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ABSTRACT


Robustness of speaker recognition systems is crucial for real-world 

applications, which typically contain both additive noise and room 

reverberation. However, the combined effects of additive noise and 

convolutive reverberation have been rarely studied in speaker iden-

tification (SID). This paper addresses this issue in two phases. We 

first remove background noise through binary masking using a 

deep neural network classifier. Then we perform robust SID with 

speaker models trained in selected reverberant conditions, using 

bounded marginalization and direct masking. Evaluation results 

show that the proposed system substantially improves SID perfor-

mance over related systems in a wide range of reverberation time 

and signal-to-noise ratios. 

Index Terms— Robust speaker identification, noise, rever-

beration, ideal binary mask, deep neural network 

1. INTRODUCTION

Robustness of automatic speaker recognition is critical for real-

world applications. In daily acoustic environments, additive noise, 

room reverberation and channel/handset variations conspire to 

pose considerable challenges to such systems. A lot of research has 

been devoted to dealing with individual challenges. For example, 

computational auditory scene analysis (CASA) was recently em-

ployed to remove noise [31]. Speaker features such as modulation 

spectral features [4] have shown robustness against reverberation. 

By and large, the speaker recognition community has focused on 

channel variations in speaker verification. The National Institute of 

Standards and Technology (NIST) has conducted a series of speak-

er recognition evaluations (SRE) since 1996. State-of-the-art sys-

tems include joint factor analysis [13] and i-vector based tech-

niques [3]. 

However, efforts have rarely been made on the combined effects 

of noise and reverberation. May et al. [17] and Gonzalez-

Rodriguez et al. [6] studied the combined effects using binaural 

cues and microphone arrays. Garcia-Romero et al. [5] and 

Krishnamoorthy and Prasanna [15] reported results in noisy and 

reverberant conditions separately but not together. It is worth not-

ing that studies on human listeners suggest the combined effects of 

noise and reverberation degrade speech intelligibility to a greater 

degree than individually [10], [19].  

In this study, we explore the combined effects of noise and re-

verberation in monaural speaker identification (SID). We deal with 

reverberation by training models in noise-free reverberant condi-
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tions, while assuming little knowledge of the amount of reverbera-

tion in the test data. Meanwhile, noise is suppressed through a 

CASA approach that segregates speech by binary time-frequency 

(T-F) masking. We perform binary classification using a deep neu-

ral network (DNN). We utilize a CASA mask for SID in two ways, 

namely bounded marginalization and direct masking. The outputs 

of the two methods are combined to make the final SID decision. 

The rest of the paper is organized as follows. Section 2 gives an 

overview of the system and discusses front-end processing includ-

ing DNN-based mask estimation. Bounded marginalization and 

direct masking are introduced in Section 3, followed by evalua-

tions in Section 4. We conclude this paper in Section 5. 

2. SYSTEM OVERVIEW AND FRONT-END

PROCESSING 

Figure 1 shows the schematic diagram of the proposed system. 

Noisy speech is first passed through a DNN classifier to produce a 

binary T-F mask. Simultaneously we extract gammatone features 

(GF) and gammatone frequency cepstral coefficients (GFCC) [24]. 

Each of the multiple training conditions produces one set of speak-

er models that is utilized independently. GF-based speaker models 

are fed to the bounded marginalization module, while GFCC-based 

speaker models to the direct masking module. Local decisions 

corresponding to different training conditions are first combined 

within each module and subsequently between two modules to 

make the final SID decision. Below, we describe auditory features 

and discuss the definition of a CASA mask. Then DNN-based 

binary masking is described. 

2.1. Auditory Features and IBM Definition 

Two auditory features are employed in our system. One is GF in 

the spectral domain and the other one is GFCC in the cepstral do-

main. They are chosen primarily because of their robustness rela-

tive to other commonly used speaker features such as mel-

frequency cepstral coefficients (MFCC) [31].  

Noisy and reverberant speech is first passed through a 64-

channel gammatone filterbank to create a two-dimensional 

cochleagram [27]. Each frame of the cochleagram is rectified us-

ing the cubic root operation to generate a GF vector. We apply 

discrete cosine transform to GF to derive GFCC. Detailed feature 

extraction can be found in [31].  

A main computational goal of CASA is the ideal binary mask 

(IBM) [26], where each element corresponds to a T-F unit in the 

cochleagram and indicates whether the local signal-to-noise ratio 

(SNR) is larger than a threshold called local criterion (LC). Given 

premixed target and interference signals, the IBM can be readily 

constructed. In this study, the entire reverberant speech is consid-

ered as the target and the reverberant noise as interference [12]. 
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2.3. Mask Estimation via DNN 

The definition of the IBM is based on the prior information of 

target and interference. In practice, we have to estimate the IBM. 

Recent work in CASA employs supervised classification for IBM 

estimation [8], [14]. Motivated by their superior performance [28], 

we employ DNNs for mask estimation in this study. 

We use the standard generative-discriminative procedure to 

train DNNs. First, the DNNs are pretrained using restricted Boltz-

mann machines (RBMs) in an unsupervised and layerwise fashion. 

Once pretrained, the weights from a stack of RBMs are used to 

initialize a standard feedforward network, which is then discrimi-

natively fined-tuned using the backpropagation algorithm. Since 

our target labels are binary, we use the cross-entropy objective 

function for backpropagation:  

     

m

mmmm pdpdE 1log1log   (1) 

where m indexes training samples, dm is the label of sample m and 

pm is the corresponding network prediction (posterior probability).  

Our separation system works as follows. We extract features 

from the cochleagram and train a subband classifier for each fre-

quency channel to estimate the target-dominance of each T-F unit, 

where the training labels are provided by the IBM. Since a deci-

sion needs to be made for each T-F unit, we extract unit-level fea-

tures from the subband signal within each T-F unit. In this study, 

we use the complementary feature set proposed in [29], which 

consists of amplitude modulation spectrogram, RASTA-PLP, 

MFCC and pitch-based features. We used the DNNs described 

above as the subband classifiers. 

3. RECOGNITION METHODOLOGY

The GMM framework along with the universal background model 

(UBM) [22] is adopted for speaker modeling in this study. At each 

frame, a binary mask divides the T-F units into two groups. One 

group consists of reliable T-F units with the label of 1 while the 

remaining unreliable T-F units, with the label of 0, form the other 

group. Multiple methods have been developed to deal with unreli-

able T-F units group such as marginalization, reconstruction, and 

direct masking. We use bounded marginalization and direct mask-

ing as two modules. 

3.1. Bounded Marginalization Module 

The basic idea of marginalization is to base recognition on reliable 

T-F units while removing the impact of unreliable ones. Conven-

tional marginalization integrates over unreliable T-F units in the 

entire range of feature values, e.g. minus infinity to positive infini-

ty. Bounded marginalization sets realistic lower and upper bounds 

for the integration, which has proven beneficial [18], [31]. Specifi-

cally, we perform bounded marginalization on the GF features with 

a CASA mask specifying the reliable and unreliable T-F units. 

3.2. Direct Masking Module 

Direct masking is a recently proposed technique for coupling bina-

ry masking and speech recognition [9]. In direct masking, one 

simply attenuates the noise-dominant T-F units using a constant 

gain, instead of estimating them as done in feature reconstruction. 

Cepstral features are then calculated directly from this masked 

representation or from the resynthesized target signal. Results have 

shown that this leads to competitive recognition performance com-

pared to bounded marginalization and feature reconstruction. 

Therefore, we use direct masking in this study. 

When the IBM is available, we retain target-dominant T-F units 

and attenuate noise-dominant T-F units by 26 dB. For estimated 

binary masks, we have found that using the outputs of the DNNs 

directly performs better than converting them to binary values. 

GFCC features for speaker recognition are extracted from the re-

synthesized target signal, which is obtained by applying the ratio 

mask (i.e. DNN output) to the mixture. 

3.3. Reverberant Model Training 

Speaker models trained in anechoic and noise-free conditions do 

not generalize well to reverberation. To characterize speaker fea-

ture distributions in such conditions, we train speaker models from 

reverberant environments. 

Reverberation is usually characterized in terms of reverberation 

time (T60), which describes the amount of time for the direct sound 

to decrease by 60 dB. Room reverberation is typically modeled as a 

convolution between a direct signal and a room impulse response 

(RIR) which characterizes a specific reverberant condition. An RIR 

is determined by many factors such as geometry of the room, loca-

tions of sound sources and receivers.  

To simplify the experimental settings while assuming little prior 
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Figure 1. Schematic diagram of the proposed speaker identification system 
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knowledge of testing reverberation, we simulate N reverberant 

environments covering a plausible range of T60. In this study, the 

range is chosen from 0s (anechoic condition) up to 1s, covering 

daily room environments [16]. These N reverberant conditions are 

chosen as the representatives of the range and expected to general-

ize to T60’s between these representative values. We train a set of 

speaker models in each of the N conditions. Each set of speaker 

models characterizes a unique reverberant condition and is used 

independently for speaker recognition. 

3.4. Multi-condition Fusion and Module Combination 

For an unknown test reverberant condition, each of the N reverber-

ant training conditions correlates with the test condition different-

ly. The speaker models from the best matching conditions should 

be used. However, these correlations are unknown without ground 

truth information. We propose to fuse the contributions from all 

training conditions. If done well, we expect that the best matching 

condition will dominate the fusion. If none of the training condi-

tions match the test condition well, this fusion could leverage mul-

tiple contributions. As the score ranges from these conditions 

could be very different, we normalize before fusing them to make 

the final SID decision. We combine the normalized scores using a 

simple summation. The two modules address SID in noise from 

different perspectives. GF and GFCC exhibit complementary prop-

erties for noise-robust SID [31]. We have observed that the errors 

of the two modules tend not to agree and the underlying speaker 

often achieves high scores in both modules. Hence, we combine 

these two modules to further improve SID performance. Similar to 

within-module fusion, we first apply score normalization and then 

simply add the module scores. 

4. EVALUATION AND COMPARISON

4.1. Experimental Setup 

We randomly drew 300 speakers from the 2008 NIST Speaker 

Recognition Evaluation dataset (short2 part of the training set). 

The telephone conversation excerpt of each speaker is divided into 

5s long pieces. Two pieces with the highest energy are selected as 

the test data in order to provide sufficient speech information. The 

remaining pieces are used for training. We employ the Matlab 

implementation of the image method to simulate room reverbera-

tion [2], [7]; results with recorded impulse responses are given in 

Section 4.4. The range of T60 is varied from 0 to 1s, which covers a 

broad range of realistic reverberant environments [16]. We simu-

late three rectangular rooms to obtain 3 T60’s: 300, 600 and 900 

ms. For each T60, we simulate 5 RIRs by randomly positioning a 

speech source and a receiver with the source-to-receiver distance 

fixed at 2m. Each training utterance is convolved with the 5 RIRs. 

Each speaker is modeled in these three T60’s separately using the 

GMM-UBM framework [22]. Test RIRs, on the other hand, are 

obtained from 7 simulated rooms corresponding to 7 T60’s from 

300 ms to 900 ms with the increment of 100 ms. We simulate 3 

pairs of RIRs in each room (T60) by randomly positioning a speech 

source, a noise source and a receiver with both source-to-receiver 

distances fixed at 2m. The relative location of each source to the 

receiver determines an RIR. This results in 21 pairs of RIRs in 

total. Each test utterance is convolved with 2 pairs of RIRs that are 

randomly selected from the 21 pairs RIR library. Factory noise, 

speech shape noise (SSN) and destroyer engine room noise from 

the Noisex-92 database are used as interference [25]. We generate 

5 SNRs for each noise from 0 to 24 dB with the increment of 6 dB. 

In total, each SNR of each noise has 300*2*2 = 1200 test trials. 

We extract 64-dimensional GF for bounded marginalization and 

22-dimensional GFCC features for direct masking. We also extract 

22-dimensional MFCC features for the sake of comparison. Speak-

er models are adapted from a 1024-component UBM that is trained 

by pooling training data from all the enrolled speakers [22]. For 

each speaker, we train 3 sets of models in the three reverberant 

training conditions for GF, GFCC and MFCC respectively. In ad-

dition, we train a set of anechoic models for each feature to gener-

ate benchmark performance. We perform SID only in selected 

frames with some target information. Given a frame, it will be se-

lected if its number of reliable units is greater than half number of 

the channels (i.e. 32) or the median number of reliable T-F units 

over frames with at least one reliable T-F unit. 

For mask estimation, we use two-hidden-layer DNNs, which 

strike a balance between performance and computational overhead 

[28]. We train DNNs separately for bounded marginalization and 

direct masking using noisy and reverberant training data. Used to 

provide training labels, the IBM is created by comparing the local 

SNR of each T-F unit with the LC, which is typically set to 0 dB to 

indicate which source is stronger. Recent studies on speech intelli-

gibility [23] and robust speech recognition [20], however, have 

shown that an LC of 0 dB is not always optimal. To determine the 

optimal LC for the IBM, we set up another experiment by random-

ly selecting 50 speakers from the TIMIT corpus. Training and test-

ing data are set up similarly to the NIST dataset. IBMs are derived 

using different LCs and their corresponding SID performance is 

compared to determine the optimal LC. The results suggest that an 

LC of -4 dB is optimal for the bounded marginalization module, 

and -12 dB for the direct masking module. The corresponding 

optimal IBMs are employed as target labels for DNN-based mask 

estimation. 

4.2. Performance with Estimated IBM 

We now study the utilities of reverberant model training. We first 

apply anechoic speaker models to the anechoic and reverberant test 

sets respectively (noise is excluded). As expected, the performance 

of anechoic speaker models drops substantially in the reverberant 

test set due to the mismatch. After reverberation is included in 

speaker models, the performance is shown in Table 1. As shown in 

the table, the introduction of reverberation in the training data 

significantly improves performance for all the features. 

Now we evaluate the proposed system in the noisy and rever-

berant test set. When estimated IBMs are used, we notice that the 

inclusion of anechoic speaker models in the multi-condition fusion 

stage does not help at all due to their substantial performance gap 

from reverberant speaker models. Therefore, we only fuse the re-

verberant speaker models in each module. As can be seen in Table 

2, on average, the bounded marginalization module outperforms 

Features 
Anechoic 

Models 

300 ms 

Models 

600 ms 

Models 

900 ms 

Models 

MFCC 77.08 85.75 86.00 82.42 

GFCC 56.08 75.17 77.33 73.92 

GF 54.42 82.67 87.17 84.25 

Table 1: SID performance (%) of in the reverberant test set. The 

last three columns represent speaker models trained in the corre-

sponding T60 conditions 
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the direct masking module for both MFCC and GFCC. The direct 

masking module with GFCC substantially outperforms that of 

MFCC at the low SNRs, likely due to the better noise robustness of 

GFCC features [31]. As the SNR increases, MFCC closes the gap 

and even outperforms GFCC. In the combined system, we employ 

the direct masking module with GFCC. The combined system out-

performs individual modules in every test condition. For example, 

the combined system outperforms both modules by around 10% for 

factory noise at 6 dB. 

 
4.3. Comparison with Related Systems 

We pointed out that there was little study on the combined effects 

of reverberation and noise for SID. It is thus difficult to find com-

parison systems. As a result, we adapt a few related systems for the 

sake of comparison which should still provide useful perspectives 

on the relative performance of our model.  

The first related system, labeled as “Multi-conditional Training” 

in Figure 2, was designed for robust speaker verification using i-

vector based techniques [5]. One of the best performing methods in 

the paper trains Gaussian probabilistic linear discriminant models 

in both reverberant and noisy conditions. We apply this method to 

our task. The second system, labeled as “Reverb. Classification”, 

was designed to deal with reverberation alone [1], [21]. It trains 

speaker models in multiple reverberant conditions separately. Giv-

en a test utterance, it first identifies the closest training condition 

and uses the models of that condition to perform speaker recogni-

tion. Since it only deals with noise-free reverberant speech, we 

apply our estimated CASA masks for noise suppression as front-

end processing for this comparison system. The third system, la-

beled as “Speech Enhancement”, uses a state-of-the-art speech 

enhancement algorithm to suppress noise [11]. The last one, la-

beled as “Baseline”, directly recognizes the test data using MFCC-

based anechoic speaker models. 

The performance comparison of all these systems along with the 

proposed system is shown in Figure 2. Factory noise is the inter-

ference. The proposed system outperforms all the related systems. 

The second best performing system is the reverberation classifica-

tion method, which is partly due to the effectiveness of the sup-

plied CASA masks. The multi-conditional training method does a 

reasonable job at high SNRs, but not at low SNRs. Although the 

speech enhancement algorithm was proposed to deal with noisy 

speech in anechoic conditions, it exhibits reasonable performance 

in the reverberant environments, as shown by the improvement 

over the MFCC baseline. It could be the smearing effect of late 

reverberation on speech spectrum is somewhat similar to the cor-

ruption by SSN, which can be effectively attenuated by speech 

enhancement. Evaluations on the other two noise types have shown 

similar trends. 

4.4. Evaluation with Real Impulse Responses 

The results reported so far are generated using simulated RIRs. We 

now test our system using RIRs recorded in real rooms to assess its 

utilities in real environments. We use the real RIRs collected in 

Bell Labs [30] for training and testing sets. The remaining experi-

mental setup stays the same as with simulated RIRs. Note that we 

use the DNNs trained on simulated RIRs for mask estimation. In 

other words, there is no retraining of DNNs using real RIRs. 

The results demonstrate that DNNs trained using simulated 

RIRs generalize reasonably well to real RIRs. The proposed system 

outperforms the related systems by more than 10% across all the 

test conditions. This is consistent with simulated RIRs. However, 

the absolute performance of all systems including the proposed 

system decreases. This indicates that the real acoustic environ-

ments are more challenging than simulated ones for speaker recog-

nition. Detailed results are not presented here due to space limita-

tion. 

5. CONCLUDING REMARKS 

To conclude, we have investigated the combined effects of noise 

and reverberation in SID. We employ speaker models trained in 

multiple reverberant conditions to account for the mismatch creat-

ed by reverberation. Noise is dealt with using DNN-based CASA 

separation and two recognition methods together yield substantial 

performance improvement over related systems in a wide range of 

reverberation time and SNRs. 

6. RELATION TO PRIOR WORK 

The work presented here has focused on the combined effects of 

noise and reverberation in monaural speaker identification. There 

has been little study on this problem. The work by Garcia-Romero 

et al. [5] and Krishnamoorthy and Prasanna [15] only reported 

results in noise and reverberation separately. While the reverberant 

training idea is related to the Akula et al.’s work [1], we in addi-

tion employ CASA to deal with noise. 
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Figure 2. SID comparisons of the proposed system with related 

systems under factory noise 

 

Factory 0dB 6dB 12dB 18dB 24dB Avg. 

MFCC_DM 12.5 23.0 43.5 64.8 75.7 43.9 

GFCC_DM 33.3 48.3 61.0 70.3 74.0 57.4 

GF_BM 34.1 49.2 59.3 71.9 80.0 58.9 

Comb. Syst. 40.3 59.2 67.7 76.8 81.8 65.2 

 

Destroyer 0dB 6dB 12dB 18dB 24dB Avg. 

MFCC_DM 16.2 33.2 50.3 64.2 75.2 47.8 

GFCC_DM 35.8 47.3 57.7 66.6 72.1 55.9 

GF_BM 45.8 57.9 69.1 78.6 81.8 66.6 

Comb. Syst. 50.0 61.7 73.5 79.8 82.4 69.5 

 

SSN 0dB 6dB 12dB 18dB 24dB Avg. 

MFCC_DM 18.5 34.3 55.9 71.3 79.6 51.9 

GFCC_DM 37.7 52.9 64.3 70.9 74.9 60.1 

GF_BM 44.8 61.2 73.6 79.8 83.4 68.6 

Comb. Syst. 51.3 67.0 77.8 83.0 84.8 72.8 

Table 2: SID accuracy (%) of the proposed system using estimat-

ed IBMs. _DM denotes the direct masking module. _BM denotes 

the bounded marginalization module. Comb. Syst. denotes the 

proposed system 
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