech signal. For example, the

word “choice” can be observed in the spectrograms between

1.122 and 1.537 s. This word is composed of both voiced

and unvoiced sounds, but the unvoiced sounds are not cap-

tured in the laryngograph. The microphone recording, how-

ever, exhibits both kinds of sound, potentially complicating

voicing detection.

III. RELATED WORKS

Numerous studies have been conducted for voicing

detection given its importance for applications such as

speech synthesis. Earlier studies primarily focus on

developing signal processing algorithms (Drugman and

Alwan, 2011; Koutrouvelis et al., 2016; Kumar and Rao,

2016; McAulay and Quatieri, 1990; Narendra and Rao,

2015; Talkin and Kleijn, 1995; Upadhyay and Pachori,

2015). Among these algorithms, the robust algorithm for

pitch tracking (RAPT) (Talkin and Kleijn, 1995) and the

summation of residual harmonics (SRH) (Drugman and

Alwan, 2011) algorithm are considered as the standard

methods in clean and noisy speech, respectively

(Koutrouvelis et al., 2016). RAPT is a time-domain method

that employs the normalized cross-correlation function

(NCCF) (Atal, 1972) and dynamic programming for pitch

tracking. In the post-processing stage, a voicing decision is

made by applying dynamic programming to select the set of

NCCF peaks in frames containing voiced speech signals, or

to make no selection otherwise. SRH (Drugman and Alwan,

2011) leverages harmonic information in the residual signal

to estimate pitch and make voicing decisions. It calculates

SRH using the amplitude spectrum of the residual signal.

During unvoiced intervals of speech, SRH values tend to be

lower. Therefore, the algorithm applies a simple local

threshold to SRH values to make voicing decisions, and a

speech frame is classified as voiced if its SRH value is

above the threshold and unvoiced otherwise.

In recent years, there has been a growing interest in

exploring deep learning approaches for voicing detection,

but primarily focusing on noisy or multi-talker scenarios.

These approaches aim to address voicing detection and pitch

estimation simultaneously. For example, studies in Han and

Wang (2014) and Liu and Wang (2018) treat the two tasks

as a multi-class classification problem, while others (Tran

et al., 2020) employ a multi-task learning approach to

jointly perform the two tasks. In these methods, ground-

truth labels are obtained by applying a pitch tracker to the

microphone recordings of clean speech, which limits the

TABLE I. Voiced and unvoiced phonemes in English.

Phoneme type Phoneme Voiced or unvoiced?

Vowels All Voiced

Approximants All Voiced

Nasals All Voiced

Stops
/d/, /b/, /g/ Voiced

/t/, /p/, /k/ Unvoiced

Fricatives
/z/, /v/, /Z/, /ð/ Voiced

/s/, /f/, /S/, /h/ Unvoiced

/h/ Both

Affricates
/dZ/ Voiced

/tS/ Unvoiced

FIG. 1. (Color online) Magnitude spectrograms of microphone and laryngo-

graph recordings of an utterance from a female speaker in the FDA dataset

(Bagshaw et al., 1993). The demarcated interval corresponds to the word

“choice.”
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accuracy of the trained model due to errors introduced by

the pitch tracker on such clean speech. When it comes to

ground truth, as discussed earlier, laryngograph data are

considered to be the most reliable reference (Plante et al.,
1995). Several approaches have been proposed to address

voicing detection in clean speech. Among them is the repre-

sentative CREPE method (Kim et al., 2018), which is

trained on synthetic data to provide a periodicity estimate

for each frame. The degree of periodicity indicates the like-

lihood of the presence of voiced speech within the frame,

with higher values indicating a greater likelihood of voicing.

Similar to SRH, a simple threshold is utilized to determine

whether a frame is voiced. Such an approach sometimes

produces unreliable voicing decisions. In Morrison et al.
(2023), an entropy-based method is introduced for generat-

ing periodicity, and along with several training strategies, it

significantly improves the accuracy of voicing decisions.

Another approach involves utilizing a laryngograph to cre-

ate annotations, which can then be employed to train a

model on microphone recordings. For example, Drugman

et al. (2018) incorporate both internal data and the CMU

Arctic dataset (Kominek and Black, 2004) in their training

data. Labels are obtained from laryngograph data, and a

leave-one-speaker-out cross-validation scheme is employed

during training to assess the effectiveness of their approach.

While the idea is sensible, there is certainly room for

improvement. First, their training dataset is relatively small,

which potentially limits the generalizability of their trained

model. Second, they employ a plain multi-layer perception

(MLP), which may not be able to model complex patterns in

the data as well as more advanced DNNs.

To our knowledge, there is currently no open-source

DNN-based voicing detection algorithm trained on accessi-

ble laryngograph data, which hinders the effort of building

on and improving earlier work. Our study intends to rectify

this situation.

IV. LARYNGOGRAPH DATASETS, PREPROCESSING,
AND LABEL GENERATION

A. Laryngograph datasets

Voicing labels generated from laryngograph recordings

are widely used as ground-truths for evaluating voicing

detection methods. Table II lists publicly accessible datasets

employed in this study and provides relevant details for

each dataset. We do not incorporate publicly accessible

datasets that provide fewer than 100 utterances. Among the

five datasets, three provide reference pitch and voicing

labels extracted by different algorithms. FDA (Bagshaw

et al., 1993) is a relatively small dataset that provides micro-

phone and laryngograph recordings from a male and a

female speaker, and each speaker has 50 utterances. The

provided reference labels in the FDA dataset are extracted

using a “pulse” location algorithm where the duration

between consecutive pulses are derived and converted to

Hertz. If the value is within a certain range, the duration is

considered voiced. Otherwise, it is considered unvoiced.

PTDB-TUG (Pirker et al., 2011) has ten male speakers and

ten female speakers and around 4720 utterances in total. The

provided reference labels are extracted by first applying a

high-pass filter on laryngograph waveforms to remove low

frequency components caused by larynx movements and

then applying the RAPT (Talkin and Kleijn, 1995) algorithm

on the filtered laryngograph waveforms. The KEELE

(Plante et al., 1995) dataset has recordings from five adult

male speakers, five adult female speakers, and five children.

We can only find the recordings from adult speakers. For

male speakers, the length of each recording is from 27 s to

40 s. For female speakers, the length is from 28 s to 30 s. To

better process the data, we further split the recordings to

utterances around 3 s long. In total, we obtained 98 utteran-

ces. Note that the provided reference labels in the PTDB-

TUG and KEELE datasets align with the 10 ms frame shift

used in the voicing detection algorithms for evaluation

(detailed in Sec. VII). The FDA dataset provides the start

and end times of voiced intervals, and we generate labels

with the 10 ms frame shift within these intervals. Mocha-

TIMIT1 and CMU Arctic (Kominek and Black, 2004) are

relatively large datasets but do not provide reference labels.

The Mocha-TIMIT dataset has 4028 utterances, which are

uttered by four male and five female speakers. In the CMU

Arctic dataset, we find that the recordings from two male

speakers and one female speaker come with laryngograph

waveforms. In total, the collected datasets contain 12 323

utterances from 22 male and 22 female speakers.

B. Data preprocessing

While the laryngograph data in these datasets are gener-

ally suitable for training purposes, our review reveals that

two of the five datasets in Table II (PTDB-TUG and Mocha-

TIMIT) contain problematic recordings. Upon examining

TABLE II. Description of accessible laryngograph datasets.

Dataset Speaker information No. of utterances Label provided? Label extraction method

FDA (Bagshaw et al., 1993) 1 male and 1 female 100 Yes Pulse location algorithm

PTDB-TUG (Pirker et al., 2011) 10 males and 10 females 4720 Yes RAPT Algorithm

KEELE (Plante et al., 1995) 5 males and 5 females 98 (approximated) Yes Autocorrelation algorithm

Mocha-TIMITa 4 males and 5 females 4028 No

CMU Arctic (Kominek and Black, 2004) 2 males and 1 female 3377 No

Total 22 males and 22 females 12 323

aSee https://data.cstr.ed.ac.uk/mocha.
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the PTDB-TUG dataset, we find a number of laryngograph

waveforms to be of low quality, such as the one depicted in

Fig. 2(a). These recordings do not appear to capture vocal

fold movements, making them unsuitable for extracting

ground-truth labels. For the Mocha-TIMIT dataset, we have

identified some files that contain noisy harmonic patterns in

silence intervals, as illustrated in Fig. 2(b). These silence

intervals would be recognized as voiced frames by a pitch

extraction algorithm due to the presence of harmonic struc-

ture. To ensure evaluation accuracy, we perform manual

exclusion and correction on these two datasets. On PTDB-

TUG, the waveforms with spectrograms showing the

patterns in Fig. 2(a) are excluded. On Mocha-TIMIT, we

correct those waveforms that contain mildly noisy harmonic

patterns where the RAPT algorithm can determine clear

boundaries for voiced regions but incorrectly indicates voic-

ing in silent intervals. Furthermore, we exclude the wave-

forms with strongly noisy harmonic patterns where even

manual correction leads to errors; these scenarios typically

involve voicing boundaries incorrectly detected by RAPT.

As a result, a total of 1230 waveforms are excluded from the

PTDB-TUG dataset, which originally comprises 4720 audio

samples. Additionally, nearly 500 waveforms are corrected

and around 270 waveforms are excluded for the Mocha-

TIMIT dataset.

C. Label generation

Given laryngograph data, different algorithms can be

used to extract ground-truth voicing labels, and there is no

standard way to perform label extraction. Although different

algorithms produce similar results, the results differ to some

extent. It is common that a paper announcing a laryngograph

dataset provides reference labels and encourages users to

generate their own reference labels (Pirker et al., 2011;

Plante et al., 1995).

In alignment with the method outlined for reference

voicing label generation in PTDB-TUG (Pirker et al., 2011),

we employ the following steps to derive reference voicing

labels from laryngograph datasets:

• Preprocess each dataset and manually remove all utteran-

ces with quality issues.
• High-pass filter each utterance to remove the lower fre-

quency components caused by larynx movements.

Specifically, apply a linear phase Kaiser filter with param-

eters b¼ 5 and n¼ 2400 to laryngograph signals. For

female speaker signals, the cutoff frequency is set to

fc¼ 25 Hz, and for the male speakers, fc¼ 15 Hz.
• Apply the RAPT algorithm to filtered laryngograph sig-

nals to produce voicing decisions.
• If an audio frame is considered voiced, the reference label

yv is set to 1. Otherwise, it is set to 0.

How much do different label extraction algorithms dif-

fer? We use the above method to extract reference labels

from PTDB-TUG, KEELE, and FDA datasets and compare

them to the provided reference labels. Alignment is per-

formed to maximize the match between the provided and

extracted labels. The mismatch rates, which represent the

percentage of mismatched frames to all frames are given in

Table III. We observe that the mismatch rate is around 2%

for all datasets. Figure 3 shows an example utterance with

the top mismatch rate in the FDA dataset. The figure shows

that the provided reference labels tend to under-label voiced

intervals, and our method provides more balanced voicing

decisions. More specifically, as illustrated in the figure, the

intervals with relatively few harmonics tend to result in

under-labeling in the provided reference labels. On the other

hand, detecting short transitions between voiced phones

tends to be challenging for our method. As pitch estimation

is supposed to be conducted only in voiced intervals, differ-

ent voicing labels will impact pitch estimation results. Over-

labeling in particular is expected to degrade pitch estimation

performance.

FIG. 2. (Color online) Examples of low-quality laryngograph data in (a) the

PTDB-TUG dataset and (b) the Mocha-TIMIT dataset, with corresponding

spectrograms of microphone and laryngograph recordings. The red line in

panel (b) represents the reference voicing labels, including the erroneous

labels extracted from the flawed laryngograph waveform.
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V. MODEL DESCRIPTION

Our voicing detection model is adapted from CrossNet

(Kalkhorani and Wang, 2024), a recently proposed speech

separation model that achieves the state-of-the-art perfor-

mance by capturing global, cross-band, and narrow-band

correlations in the time-frequency domain. The network

structure is illustrated in Fig. 4. Following Zhang et al.
(2023), where better F0 estimation and voicing detection

performance are observed in the complex domain rather

than in the magnitude domain, and aligning with the setup

in Kalkhorani and Wang (2024), we choose a complex-

domain input feature comprising a concatenation of the real

and imaginary parts of the complex short-time Fourier trans-

form (STFT) of a speech signal,

Xt;f ¼ RðSt;f Þ;IðSt;f Þ
� �

; (1)

where St;f represents the STFT of the speech signal at time t
and frequency f and R and I denote the real and imaginary

parts, respectively. The speech signal is normalized by its

variance before calculating its STFT.

As shown in Fig. 4, the model consists of an encoder

layer, N CrossNet blocks, and a separate decoder layer. The

encoder layer is a one-dimensional convolutional layer

(Conv1D) that transforms the input feature from 2� F� T
to C� F� T, where C, F, and T are the number of hidden

channels, the number of frequency bins, and the number of

frames, respectively. Additionally, a random-chunk posi-

tional encoding (RCPE) method is employed to address the

out-of-distribution problem commonly encountered in posi-

tional encoding approaches. RCPE shows improved general-

ization abilities for handling longer sequences. Specifically,

RCPE is implemented by selecting a contiguous chunk of

positional embedding vectors from a pre-computed posi-

tional encoding matrix during training. The pre-computed

positional encoding matrix is defined as

PEðt; 2iÞ ¼ sin
t

10 0002i=F�H

� �
; (2a)

PEðt; 2iþ 1Þ ¼ cos
t

10 0002i=F�H

� �
; (2b)

and RCPE is selected by

RCPEðTÞ ¼
PE s : sþ T � 1;…½ � if training;

PE 1 : T � 1;…½ � else;

(
(3)

where during training, a random index s is drawn from

½1; Tmax � T þ 1� and a chunk from index s to sþ T � 1 is

selected. Tmax is the maximum desired sequence length dur-

ing inference. During validation or testing, the first T
embedding vectors are selected. The RCPE feature is then

added to the input features, which are subsequently used as

input to the CrossNet blocks.

TABLE III. Mismatch rates between provided labels and self-generated

labels.

Dataset Mismatch rate (%)

FDA 1.89

KEELE 2.19

PTDB-TUG 1.90

FIG. 3. (Color online) Comparison of provided and extracted voicing labels

on the utterance with the highest mismatch rate in the FDA dataset (corre-

sponding to utterance rl006 in the FDA dataset). The red line represents

voicing decisions, where 0 indicates unvoiced and another positive value

indicates voiced.

FIG. 4. Architecture of the voicing detection model based on CrossNet,

with N representing the number of CrossNet blocks and ŷv representing the

voicing detection output ranging from 0 to 1.
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Each CrossNet block consists of a global multi-head

self-attention (GMHSA) module, a cross-band module, and

a narrow-band module. The diagram illustrating each mod-

ule within a CrossNet block is presented in Fig. 5. In the

GMHSA module shown in Fig. 5(a), a point-wise two-

dimensional convolutional (Point-wise Conv2D) layer

is used to extract frame-level features. Its output with

Lð2Eþ C=LÞ channels is split into L sets of queries Q, keys

K, and values V, with dimensions of E� F� T; E� F� T,

and C=L� F� T, respectively, and L represents the number

of heads. Then, a self-attention layer is applied to learn

global correlations. Outputs from all heads are then

concatenated and sent to a Point-wise Conv2D layer with D
output channels. This is followed by a parametric rectified

linear unit (PReLU) activation function and layer normaliza-

tion. Afterwards, the input to the GMHSA module is added

to form the output of the module. The cross-band module,

illustrated in Fig. 5(b), comprises two frequency-

convolutional (Freq-Conv) modules and a full-band linear

module. Each Freq-Conv module includes a layer normali-

zation step, a grouped convolution layer along the frequency

axis (F-GConv1D), and a PReLU activation function. In the

full-band linear module, a linear layer is first used to reduce

the number of hidden channels from C to C0, followed by a

sigmoid-weighted linear unit (SiLU) activation function.

Next, several linear layers are applied along the frequency

axis to extract full-band features, with their parameters

shared by all the repeated CrossNet blocks to enhance

parameter efficiency. Then, a linear layer followed by a

SiLU activation function increases the number of hidden

channels back to C. The input to the cross-band module is

added to produce the output of the module. Figure 5(c)

shows the narrow-band module, which is formed by a layer

normalization, a linear layer followed by a SiLU activation,

a time-convolutional (T-Conv) layer, and a final linear layer.

The T-Conv layer consists of three grouped one-

dimensional convolution (T-GConv1D) layers followed by a

SiLU activation function, with the second T-GConv1D fol-

lowed by a grouped normalization layer. The first linear

layer in the narrow-band module maps the number of chan-

nels to C00, and the final layer maps the number of channels

back to C. Finally, a linear layer followed by sigmoidal acti-

vation is employed to produce the probabilistic output ŷv.

In terms of network configuration details, we set the

kernel sizes of the encoder layer, F-GConv1D, and T-

GConv1D to 5, 3, and 5, respectively. We set the number of

groups for F-GConv1D, T-GConv1D, and group normaliza-

tion to 8. The model has N¼ 7 CrossNet blocks, with hidden

channel sizes set to C¼ 96, C0 ¼ 4, and C00 ¼ 192. The

GMHSA module has four self-attention heads with an

embedding dimension of D¼ 64 and E ¼ d512=Fe, where

d�e represents the ceiling operation.

To train the model and obtain the probabilistic output

ŷv for an estimated voicing decision, we minimize the binary

cross-entropy loss Lv for voicing detection. The loss func-

tion is defined as

Lvðyv; ŷvÞ ¼ �yv log ŷv � ð1� yvÞ logð1� ŷvÞ; (4)

where yv represents the binary ground-truth voicing label,

with yv¼ 1 denoting a voiced frame and 0 indicating

otherwise.

To get voicing decisions during inference, ŷv is com-

pared against a threshold. The frame is decided as voiced if

ŷv is higher than the threshold and unvoiced otherwise. We

consider two ways for determining the threshold. The first

sets the threshold to 0.5 across all test sets, consistent with

the probabilistic interpretation of voicing detection. In the

second way, the threshold for each model is determined

based on the receiver operating characteristic (ROC) curve,

which plots the true positive rate (TPR) against the false

positive rate (FPR) at different thresholds. We first deter-

mine the threshold that maximizes TPR – FPR for each cor-

pus, then use the average of the optimal thresholds across all

corpora.

VI. EXPERIMENTAL SETUP

A. Datasets

We train our model on five laryngograph datasets as

described in Sec. IV: PTDB-TUG, Mocha-TIMIT, FDA,

KEELE, and CMU Arctic. The PTDB-TUG and Mocha-

TIMIT datasets were preprocessed using the method

mentioned in Sec. IV B. Additionally, we utilize a dataset

consisting of 50 000 utterances from the train-clean-360

subset of LibriSpeech (Panayotov et al., 2015) for

FIG. 5. Diagram of a CrossNet block. (a) Global multi-head self-attention module, (b) cross-band module, and (c) narrow-band module.
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pretraining. The labels for these utterances are extracted

using the RAPT algorithm. All audio files are downsampled

to 8 kHz. For STFT computation, we use a Hamming win-

dow of 32 ms duration with a 10 ms frame shift.

B. Training methodology

To evaluate the performance of our approach, we

employ a leave-one-corpus-out technique. Specifically, we

divide the data from four of the five datasets into a training

set, which comprises 90% of the data, and a validation set

comprising the other 10%. The remaining dataset is used for

testing or evaluation, and we repeat this process four times.

By using this technique, we obtain a comprehensive assess-

ment of the effectiveness of our method across multiple

datasets, while minimizing the potential for bias and

overfitting.

To enhance the generalizability of our trained model

across different speakers and datasets, we employ a pretrain-

ing strategy. Specifically, we start with the model that has

been trained on 50 000 microphone recordings from the

LibriSpeech dataset. We use RAPT to generate pseudo-

voicing labels for this pretraining. By incorporating this pre-

training on LibriSpeech utterances that are more than four

times those of the combined laryngograph datasets, we aim

to improve the overall performance of the model on unseen

data and speakers.

All models are trained with the Adam optimizer, with a

maximum learning rate of 0.001. We use the PyTorch

ReduceLROnPlateau scheduler and set the patience to 10

epochs and the reduction factor to 0.9. Gradient clipping is

applied with a maximum value of 5 to avoid gradient explo-

sion. We set the maximum training epoch number to 100,

and all models converge within this limit.

C. Evaluation metrics

We evaluate the performance of voicing detection using

voicing decision error (VDE), which indicates the percent-

age of frames that are wrongly classified in terms of

voicing,

VDE ¼ Np!n þ Nn!p

N
; (5)

where N represents the total number of frames, Np!n is the

number of the voiced frames that are misclassified as non-

voiced, and Nn!p is the number of non-voiced frames that

are misclassified as voiced. We also use the F-measure (F1

score) to evaluate the performance of voicing detection,

which is better suited for scenarios where the voiced and

unvoiced labels are imbalanced.

D. Baselines and other evaluation details

Our evaluation includes quantitative comparisons

against several strong baselines, including both signal proc-

essing and deep learning methods. For signal processing

methods, we choose RAPT (Talkin and Kleijn, 1995) and

SRH-Variant (Wang et al., 2022), which is an improved ver-

sion of SRH (Drugman and Alwan, 2011). It has been shown

(Koutrouvelis et al., 2016) that RAPT performs very well

for clean speech, while SRH shows strong voicing detection

performance for noisy speech.

For a deep learning baseline, we select a recent DNN-

based approach called PENN (Morrison et al., 2023), which

is extended from the DNN methods of CREPE (Kim et al.,
2018), FCN (Ardaillon and Roebel, 2019), and DeepF0

(Singh et al., 2021) and estimates the periodicity of each

speech frame to classify it as voiced or unvoiced. Different

from prior methods, PENN proposes a novel entropy-based

method for extracting per-frame signal periodicity, which

significantly enhances the classification accuracy of voiced

and unvoiced speech frames.

For implementation of baselines, we use the code pro-

vided in the Speech Signal Processing Toolkit (SPTK) PYTHON

package (SPTK working group, 2022) for RAPT and the

original code provided in Wang et al. (2022) for SRH-

Variant. For PENN, we use the default pretrained model

provided in Morrison et al. (2023), which corresponds to

FCNF0þþ pretrained on the MDB-stem-synth and PTDB-

TUG datasets, with a selected unvoiced threshold of 0.25

[see Sec. VI in Morrison et al. (2023)]. To ensure fair com-

parisons, we re-align the results from each baseline method

for the lowest VDE.

In addition to the aforementioned baseline methods, we

train a voicing detection model using the same training strat-

egy as the proposed method but replace CrossNet by the

DC-CRN architecture from our previous study (Zhang et al.,
2023). Like with CrossNet, DC-CRN generates a probabilis-

tic output and is trained by minimizing the binary cross-

entropy loss in Eq. (4). These experiments are conducted to

assess the impact of DNN architecture and pretraining.

Using the second way of determining the voicing

threshold described in Sec. V, we identify the following

optimal thresholds for the proposed models: 0.48 for DC-

CRN, 0.42 for DC-CRN with pretraining, 0.4 for CrossNet,

and 0.5 for CrossNet with pretraining. In addition to the

common threshold of 0.5, these model-specific optimal

thresholds are used in the evaluations presented in Sec. VII.

VII. EVALUATIONS AND COMPARISONS

A. Cross-corpus results

To evaluate the proposed and baseline methods, we

report a leave-one-corpus-out voicing detection results to

assess cross-corpus generalization. The VDE and F1 results

of the proposed methods and the baselines are given in

Table IV, where the proposed methods are evaluated using

the common threshold of 0.5. Table V shows the evaluation

results of the proposed methods using the optimal thresholds

determined through ROC analysis. It is worth noting that the

PENN model is trained in part on PTDB-TUG, so some of

the utterances in its PTDB-TUG evaluation are seen during

training, resulting in potentially inflated results in this

evaluation.
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CrossNet and CrossNet with pretraining denote the ver-

sions of the proposed model with or without pretraining on

LibriSpeech. Table IV shows that Mocha-TIMIT is the most

challenging dataset for the signal processing methods, with

the VDE rates of 10.41% for RAPT and 13.53% for SRH-

Variant. This may be attributed to the fact that the recorded

speech signals in Mocha-TIMIT have significant device

noise, making voicing detection more difficult. On the other

hand, the deep learning methods show more tolerance to

such noise. PENN cuts the VDE of RAPT by half, and

CrossNet with pretraining cuts the VDE by two thirds. It is

worth noting that, as discussed in Koutrouvelis et al. (2016),

RAPT has been shown to yield strong performance on clean

speech, outperforming SRH-Variant on all datasets.

PENN, which was trained on a combination of PTDB

and a synthetic dataset, outperforms the signal processing

methods, except for the two small datasets of KEELE and

FDA. In addition to the very low VDE on PTDB-TUG,

which is partly due to some common utterances in training

and testing, on the Mocha-TIMIT dataset, PENN achieves a

VDE of 5.24% and a F1 score of 0.9230, much better than

10.41% and 0.8618 by RAPT. On the CMU Arctic dataset,

PENN achieves a VDE of 5.22% and a F1 score of 0.9516,

better than 6.46% and 0.9429 by RAPT. On the other hand,

PENN performs poorly on the KEELE and FDA datasets,

even worse than SRH-Variant, indicating a lack of generali-

zation to these small datasets.

The proposed CrossNet model produces the best results

across all datasets. As shown in Table IV, on Mocha-TIMIT

and CMU Arctic, where PENN performs well, the CrossNet

model obtains VDEs of 3.75% and 3.68%, respectively, com-

pared to PENN’s 5.24% and 5.22%. The corresponding F1

scores for CrossNet are 0.9442 and 0.9652, better than

PENN’s 0.9230 and 0.9516, respectively. On the small data-

sets where PENN does not perform well, the CrossNet model

achieves VDEs of 5.02% for KEELE and 3.14% for FDA, and

F1 scores of 0.9562 for KEELE and 0.9593 for FDA. These

results are significantly better than those from RAPT. These

results suggest that the trained CrossNet model has better gen-

eralization by leveraging multiple datasets. Furthermore, the

CrossNet model exhibits outstanding performance on the

PTDB-TUG dataset, even surpassing that of the PENN model

that is trained in part on this corpus. It is also worth noting that

directly training a larger CrossNet designed for speech separa-

tion (Kalkhorani and Wang, 2024) actually gives worse perfor-

mance compared to the smaller model optimized for voicing

detection. This is likely due to the limited number of utteran-

ces in the training set, which is insufficient for the original

CrossNet model to learn voicing patterns without overfitting.

For the CrossNet model pretrained on the LibriSpeech

dataset, our evaluation results demonstrate consistent

improvements across datasets, with the exception of the

small FDA corpus. For instance, pretraining improves the

VDE on Mocha-TIMIT by 18.4% and on KEELE by

TABLE IV. Cross-corpus evaluation results in terms of VDE and F1 score.a Results in boldface represent the best results obtained for each test set.

Parameter VDE (%)/F1 score for:

Training set M, K, F, C P, K, F, C P, M, F, C P, M, K, C P, M, F, K

Test set PTDB-TUG Mocha-TIMIT KEELE FDA CMU Arctic

RAPT 3.47%/0.9230 10.41%/0.8618 5.75%/0.9490 4.61%/0.9407 6.46%/0.9429

SRH-Variant 5.39%/0.8648 13.53%/0.8239 9.37%/0.9113 7.84%/0.9042 8.79%/0.9190

PENN 2.37%/0.9446 5.24%/0.9230 12.31%/0.8835 10.05%/0.8466 5.22%/0.9516

DC-CRN 2.03%/0.9536 3.75%/0.9422 4.98%/0.9574 3.77%/0.9497 3.74%/0.9649

DC-CRN PT 1.83%/0.9580 3.43%/0.9451 4.06%/0.9655 4.32%/0.9418 3.47%/0.9675

CrossNet 1.84%/0.9574 3.75%/0.9442 5.02%/0.9562 3.14%/0.9593 3.68%/0.9652

CrossNet PT 1.77%/0.9593 3.06%/0.9510 4.36%/0.9620 3.96%/0.9451 3.35%/0.9689

aThe proposed methods are evaluated using the common threshold of 0.5. The datasets used for training and evaluation are CMU Arctic (C), FDA (F),

KEELE (K), Mocha-TIMIT (M), and PTDB-TUG (P). PT means with pretraining.

TABLE V. Cross-corpus evaluation results in terms of VDE and F1 score.a Results in boldface represent the best results obtained for each test set.

Parameter VDE (%)/F1 score for:

Training set M, K, F, C P, K, F, C P, M, F, C P, M, K, C P, M, F, K

Test set PTDB-TUG Mocha-TIMIT KEELE FDA CMU Arctic

DC-CRN 2.07%/0.9531 3.89%/0.9407 4.66%/0.9591 3.79%/0.9500 3.76%/0.9649

DC-CRN PT 1.87%/0.9574 3.76%/0.9420 3.78%/0.9671 3.77%/0.9489 3.53%/0.9674

CrossNet 1.85%/0.9575 4.05%/0.9408 4.92%/0.9572 3.24%/0.9585 3.60%/0.9663

CrossNet PT 1.77%/0.9593 3.06%/0.9510 4.36%/0.9620 3.96%/0.9451 3.35%/0.9689

aModels are evaluated using the optimal thresholds from ROC analysis. The datasets used for training and evaluation are CMU Arctic (C), FDA (F),

KEELE (K), Mocha-TIMIT (M), and PTDB-TUG (P).
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13.15% relatively, with F1 scores improved to 0.9510 and

0.9620, respectively. These outcomes suggest that pretrain-

ing the CrossNet model on LibriSpeech help to boost voic-

ing detection performance across datasets.

In our previous study (Zhang et al., 2023), we devel-

oped a DC-CRN model (Tan et al., 2021) for both funda-

mental frequency (F0) estimation and voicing detection in

noisy speech. From Table IV, we find that the DC-CRN

based voicing detection model also shows good results and

improves with pretraining, demonstrating the effectiveness

of pretraining regardless of network architecture. The

CrossNet based model with pretraining brings further

improvements, especially on the relatively larger corpora of

PTDB-TUG, Mocha-TIMIT, and CMU Arctic. For example,

when tested on the CMU Arctic dataset, the DC-CRN model

achieves a VDE of 3.74% and a F1 score of 0.9649. With

pretraining, the performance of DC-CRN gets improved to a

VDE of 3.47% and a F1 score of 0.9675. CrossNet with pre-

training further reduces the VDE to 3.35% and increases the

F1 score to 0.9689. In addition, CrossNet has much fewer

trainable parameters: 1.56 � 106 compared to DC-CRN’s

4.18 � 106.

Table V presents the evaluation results of the proposed

methods using the optimal thresholds determined through

ROC analysis. By comparing these results with those in Table

IV, we find that the identified optimal thresholds result in bet-

ter performance on the smaller corpora of KEELE and FDA.

In contrast, the common threshold shows slightly better per-

formance on PTDB-TUG, Mocha-TIMIT, and CMU Arctic.

Comparing the two tables shows that using the common

threshold is simpler with comparable performance.

Figure 6 illustrates voicing detection performed on a

laryngograph recording, specifically a male utterance from

the CMU Arctic corpus. The proposed methods, including

DC-CRN, DC-CRN with pretraining, CrossNet, and

CrossNet with pretraining, are evaluated using the identified

optimal thresholds. Figure 6(c) shows the reference voicing

labels derived from Fig. 6(a) using the method described in

Sec. IV C. As shown in Figs. 6(d) and 6(e), RAPT is prone

to overestimating voiced regions, while SRH-Variant has

both overestimation and underestimation errors. The DNN

baseline, PENN, makes quality estimation but does not

eliminate the underestimation problem. DC-CRN and DC-

CRN with pretraining provide good estimates, although both

slightly overestimate voiced frames around the 2-s point.

The proposed CrossNet and CrossNet with pretraining mod-

els show better voicing detection performance than PENN

and DC-CRN based models, yielding the most accurate esti-

mates among all the methods.

B. Cross-corpus results on provided labels

As explained before, three of the five laryngograph cor-

pora provide voicing labels. We now evaluate the proposed

FIG. 6. (Color online) An example of voicing detection in clean speech,

which is a male utterance (“Not till the twentieth of May did the river

break.”) from the CMU Arctic corpus. (a) Spectrogram of laryngograph

waveform, (b) spectrogram of microphone recording, (c) reference voicing

decisions, (d) estimated voicing decisions by RAPT, (e) estimated voicing

decisions by SRH-Variant, (f) estimated voicing decisions by PENN, (g)

estimated voicing decisions by DC-CRN, (h) estimated voicing decisions

by DC-CRN with pretraining, (i) estimated voicing decisions by CrossNet,

and (j) estimated voicing decisions by CrossNet with pretraining.

TABLE VI. Cross-corpus evaluation results in terms of VDE and F1 score

evaluated on datasets with provided labels.a Results in boldface represent

the best results obtained for each test set.

Parameter VDE (%)/F1 score for:

Training set M, K, F, C P, M, F, C P, M, K, C

Test set PTDB-TUG KEELE FDA

RAPT 4.29%/0.9056 4.52%/0.9531 4.85%/0.9402

SRH-Variant 7.24%/0.8396 7.84%/0.9303 8.01%/0.8972

PENN 3.20%/0.9254 13.53%/0.8705 12.49%/0.8249

DC-CRN 2.97%/0.9326 4.66%/0.9539 4.73%/0.9390

DC-CRN PT 2.76%/0.9370 4.55%/0.9544 5.34%/0.9305

CrossNet 2.73%/0.9375 4.26%/0.9577 4.34%/0.9452

CrossNet PT 2.69%/0.9387 4.66%/0.9536 5.48%/0.9270

aThe proposed methods are evaluated using the common threshold of 0.5.

The datasets used for training and evaluation are CMU Arctic (C), FDA (F),

KEELE (K), Mocha-TIMIT (M), and PTDB-TUG (P).
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and baseline methods using the provided labels, and the

results are given in Table VI, where the proposed methods

are evaluated using the common threshold of 0.5. It should

be noted that, for the KEELE dataset, the provided labels

include three classes: voiced, unvoiced, and uncertain. Our

evaluation does not consider the uncertain frames for evalu-

ation, which results in a lower VDE for KEELE compared

to the results shown in Table IV. It is observed that the two

signal processing methods have comparable VDE rates

across provided and generated labels, indicating the consis-

tency and similarity of the labels generated using laryngo-

graph data. The mismatch in label generation methods

between the training and test sets leads to a performance

drop in the proposed methods when evaluated using the pro-

vided reference labels. In addition, the poor performance of

PENN on the KEELE and FDA datasets confirms our earlier

observation of its limited generalization ability.

Improvements are observed in the DC-CRN and CrossNet

models compared to the baselines, with pretraining showing

benefits on the large PTDB-TUG dataset. The VDE of the

CrossNet model is 1.56% lower than that of RAPT on

PTDB-TUG, and the results of CrossNet and RAPT are sim-

ilar on the smaller KEELE and FDA datasets. It is also

observed that pretraining appears not to be beneficial in

Table VI on the small KEELE and FDA datasets, due in part

to the mismatch between the training and test data. These

results demonstrate that the proposed CrossNet model and

pretraining have strong generalizability across different

label generation algorithms. We also evaluate the proposed

models using the optimal thresholds determined through

ROC analysis, with the results shown in Table VII. Overall,

these results demonstrate slightly better performance com-

pared to those in Table VI on the KEELE and FDA datasets.

VIII. CONCLUDING REMARKS

This study introduces a robust DNN-based voicing detec-

tion model for clean speech by using laryngograph data for

training. The model employs a CrossNet architecture and

incorporates a pretraining strategy on the LibriSpeech dataset.

Our cross-corpus evaluations demonstrate that the proposed

model outperforms signal processing and deep learning base-

line methods and shows strong generalization. By open sourc-

ing the model and the data, we expect to accelerate the

progress of voicing detection and related research such as

pitch tracking in challenging environments.

Given the success of using synthesized speech data for

training DNN models for pitch estimation (see, e.g., Kim

et al., 2018), should voicing detection utilize synthetic

speech data? While synthetic data allow complete control of

ground-truth voicing labels, our preliminary investigation

suggests that using synthetic data is not effective for voicing

detection. A possible reason is that a voicing detection

model trained on synthetic data generated from microphone

recordings relies heavily on the similarity of the synthetic

training data and the voicing patterns of microphone record-

ings, which is difficult to maintain at the boundaries

between voiced and unvoiced intervals. Also, voicing detec-

tion from the microphone recording of a speech utterance is

prone to errors, as highlighted in this paper. On the other

hand, laryngograph data represent the gold standard for F0

and voicing label generation. Prior studies on pitch estima-

tion (Ardaillon and Roebel, 2019; Zhang et al., 2022) prefer

synthetic data over laryngograph data partly because octave

errors affect the accuracy of F0 labels derived from laryngo-

graph recordings. This concern, however, does not extend to

voicing labels.

In future work, we plan to apply the proposed voicing

detection model to improve pitch tracking performance

under adverse acoustic conditions, including background

noise, room reverberation, and concurrent speakers.
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