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Recently, deep learning based speech segregation has been shown to improve human speech intelli-

gibility in noisy environments. However, one important factor not yet considered is room reverbera-

tion, which characterizes typical daily environments. The combination of reverberation and

background noise can severely degrade speech intelligibility for hearing-impaired (HI) listeners. In

the current study, a deep learning based time-frequency masking algorithm was proposed to address

both room reverberation and background noise. Specifically, a deep neural network was trained to

estimate the ideal ratio mask, where anechoic-clean speech was considered as the desired signal.

Intelligibility testing was conducted under reverberant-noisy conditions with reverberation time

T60¼ 0.6 s, plus speech-shaped noise or babble noise at various signal-to-noise ratios. The experi-

ments demonstrated that substantial speech intelligibility improvements were obtained for HI

listeners. The algorithm was also somewhat beneficial for normal-hearing (NH) listeners. In

addition, sentence intelligibility scores for HI listeners with algorithm processing approached or

matched those of young-adult NH listeners without processing. The current study represents a step

toward deploying deep learning algorithms to help the speech understanding of HI listeners in

everyday conditions. VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5055562
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I. INTRODUCTION

Hearing loss is one of the most prevalent chronic health

conditions, affecting approximately 10% of the population.

A primary symptom of hearing-impaired (HI) listeners is

reduced speech intelligibility in background interference.

Although traditional speech enhancement methods fail to

improve intelligibility, it has been recently established that

supervised speech segregation based on deep neural net-

works (DNNs) can produce substantial intelligibility

improvements. The first demonstration was provided by

Healy et al. (2013), who employed an extended version of a

DNN-based monaural segregation algorithm (Wang and

Wang, 2013). The algorithm estimated the ideal binary mask

(IBM) when provided only with features from speech mixed

with noise. Considerable intelligibility improvements were

found for HI listeners as well as for normal-hearing (NH) lis-

teners in both steady (stationary) and modulated (nonstation-

ary) noises, with the largest improvement occurring for HI

listeners in modulated noise.

A series of subsequent studies have relaxed the match-

ing requirements between training and test conditions, thus

broadening the scope of generalization for supervised learn-

ing. In Healy et al. (2015), a DNN was trained using one

segment of a nonstationary noise and tested using a new seg-

ment of the same noise type, which was considerably more

challenging algorithmically than training and testing on

overlapping noise segments, as in Healy et al. (2013).

Intelligibility increases were again observed for HI listeners

(Healy et al., 2015). Chen et al. (2016) employed large-scale

training on a variety of noises and performed testing on

entirely new noises. As for the previous studies, intelligibil-

ity increases were observed for HI listeners. Monaghan et al.
(2017) evaluated a small DNN, and also found intelligibility

improvements for HI listeners. Their study suggests that

auditory-inspired features may be more effective than previ-

ously used features. More recently, Healy et al. (2017)

proposed a DNN separation algorithm to deal with speaker

segregation, where a target talker was presented with a com-

peting talker. Once again, substantial intelligibility improve-

ments for HI listeners were obtained. Furthermore, these

studies have shown that DNN-based speech segregation pro-

duces larger speech intelligibility gains for HI listeners than

for NH listeners. This result involving DNN-estimated time-

frequency (T-F) masks is consistent with work involving HI

and NH listeners hearing speech subjected to ideal (not esti-

mated) T-F masks (Anzalone et al., 2006; Wang et al., 2009).

One important dimension of acoustic interference not

considered previously is room reverberation, which is char-

acteristic of daily environments. Room reverberation is

caused by surface reflections of sound in an enclosed space.

It smears the structure of speech and poses a major challenge

a)Also at: Center for Cognitive and Brain Sciences, The Ohio State University,

Columbus, OH 43210, USA. Electronic mail: zhao.836@osu.edu
b)Also at: Center for Cognitive and Brain Sciences, The Ohio State

University, Columbus, OH 43210, USA.

J. Acoust. Soc. Am. 144 (3), September 2018 VC 2018 Acoustical Society of America 16270001-4966/2018/144(3)/1627/11/$30.00

https://doi.org/10.1121/1.5055562
mailto:zhao.836@osu.edu
http://crossmark.crossref.org/dialog/?doi=10.1121/1.5055562&domain=pdf&date_stamp=2018-09-01


for speech processing algorithms. Without background

noise, human listeners can tolerate a fair amount of room

reverberation, and their speech recognition is not substan-

tially affected until the reverberation time (T60) becomes

long. For HI listeners, T60 needs to be 1 s or longer before

intelligibility drops to below 50% (Gelfand and Hochberg,

1976; N�ab�elek and Robinson, 1982; Helfer and Wilber,

1990); this is even true for cochlear implantees (Hu and

Kokkinakis, 2014). For NH listeners, T60 needs to be at least

2 s before their recognition drops below 50% (Gelfand and

Hochberg, 1976; Roman and Woodruff, 2013). However, in

real listening environments, reverberation and background

noise are often both present. In these conditions, speech

intelligibility is severely degraded, particularly for HI listen-

ers (George et al., 2010). Room reverberation and back-

ground noise have different corrupting effects, and their

combined effect appears to surpass the sum of the two

effects (N�ab�elek and Mason, 1981).

Han et al. (2014) proposed the first DNN model to per-

form speech dereverberation. They trained the DNN to map

from the cochleagram of reverberant speech to that of anechoic

speech. The spectral mapping approach was later extended to

perform both dereverberation and denoising (Han et al., 2015),

where the DNN was used to learn a mapping function from

the log-magnitude spectrum of reverberant-noisy speech to

that of the corresponding anechoic-clean speech. Although this

model resulted in improvements in objective intelligibility

metrics, informal listening indicated no intelligibility gain for

HI listeners (Zhao et al., 2016). Subsequent work by Wu et al.
(2017) showed that better dereverberation can be achieved by

performing T60 specific training and using T60 estimation to

select model parameters. A recent study by Santos and Falk

(2017) used a recurrent neural network to better utilize tempo-

ral dependencies and reported a higher amount of speech dere-

verberation than that in Wu et al. (2017).

Aside from Han et al. (2015), few studies have addressed

both reverberation and noise. Part of the difficulty in remov-

ing reverberation and noise from reverberant-noisy speech is

the different natures of the two. Specifically, reverberation

essentially involves convolution of a direct sound with a

room impulse response (RIR), whereas background noise

involves adding a signal to the target speech.

The segregation of speech from concurrent reverbera-

tion and noise is an important issue because of its relevance

for everyday acoustic environments. But despite its impor-

tance, we are unaware of any demonstration of speech intel-

ligibility improvements produced by a monaural segregation

algorithm in reverberant-noisy conditions. The current study

provides this demonstration. A DNN was trained to estimate

the ideal ratio mask (IRM) of anechoic noise-free (clean)

speech, when given only features from a reverberant-noisy

mixture. The IRM (Wang et al., 2014) may be viewed as a

soft version of the IBM (Wang, 2005), and ratio masking

attenuates T-F units differently depending on their levels of

corruption—units having greater corruption are attenuated

more. With an estimated IRM and the reverberant-noisy

phase, enhanced speech is resynthesized in the time domain.

The proposed DNN model extends our previous study (Zhao

et al., 2017); the differences are described in Sec. II C.

Speech intelligibility testing was conducted on HI and NH

listeners. The results clearly show that the DNN model pro-

duced substantial improvements for HI listeners and also

some improvement for NH listeners.

II. METHOD

A. Listeners

A first group of listeners consisted of 12 adults with

bilateral sensorineural hearing impairment. All were bilateral

hearing-aid wearers recruited from the Speech-Language-

Hearing Clinic at The Ohio State University. These individu-

als ranged in age from 47 to 74 years (mean¼ 65 years), and

10 were female. Hearing was examined on the day of test

using otoscopy, tympanometry (ANSI, 1987), and pure-tone

audiometry (ANSI, 2004, 2010). Otoscopy was unremark-

able, and middle-ear pressures and compliances were within

normal limits. These listeners were recruited to represent

typical HI individuals and, accordingly, were older and had

a variety of hearing loss degrees and configurations. On

average, they had moderate sloping hearing loss. Figure 1

displays audiograms for all 12 HI listeners, who were num-

bered in order of increasing pure-tone average (PTA),

defined as the audiometric threshold averaged across 0.5, 1,

2, and 4 kHz and across ears.

A second group consisted of 10 listeners with normal

hearing, defined by audiometric thresholds of 20 dB hearing

level or better at octave frequencies from 250 to 8000 Hz

(ANSI, 2004, 2010). They were recruited from courses at The

Ohio State University. These individuals were aged 19 to 23

years (mean¼ 20 years), and all were female. All listeners

received course credit or a cash incentive for participating.

Care was taken to ensure that no listener had any prior expo-

sure to any of the sentences employed for testing. Groups were

not age matched since our goal was to compare typically aged

HI listeners and “ideal” listeners (young-adult NH).

B. Stimuli

The stimuli consisted of sentences from the Institute of

Electrical and Electronics Engineers (IEEE) corpus

(Rothauser et al., 1969). This corpus consists of 72 lists,

each containing 10 sentences. The 720 sentences were spo-

ken by a female talker and recorded at 44.1 kHz with 16-bit

resolution. They were down-sampled to 16 kHz for process-

ing and presentation. The sentences have moderate to high

semantic context, and each contains five key words for scor-

ing intelligibility. Our preliminary data indicate that scores

near 100% correct can be achieved by most but not all HI

and NH listeners when these sentences are presented uncor-

rupted by noise or reverberation. Sentences were selected

from lists 1–50, lists 68–72, and lists 51–66 for the training,

validation, and test data, respectively.

An RIR generator (Habets, 2014) was used to synthesize

RIRs, which were then convolved with the IEEE sentences

to produce reverberant speech at specified locations in a

given room. The software utilizes an image model (Allen

and Berkley, 1979), which allows for systematic manipula-

tions of source and microphone location, T60, and direct-to-
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reverberant energy ratio (DRR). The use of synthesized

RIRs has been previously validated by comparing them with

recorded RIRs (Hummersone et al., 2010; Han et al., 2015).

In the current study, a simulated room with T60¼ 0.6 s was

selected, which covers a variety of real rooms (Kuttruff,

2000). The room size was 10 m� 7 m� 3 m. Inside the room,

the speaker was placed 1 m from the microphone at the same

height, producing a DRR of approximately �0.2 dB.

Reverberant utterances were generated by placing each IEEE

sentence at a random position on the horizontal circle having

a 1-m radius around the fixed microphone. In the experi-

ments, 30 different RIRs were generated by randomly choos-

ing the position of the speaker.

Two background noises were used. One was speech-

shaped noise (SSN) generated using VOICEBOX (Brookes,

2005). The other was 20-talker babble noise taken from an

Auditec CD (St. Louis, MO). Each noise was approximately

10 min long, with the first 8 min used for training/validation

and the remaining 2 for testing.

To generate reverberant-noisy speech, reverberant

speech was mixed with same length random cuts of the SSN

or babble noise at various signal-to-noise ratios (SNRs). No

reverberation was added to the two types of background

noise when generating reverberant-noisy speech, as is com-

monly done in monaural studies (Hazrati and Loizou, 2012;

Yoshioka et al., 2012). Part of the reason is that it is not

straightforward to spatialize a multisource noise such as the

multitalker babble used in the current study. For each noise,

three SNRs were created with reverberant speech considered

as the signal in the SNR calculation. For SSN, the SNRs

were 5, 0, and �5 dB; for babble, the SNRs were 10, 5, and

0 dB. These SNRs were selected to produce a range of

unprocessed-stimuli intelligibility scores for the HI listeners,

both above and below 50% correct. The HI listeners were

tested using all the SNRs, whereas the NH listeners were

tested using the two lower SNRs for each noise type, because

their unprocessed scores were expected to reach ceiling

levels at the highest SNRs.

C. Algorithm description

Figure 2 shows the system diagram of the proposed seg-

regation algorithm. The 16 kHz signal was segmented using

a 20-ms Hamming window with a 10-ms window shift. To

FIG. 1. Pure-tone air-conduction audiometric thresholds for the listeners with sensorineural hearing impairment. Right ears are represented by circles and left

ears are represented by crosses. Also displayed are listener number, listener age in years, and gender. Listeners are numbered in order of increasing pure-tone

average audiometric threshold.

J. Acoust. Soc. Am. 144 (3), September 2018 Zhao et al. 1629



obtain the T-F representation of the signal, a 320-point fast

Fourier transform was applied to each frame, resulting in

161 frequency bins. As employed in our previous studies, a

set of complementary features (Wang et al., 2013) was

extracted from reverberant-noisy speech and fed to the DNN

as input. Specifically, the feature set included 13-

dimensional relative spectral transform perceptual linear pre-

diction, 15-dimensional amplitude modulation spectrogram,

31-dimensional mel-frequency cepstral coefficients, 64-

dimensional gammatone filterbank power spectra, and their

deltas (i.e., differences between the feature vectors of con-

secutive frames) to capture the dynamic nature of these fea-

tures. Thus, at each time frame, a 246-dimensional feature

vector of reverberant-noisy speech was extracted. Moreover,

a context window with 9 frames to each side of the current

frame was utilized to incorporate temporal information of

adjacent frames.

After feature extraction, a DNN was employed to esti-

mate the IRM in order to remove room reverberation and

background noise from the reverberant-noisy speech. At time

frame t and frequency bin f, the IRM is defined as follows:

IRMðt; f Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 t; fð Þ

X2 t; fð Þ þ N2 t; fð Þ

s
; (1)

where X2(t, f) denotes the energy of anechoic-clean speech, and

N2(t, f) denotes the combined energy of reverberation and back-

ground noise. The estimated IRM was applied to the magnitude

spectrum of reverberant-noisy speech to get the enhanced mag-

nitude spectrum. Finally, the enhanced time-domain signal was

resynthesized using reverberant-noisy phase (see Fig. 2).

As described in Sec. II B, under each noise condition,

there were 500 (sentences)� 30 (RIRs)� 3 (SNRs) ¼ 45 000

reverberant-noisy utterances in the training set; 50 (sentences)

� 30 (RIRs)� 3 (SNRs) ¼ 4500 reverberant-noisy utterances

in the validation set; and 160 (sentences)� 1 (RIRs)� 3

(SNRs) ¼ 480 reverberant-noisy utterances in the test set. It is

worth noting that noise segments, RIRs and sentences com-

prising the test data were all unseen during model training.

The DNN architecture included 4 hidden layers with

2048 exponential linear units (Clevert et al., 2015) in each

layer, which led to better performance and faster conver-

gence than commonly used rectified linear units (Glorot

et al., 2011). To facilitate model training and improve the

generalization ability of the trained model, batch normaliza-

tion (Ioffe and Szegedy, 2015) and dropout regularization

(Srivastava et al., 2014) techniques were employed.

Specifically, in each hidden layer, batch normalization was

performed before nonlinear activation. During training, each

batch normalization layer kept exponential moving averages

on the mean and standard deviation of each mini-batch (i.e.,

a subset of training samples). During testing, these statistics

were fixed to perform normalization. Dropout regularization

with a 0.2 dropout rate was adopted; in other words, 20% of

the units in the input and hidden layers were randomly

dropped out in each training iteration. Since the training

target, the IRM, is bounded by [0,1], sigmoid units were

employed in the output layer. For the input features, they

were normalized to zero mean and unit standard deviation

using the statistics of the training data. The system was

trained with the Adam (Kingma and Ba, 2014) optimizer and

mean squared error (MSE) loss.

Figure 3 illustrates an example of the segregation algo-

rithm for T60¼ 0.6 s and the 0 dB SNR babble noise condi-

tion. Spectrograms of the anechoic-clean signal and the

reverberant-noisy signal are given in Figs. 3(a) and 3(b),

respectively. The IRM is shown in Fig. 3(c) and its estimate

provided by the DNN is given in Fig. 3(d). The spectrogram

of the enhanced signal is shown in Fig. 3(e), where additive

noise and smearing effects caused by reverberation have

been largely removed from the reverberant-noisy signal.

Compared with the masking algorithm described in our ear-

lier paper (Zhao et al., 2017), the main differences are the

utilization of a larger context window and the introduction

of batch normalization.

D. Procedure

There were 12 conditions for the HI listeners (2 noise

types� 3 SNRs� 2 unprocessed/processed) and 8 conditions

for the NH listeners (2 noise types� 2 SNRs� 2 unpro-

cessed/processed). Half of the listeners in each group were

tested using the SSN conditions before the babble condi-

tions, and the other half were tested in the opposite order.

The SNR conditions were blocked and randomized for each

listener within each noise type. The presentation order for

the unprocessed/processed conditions was randomized, but

because it is the most critical comparison, they were juxta-

posed for each noise type and SNR. Finally, the sentences

were heard in a single fixed order, allowing the sentence-

to-condition correspondence to be random. Each listener

heard 13 sentences in each condition, for a total of 156 (HI)

or 104 (NH) sentences. The subset of sentences heard by

FIG. 2. System diagram of the proposed DNN-based speech segregation

algorithm for reverberant-noisy speech.
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each NH listener was drawn randomly from the set heard by

the HI listeners.

Testing began with brief practice in which listeners

heard sentences not used in formal testing. The background

noise was that used in the first test, and the SNR was the mid-

dle of the three HI test SNRs. Five sentences were presented

unprocessed in quiet, followed by ten sentences algorithm

processed, followed by ten unprocessed reverberant-noisy

sentences. Exceptions were for the first three HI listeners run

(HI7, HI10, and HI11), who heard five sentences at each

practice stage. This practice was repeated halfway through

the test session prior to switching noise type. New sentences

and only the processed and unprocessed reverberant-noisy

conditions were employed. Feedback was provided during

practice but not during formal testing.

The stimuli were played from a PC, converted to analog

form using an Echo Digital Audio (Santa Barbara, CA) Gina

3 G digital-to-analog converter, and presented diotically over

Sennheiser HD 280 headphones (Wedemark, Germany). The

presentation level was set at each earphone using a flat-plate

coupler and sound level meter (Larson Davis AEC 101 and

824, Depew, NY). The presentation level was 65 dBA for

NH listeners and 65 dBA plus individual frequency-specific

gains as defined by the NAL-R hearing-aid prescription

formula (Byrne and Dillon, 1986) for HI listeners. Hearing-

impaired listeners were tested with hearing aids removed.

Following the first several practice sentences, the HI listen-

ers were asked if the signal was clearly audible and if it was

too loud. Eight individuals responded that the stimuli were

comfortable. Four (HI3, HI7, HI11, HI12) indicated that the

speech sounded loud, and so the overall level was reduced

by 5 dB. This subset of listeners included the two having the

greatest hearing loss. After adjustment, three of these four

listeners responded that the stimuli were comfortable. The

fourth requested that slightly more gain be added back, and

so the level was increased by 2 dB, after which it was judged

to be comfortable. Overall presentation levels for the HI lis-

teners following amplification by the NAL-R formula and

adjustment ranged from 74 to 92 dBA (mean¼ 82.5 dBA).

Listeners were tested individually in a double-walled

audiometric booth, seated with the experimenter. The experi-

menter controlled the presentation of sentences and recorded

responses. The listeners were instructed to repeat the sentence

back as best they could after hearing each and were encour-

aged to guess if unsure. No sentence was repeated for any lis-

tener. The total duration of testing was approximately 1.5 h

for the HI listeners and less than 1 h for the NH listeners.

III. RESULTS AND DISCUSSION

A. Human performance

Intelligibility was based on percentage of sentence key-

words reported. Figures 4 and 5 display intelligibility for

each HI listener. Results for the reverberation plus SSN con-

ditions are displayed in Fig. 4 and those for the reverberation

plus babble conditions are displayed in Fig. 5. Each panel

corresponds to a different SNR, which is indicated. The

black columns represent scores for unprocessed reverberant-

noisy speech, and the shaded hatched columns represent

scores following algorithm processing. The algorithm benefit

for each listener corresponds to the difference between these

columns. As anticipated, scores for unprocessed signals gen-

erally decreased as HI listener number increased, reflecting

poorer baseline performance for the individuals with greater

hearing loss.

Apparent from Fig. 4 is that all HI listeners received

benefit in all reverberation plus SSN conditions. At least half

of the HI listeners received benefit exceeding 20, 40, and 30

FIG. 3. (Color online) Segregation of an IEEE sentence (“Shake the dust from your shoes, stranger”) from babble noise at 0 dB SNR with 0.6 s T60; (a) spectro-

gram of the anechoic-clean utterance, (b) spectrogram of the reverberant-noisy utterance, (c) IRM for this mixture, (d) estimated IRM, and (e) spectrogram of

the segregated utterance by applying the estimated IRM to the reverberant-noisy utterance.
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percentage points for the SNRs of 5, 0, and �5 dB, respec-

tively. The benefit in SSN exceeded 10 percentage points in

over 85% of the 36 cases (12 HI subjects� 3 SNRs).

Apparent from Fig. 5 is that all HI listeners received

benefit in the least-favorable babble SNR, and most also

received benefit at the two more favorable SNRs. For the 3

exceptions (of 36 cases), unprocessed scores were high

(98%, 97%, and 85% correct). At least half of the HI listen-

ers received benefit exceeding 20, 30, and 45 percentage

points for the SNRs of 10, 5, and 0 dB, respectively. The

benefit in babble exceeded 10 percentage points in over 80%

of the 36 cases.

Planned comparisons consisting of paired t-tests on

rationalized arcsine units (RAUs, Studebaker, 1985) were

conducted to examine algorithm benefit for the HI listeners

in each condition displayed in Figs. 4 and 5. Tests comparing

the unprocessed and processed scores were significant at

each of the SSN SNRs [t(11)� 6.0, p< 0.0001] and at each

of the babble SNRs [t(11)� 3.9, p< 0.005]. These signifi-

cant results all survive Bonferroni correction.

Figures 6 and 7 display intelligibility for the individual

NH listeners. Results for the reverberation plus SSN condi-

tions are displayed in Fig. 6 and those for the reverberation

plus babble conditions are displayed in Fig. 7. As antici-

pated, the performance of the NH listeners for the unpro-

cessed reverberant speech in noise was far better than that of

their HI counterparts. The mean scores for unprocessed stim-

uli were 84% and 66% correct for the two SSN SNRs (0 and

�5 dB), and 91% and 74% correct for the two babble SNRs

(5 and 0 dB). Accordingly, the algorithm benefit was consid-

erably smaller for the NH than for the HI listeners. But some

benefit was observed in 65% of cases for SSN and 75% of

FIG. 4. Intelligibility for individual hearing-impaired listeners in reverbera-

tion plus speech-shaped noise. The three panels represent the three SNR

conditions. The black columns represent scores for unprocessed reverberant-

noisy speech, and the shaded hatched columns represent scores following

algorithm processing.

FIG. 5. As Fig. 4, but for the reverberation plus babble conditions.
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cases for babble (10 NH listeners� 2 SNR conditions ¼ 20

cases for each noise type).

Planned comparisons consisting of paired t-tests on

RAUs between unprocessed and processed scores for the NH

listeners in each condition of Figs. 6 and 7 indicated that

benefit was significant only for the lower SNR babble condi-

tion [t(9)¼ 4.2, p¼ 0.002]. This significant result survives

Bonferroni correction.

Figure 8 displays group-mean sentence intelligibility

scores for both HI and NH listeners in each condition. The

group-mean algorithm benefit for the HI listeners was 22,

32, and 33 percentage points for reverberation plus SSN at 5,

0, and �5 dB SNR and 19, 27, and 47 percentage points for

reverberation plus babble at 10, 5, and 0 dB SNR. When ben-

efit was expressed in RAUs to control for ceiling and floor

effects, these values increased slightly to become 27, 35, and

37 units in reverberation plus SSN, and 21, 31, and 51 units

in reverberation plus babble. Benefit for the HI listeners

averaged across the three SNRs was 29 percentage points

(32 RAUs) in reverberation plus SSN and 31 percentage

points (34 RAUs) in reverberation plus babble. The figure

also shows that the manipulation of SNR yielded the desired

baseline (unprocessed) scores for the HI listeners. The mean

baseline intelligibilities ranged from 17% to 63% correct for

reverberation plus SSN and from 27% to 64% correct for

reverberation plus babble. For the NH listeners, group-mean

benefit values were 5 percentage points for both SSN SNRs,

and 3 and 13 percentage points at the higher and lower bab-

ble SNRs, respectively. These values also increased slightly

when expressed in RAUs, to 7 and 5 units at the higher and

lower SSN SNRs and 7 and 15 units at the higher and lower

babble SNRs.

Three-way mixed analyses of variance (ANOVAs) on

RAU scores were conducted separately for the two noise

types, on the SNRs common to both listener groups. Of pri-

mary interest for the SSN analysis (2 [SNR 0/–5 dB]� 2

[HI/NH]� 2 [unprocessed/algorithm]), was the significant

main effect of processing [F(1,20)¼ 57.8, p< 0.0001],

which indicated that scores were higher in algorithm-

processed than in unprocessed conditions, and the signifi-

cant interaction between listener type and processing

[F(1,20)¼ 29.2, p< 0.0001], which indicated that benefit

was larger for the HI than for the NH listeners. The remain-

ing significant effects were those of listener type

[F(1,20)¼ 24.6, p< 0.0001] and SNR [F(1,20)¼ 199.0,

p< 0.0001], which simply reflected the higher overall

scores of the NH listeners and more favorable SNRs. The

pattern was similar for the babble analysis (2 [SNR 5/0

dB]� 2 [HI/NH]� 2 [unprocessed/algorithm]). Significant

were the main effects of processing [F(1,20)¼ 119.3,

p< 0.0001], the interaction between listener type and proc-

essing [F(1,20)¼ 38.8, p< 0.0001], and the main effects of

listener type [F(1,20)¼ 16.6, p¼ 0.0006] and SNR

[F(1,20)¼ 101.7, p< 0.0001]. Additional to this analysis

was a significant interaction between SNR and processing

[F(1,20)¼ 10.4, p¼ 0.004], which indicated that the HI lis-

teners benefitted more as the SNR decreased.

Another comparison of interest involves the perfor-

mance of the HI listeners following algorithm processing

FIG. 6. Intelligibility for individual NH listeners in reverberation plus

speech-shaped noise. The two panels represent the two SNR conditions.

Otherwise, as Fig. 4.

FIG. 7. As Fig. 6, but for the two reverberation plus babble conditions.
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relative to the performance of young NH listeners without

processing, in the conditions common to both groups. As

Fig. 8 shows, the HI listeners matched the performance of

the NH listeners in one condition (babble 0 dB SNR) and

approached within 10 percentage points in two of the

remaining three conditions. Additional planned comparisons

(unpaired t-tests on RAUs) between the algorithm-processed

scores for the HI listeners and the unprocessed scores for the

NH listeners in the four common conditions indicated that

differences were not significant (p> 0.05) at the higher SSN

SNR and at both babble SNRs. The difference was significant

only for the lower SSN SNR [t(20)¼ 2.5, p¼ 0.02], and it

would become non-significant if corrected using Bonferroni.

A three-way mixed ANOVA (2 [SSN/babble]� 2 [HI/

NH]� 2 [unprocessed/algorithm]) was performed on RAU

scores in the common conditions of 0 dB SNR. Of primary

interest, the main effect of processing [F(1,20) ¼ 98.4,

p< 0.0001] indicated that scores were higher in algorithm-

processed than in unprocessed conditions, the interaction

between listener type and processing [F(1,20)¼ 33.6,

p< 0.0001] indicated that benefit was larger for the HI than

for the NH listeners, and the interaction between noise type

and processing [F(1,20)¼ 11.1, p¼ 0.003] indicated that

benefit was larger in babble than in SSN. The main effects of

noise type [F(1,20)¼ 18.3, p¼ 0.0004] and listener type

[F(1,20)¼ 17.9, p¼ 0.0004] simply reflected the higher

overall scores in the nonstationary background and for the

NH listeners, respectively. The interaction between noise

and listener type was non-significant (p> 0.05) as was the

three-way interaction.

B. Objective measures of intelligibility

In this subsection, an intelligibility metric, the short-

time objective intelligibility (STOI) (Taal et al., 2011) and

its extention, extended STOI (ESTOI) (Jensen and Taal,

2016), were used to evaluate the proposed algorithm. These

objective metrics provide intelligibility predictions based

only on analysis of the acoustic signals. The comparison to

the human intelligibility scores reported in the previous sub-

section should facilitate the development of accurate objec-

tive speech intelligibility metrics under reverberant-noisy

conditions. Another benefit of providing these objective

results is to help the interested reader in replicating the

current speech-segregation results, as the correct replication

will produce the same (or very close) objective scores. The

value range of STOI/ESTOI is typically from 0 to 1, where

higher values indicate better predicted intelligibility. Since

both reverberation and noise are removed by the proposed

FIG. 8. Group-mean intelligibility scores (and standard errors) for HI and NH listeners for reverberant speech in speech-shaped noise (top), and in babble (bot-

tom), at the SNRs indicated. The black columns represent scores for unprocessed reverberant-noisy speech, and the shaded hatched columns represent scores

following algorithm processing.
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algorithm, anechoic-clean speech was used as the reference

signal when performing STOI/ESTOI evaluation.

Table I shows the average STOI scores for the sentences

used in the intelligibility testing at different SNRs for

reverberant-noisy speech and corresponding enhanced speech.

ESTOI results are presented in Table II. Clearly, substantial

STOI/ESTOI score improvements were produced by the pro-

posed algorithm. In addition, as SNR increased, the predicted

amount of improvement decreased. This is broadly consistent

with human performance.

STOI/ESTOI scores do not directly correspond to intel-

ligibility in percentage points. In order to obtain percent-

correct numbers, the following logistic function was applied

to map STOI/ESTOI numbers to predicted intelligibility

scores (Taal et al., 2011; Jensen and Taal, 2016):

f ðSÞ ¼ 100

1þ exp aSþ bð Þ ; (2)

where a and b are fitted parameter values obtained using a

least-squares method, and S is a STOI/ESTOI value. The

parameter values obtained for the STOI mapping function in

the current experiments were a¼�14.23, b¼ 7.77. It should

be mentioned that a reasonable logistic function for ESTOI

mapping could not be obtained, so the same parameter val-

ues as for STOI mapping were utilized.

Since the STOI and ESTOI were developed for predict-

ing the intelligibility for NH listeners, the following discus-

sion is limited to the results for NH listeners and their

corresponding test SNRs. The mean improvements in STOI-

predicted intelligibility were 27 and 43 percentage points for

SSN (0 and �5 dB SNR), and 15 and 33 percentage points

for babble (5 and 0 dB SNR). Figure 9 compares STOI-

predicted recognition scores and actual recognition scores.

The actual improvements were substantially smaller than

those predicted in all conditions. In general, these results

suggest that the STOI tends to underestimate human perfor-

mance for unprocessed reverberant-noisy speech and overes-

timate human performance for processed speech. The

current observation is somewhat different from those for

noisy speech enhancement, for which the STOI overpredicts

intelligibility for both unprocessed and processed signals

(Healy et al., 2015; Kressner et al., 2016).

Figure 10 compares ESTOI-predicted recognition scores

and actual recognition scores. The ESTOI underestimated

the intelligibility of both unprocessed and processed speech,

especially for unprocessed speech. Therefore, a better map-

ping function should be developed for ESTOI scores.

IV. GENERAL DISCUSSION AND CONCLUSION

The performance difference between HI listeners and

their NH counterparts (particularly younger NH listeners) is

evident in the current results, where different SNRs were

required and different baseline (unprocessed) scores were

obtained. Similar differences were found in our previous

work, despite the variety of tasks employed (e.g., Healy

et al., 2013; Healy et al., 2015; Chen et al., 2016; Healy

et al., 2017). But a consistent result is that HI listeners with

processing can approach or match the intelligibility demon-

strated by young NH listeners without processing (see Fig.

8). This suggests that the proposed algorithm can be an

effective approach for helping HI listeners in reverberant-

TABLE I. Average STOI scores for reverberant-noisy speech (unprocessed)

and enhanced speech (processed) from SSN and babble noise at the SNRs

indicated.

SSN Babble

SNR (dB) Unprocessed Processed Unprocessed Processed

10 — — 0.719 0.866

5 0.673 0.843 0.664 0.842

0 0.611 0.812 0.588 0.799

�5 0.551 0.755 — —

TABLE II. Average ESTOI scores for reverberant-noisy speech (unpro-

cessed) and enhanced speech (processed) from SSN and babble noise at the

SNRs indicated.

SSN Babble

SNR (dB) Unprocessed Processed Unprocessed Processed

10 — — 0.449 0.721

5 0.366 0.676 0.364 0.680

0 0.273 0.619 0.273 0.602

�5 0.189 0.523 — —

FIG. 9. Comparison of STOI-predicted and obtained NH percent-correct

intelligibility scores, for unprocessed and algorithm-processed reverberant-

noisy speech. The noise types and SNRs are indicated.
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noisy environments where the intelligibility gap relative to

NH listeners is clearly large.

Figures 9 and 10 compare scores for the widely used

objective intelligibility metric STOI and its updated version

ESTOI with actual intelligibility scores obtained from

human listeners for the same stimuli. Discrepancies were

found between the predicted and obtained values. These dis-

crepancies were particularly large for the ESTOI predictions

of the current reverberant-noisy conditions. This suggests

that, although STOI/ESTOI are widely used as indicators of

human speech intelligibility, they cannot serve as a substi-

tute for actual human-listener testing. The inclusion of rever-

beration in the current study appears to make these objective

metrics even less accurate. Better metrics need to be devel-

oped that deal with both background noise and room rever-

beration, as well as the effects of hearing loss.

When the IRM is used for reverberant-noisy speech seg-

regation, a key question involves what we should attempt to

extract from the reverberant-noisy speech. Said differently,

what mask should serve as the algorithm’s training target?

One straightforward choice is to remove both reverberation

and noise so as to approximate anechoic-clean speech, as

adopted currently. However, according to intelligibility stud-

ies using the IBM (Roman and Woodruff, 2011; Li et al.,
2015), another reasonable choice would be to extract both

the direct sound (anechoic speech) and its early reflections

(e.g., those arriving within 50 ms after direct sound; see

Roman and Woodruff, 2011). To compare these two choices,

two different models were trained with the same underlying

DNN structure but using either anechoic speech or direct

sound plus early reflections as the desired signal. Both mod-

els also removed noise. Informal listening indicated that the

first choice was no poorer than the second one, resulting in

the current use of anechoic-clean speech as the target. Using

anechoic-clean speech as the target signal in the IRM defini-

tion may also result in better speech quality, because more

reverberation is removed.

Given the challenge of improving HI listeners’ speech

intelligibility in reverberant-noisy conditions, we prioritized

performance over implementation issues such as amenability

to real-time processing and computational efficiency. From

the perspective of real-time processing, one limitation of the

current DNN algorithm is its use of future frames in IRM

estimation, making the algorithm non-causal. Although

future frames clearly carry useful contextual information, it

has been recently shown that recurrent neural networks

encode past context better than the feedforward DNN used

in the current study, resulting in a causal system with no

poorer performance (Chen and Wang, 2017). Future work

will investigate such causal methods. Shorter time frames

and smaller networks will also reduce processing latency.

In conclusion, a DNN was trained to estimate the IRM

for anechoic noise-free speech and was tested on

reverberant-noisy speech. Substantial intelligibility benefit

was obtained for HI listeners at T60¼ 0.6 s for speech in both

stationary and nonstationary noises at various SNRs. NH lis-

teners also demonstrated some benefit. Further, the intelligi-

bility obtained by the HI listeners after processing

approached or matched that of their young NH counterparts

before processing. To our knowledge, the current study pro-

vides the first evidence of speech intelligibility improve-

ments produced by a monaural segregation algorithm in

reverberant-noisy conditions.
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