
Deep Learning for Joint Acoustic Echo and Noise Cancellation with Nonlinear
Distortions

Hao Zhang1, Ke Tan1, DeLiang Wang1,2

1Department of Computer Science and Engineering, The Ohio State University, USA
2Center for Cognitive and Brain Sciences, The Ohio State University, USA

{zhang.6720, tan.650, wang.77}@osu.edu

Abstract

We formulate acoustic echo and noise cancellation jointly as
deep learning based speech separation, where near-end speech
is separated from a single microphone recording and sent to the
far end. We propose a causal system to address this problem,
which incorporates a convolutional recurrent network (CRN)
and a recurrent network with long short-term memory (LSTM).
The system is trained to estimate the real and imaginary spec-
trograms of near-end speech and detect the activity of near-end
speech from the microphone signal and far-end signal. Subse-
quently, the estimated real and imaginary spectrograms are used
to separate the near-end signal, hence removing echo and noise.
The trained near-end speech detector is employed to further sup-
press residual echo and noise. Evaluation results show that the
proposed method effectively removes acoustic echo and back-
ground noise in the presence of nonlinear distortions for both
simulated and measured room impulse responses (RIRs). Ad-
ditionally, the proposed method generalizes well to untrained
noises, RIRs and speakers.
Index Terms: Acoustic echo cancellation, supervised speech
separation, deep learning, complex spectral mapping, nonlinear
distortion

1. Introduction
Acoustic echo arises when a loudspeaker and a microphone are
coupled in a communication system such that the microphone
picks up the loudspeaker signal plus its reverberation. If not
properly handled, a user at the far end of the system hears his
or her own voice delayed by the round trip time of the system
(i.e. an echo), mixed with the target speech signal from the near
end. Traditional acoustic echo cancellation (AEC) works by
identifying a room impulse response using adaptive algorithms
[1]. Many algorithms have been proposed in the literature [1–4].
However, the performance of these algorithms is limited in the
presence of double-talk (both near-end and far-end speakers are
talking), background noise (especially non-stationary noises),
and nonlinear distortions.

Typical approaches to the double-talk problem are to use
double-talk detectors [5] or double-talk-robust AEC algorithms
[6]. In a noisy environment, post-filtering [7, 8], Kalman fil-
tering [9], and spectral modification based acoustic echo sup-
pression (AES) algorithms [10–12] are usually used. Nonlin-
ear distortions are introduced mainly due to the poor quality
of electronic devices such as amplifiers and loudspeakers. Tra-
ditional AEC algorithms are essentially linear systems, which
suffer from nonlinear distortions. In order to address the non-
linear distortion problem, algorithms such as adaptive Volterra
filters [13] and functional link adaptive filters [14] have been
recently investigated to model the nonlinearity of AEC system.
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Figure 1: Diagram of an acoustic echo scenario.

Deep neural networks (DNNs) are fundamentally capable
of modeling complicated nonlinear relationships, and they are
expected to provide a compelling alternative to linear AEC al-
gorithms. Early work [15,16] used a cascaded time-delay feed-
forward neural network (TDNN) to model the nonlinearity of
the acoustic channel. In a recent study [17], a DNN was used
as a residual echo suppression to suppress the nonlinear compo-
nents of the echo. More recently we formulated AEC as a su-
pervised speech separation problem and proposed a deep learn-
ing based AEC method [18]. Compared with traditional AEC
algorithms, deep learning based methods avoid the need to per-
form double-talk detection or post filtering. However, previous
deep learning based methods are trained in a noise- and RIR-
dependent way with limited robustness.

The ultimate goal of AEC in a noisy environment is to com-
pletely cancel echo and background noise and transmit only
near-end speech to the far end [18, 19]. From the speech sep-
aration point of view, we address this problem as a supervised
speech separation problem [20] where the near-end speech sig-
nal is the target source to be separated from the microphone
recording. Deep learning has yielded great advances in speech
separation [20–22], and will likely play an important role in ad-
dressing AEC challenges.

A recent study [23] shows that accurate phase estimation
can lead to considerable improvements in speech quality. In
this paper, a CRN is trained for complex spectral mapping [24],
which estimates the real and imaginary spectrograms of near-
end speech. Hence, it is capable of enhancing both magnitude
and phase responses simultaneously. Motivated by the potential
of residual echo suppression in removing the residual echo at
the output of AEC, a near-end speech detector (NSD) is esti-
mated with an LSTM network to further suppress residual echo
and noise. The proposed system is trained in a noise- and RIR-
independent way, and can generalize to untrained noises and
RIRs.

The remainder of this paper is organized as follows. Section
2 presents the proposed method. Evaluation metrics and exper-
imental results are shown in Section 3. Section 4 concludes the
paper.
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2. Proposed method
The acoustic signal model is shown in Fig. 1. The microphone
signal y(n) is a mixture of echo d(n), near-end speech s(n),
and background noise v(n):

y(n) = d(n) + s(n) + v(n) (1)

where n indexes a time sample, and echo is generated by con-
volving a loudspeaker signal with an RIR. The echo d(n) is
typically a linear or nonlinear transform of the far-end signal
x(n), as illustrated in Fig. 1. We formulate AEC as a super-
vised speech separation problem. As shown in Fig. 2, the over-
all approach is to estimate the real and imaginary spectrograms
of near-end speech as well as the NSD from y(n) and x(n) to
suppress the acoustic echo and background noise, and isolate
the embedded near-end speech.

2.1. Feature extraction

The CRN takes the real and imaginary spectrograms of input
signals (y(n) and x(n)), while LSTM2 takes the magnitude
spectrograms of them as input features. The input signals, sam-
pled at 16 kHz, are divided into 20-ms frames with a 10-ms
overlap between consecutive frames. Then a 320-point short
time Fourier transform (STFT) is applied to each time frame to
produce the real, imaginary and magnitude spectra (∗r, ∗i and
∗m) of input signals.

2.2. Training targets

We explore two training targets in this study:

• Complex spectrum of near-end speech [20]: The real
and imaginary spectrograms of near-end speech are used
as the training targets of the CRN. Let Sr(m, c) and
Si(m, c) denote the targets within a T-F unit at time m
and frequency c, respectively. Different from magnitude
spectral mapping/masking based methods that use noisy
phase for waveform resynthesis, complex spectral map-
ping can enhance both magnitude and phase responses
through supervised learning and thus further improve
speech quality.

• Near-end speech detector: An NSD can be regarded
as a frame-level binary mask that detects the activity
of near-end speech. If no near-end speech is present at
frame m, NSD(m) = 0; otherwise, NSD(m) = 1:

NSD(m) =

{
1, if maxc |S(m, c)| > 0

0, else
(2)

The NSD estimated by LSTM2 is applied to the esti-
mated complex spectrogram to suppress residual echo
and noise at the frames without the presence of near-end
speech while maintaining near-end speech estimated by
the CRN.

2.3. Learning machines

The proposed system consists of two components. First, a
CRN is employed to predict the complex spectrum of near-end
speech [24]. It is an encoder-decoder architecture as depicted in
Fig. 2. Specifically, the encoder and decoder comprise five con-
volutional layers and five deconvolutional layers, respectively.
Between them is a two-layer LSTM with a group strategy [25],
where the group number is set to 2. A detailed description of
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Figure 2: Diagram of the proposed system.

the CRN architecture is provided in [24] except that our CRN
has four input channels, which correspond to the real and imag-
inary spectra of the microphone signal (Yr, Yi) and the far-end
signal (Xr, Xi), respectively. An LSTM, LSTM2, is used to
predict the NSD from the magnitude spectrograms of input sig-
nals (Ym, Xm). LSTM2 has four hidden layers with 300 units
in each layer. The output layer is a fully-connected layer. Sig-
moid function is used as the activation function in the output
layer. The AMSGrad optimizer [26] and the mean squared er-
ror (MSE) cost function are used to train both networks. The
networks are trained for 30 epochs with a learning rate of 0.001.
The minibatch size is set to 16 at the utterance level.

2.4. Signal resynthesis

The output of the CRN is an estimate of the complex spectro-
gram of near-end speech:

Ŝ(m, c) = Ŝr(m, c) + iŜi(m, c) (3)

where i denotes the imaginary unit. When applying the esti-
mated NSD, the estimate Ŝ(m, c) can be modified by element-
wise multiplications:

Ŝ(m, c)NSD = NSD(m) · Ŝ(m, c) (4)

The estimated complex spectrogram and the modified complex
spectrogram of near-end speech are fed into the inverse short
time Fourier transform based resynthesizer to derive the time-
domain estimated near-end speech signals.

Note that if the NSD is estimated accurately, Ŝ(m, c)NSD in
the the single-talk period (with the far-end signal only and no
near-end speech) should be all zeros. In other words, resid-
ual echo and noise in the single-talk period of Ŝ(m, c) is
completely removed. Thus, the echo return loss enhancement
(ERLE) in this period can be improved to infinity.

3. Experimental results
3.1. Performance metrics

The performance of the proposed method is evaluated in terms
of ERLE [2] for single-talk periods and perceptual evaluation
of speech quality (PESQ) [27] for double-talk periods. In this
study, ERLE is defined as

ERLE = 10 log10
[∑

n y
2(n)/

∑
n ŝ

2(n)
]

(5)

This variant of ERLE is widely used in the literature [9–12] for
assessing masks related AEC systems in the presence of back-
ground noise. It reflects the integrated echo and noise attenua-
tion achieved by systems.

3.2. Experiment setting

The TIMIT dataset [28] is used in the situations with double-
talk, background noise, and nonlinear distortions. To investi-
gate speaker generalization, we randomly choose 100 pairs of
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speakers (40 pairs of male-female, 30 pairs of male-male, and
30 pairs of female-female) from the 630 speakers in the TIMIT
dataset as the near-end and far-end speakers, respectively. Out
of the ten utterances of each speaker, seven utterances are ran-
domly chosen to create training mixtures, and the three remain-
ing utterances are used to create test mixtures. Three randomly
chosen utterances from a far-end speaker are concatenated to
generate a far-end signal. A randomly chosen utterance from a
near-end speaker is extended to the same length as that of the
far-end signal by zerso-padding both in the beginning and in the
end, where the number of leading zeros is random.

To achieve a noise-independent model, we use 10000 noises
from a sound effect library (http://www.sound-ideas.com) for
the training mixtures. An oproom (operational room) noise
from NOISEX-92 dataset [29], a babble noise from the Au-
ditec CD (http://www.auditec.com), and a white noise are used
for the test mixtures. The RIRs are generated using the im-
age method [30]. To investigate RIRs generalization, we simu-
late 20 different rooms of size a × b × c m for training mix-
tures, where a = [4, 6, 8, 10], b = [5, 7, 9, 11, 13], c = 3.
We randomly choose ten positions in each room with fixed
microphone-loudspeaker (M-L) distance (1 m) to generate the
RIRs. The length of the RIRs is set to 512, the reverberation
time (T60) is randomly selected from {0.2, 0.3, 0.4} s. There-
fore, in total 200 RIRs are created for training mixtures. For test
mixtures, we use both simulated and real measured RIRs. Two
of them (RIR1 and RIR2) are generated by the image method
with M-L distance of 1 m and T60 of 0.2 s. The simulation
room sizes, 3 × 4 × 3 m and 11 × 14 × 3 m, are different
from the 20 rooms used for training mixtures. The other two
RIRs (RIR3 and RIR4) are selected from the Aachen impulse
response database [31]. They are measured in a meeting room
of size 8× 5× 3.1 m. The T60 is 0.23 s, and M-L distances of
them are 1.45 m and 2.25 m, respectively. Note that RIR3 and
RIR4 are measured from far-end signals and microphone sig-
nals. That is to say, they are correlated with the transfer func-
tions between far-end signals and loudspeaker signals.

We create 20000 training mixtures and 300 test mixtures.
Each training mixture is created by first convolving a ran-
domly chosen loudspeaker signal (or far-end signal for con-
ditions without nonlinear distortions) with a randomly cho-
sen RIR from the 200 training RIRs to generate an echo.
Then a randomly chosen near-end speech is mixed with the
echo at a signal-to-echo ratio (SER) randomly chosen from
{−6,−3, 0, 3, 6} dB. Finally, a random cut from the 10000
noises is added to the mixture at a signal-to-noise ratio (SNR)
randomly chosen from {8, 10, 12, 14} dB. The SER and SNR,
which are evaluated during double-talk periods, are defined as:

SER = 10 log10
[∑

n s
2(n)/

∑
n d

2(n)
]

(6)

SNR = 10 log10
[∑

n s
2(n)/

∑
n v

2(n)
]

(7)

Test mixtures are created similarly but using different utter-
ances, noises, RIRs, SERs and SNRs.

3.3. Performance in double-talk and background noise sit-
uations

We first compare the proposed method with some traditional
methods in the scenarios with double-talk and background
noise. The joint-optimized normalized least mean square (JO-
NLMS) algorithm is a recently proposed double-talk-robust al-
gorithm that is developed in the context of a state-variable
model and tries to minimize the system misalignment [6]. The

Table 1: Performance in the presence of double-talk and babble
noise with 3.5 dB SER, 10 dB SNR.

ERLE PESQ
RIR1 RIR2 RIR1 RIR2

Unprocessed - - 2.00 1.99
JO-NLMS 7.22 7.14 2.37 2.37
JO-NLMS-PF 15.94 15.20 2.47 2.46
AES 7.69 7.65 2.32 2.32
CRN 33.78 37.72 2.62 2.86

CRN-NSD Inf (76.33%)
43.27 (23.67%)

Inf (99%)
58.73 (1%) 2.54 2.77
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Figure 3: ERLE values at different SER levels with RIR1.

parameters for JO-NLMS and AES are set to the values given
in [6] and [10] respectively. Since JO-NLMS alone is not capa-
ble of handling background noise, a post-filter (PF) [8] is em-
ployed to suppress noises at the output of it. The two forgetting
factors of the post-filter are set to 0.99.

Table 1 shows the average ERLE and PESQ values of
300 test mixtures in the presence of double-talk and babble
noise with different RIRs. ERLE for JO-NLMS based meth-
ods are the steady-state results. In general, the proposed
CRN method outperforms conventional methods, especially in
terms of ERLE. Furthermore, when combined with NSD (CRN-
NSD), ERLE of most test mixtures during single-talk periods
can be improved to infinity. As it was mentioned previously,
we used an utterance-level ERLE that is defined as the ratio
between the sum of microphone signal energy and that of the
output signal during the whole single-talk periods. The infin-
ity here means that residual echo and noise for all single-talk
time frames are completely removed. Note that the estimation
of NSDs for some test mixtures may not be accurate enough.
Hence, ERLE of some test mixtures are not improved to infin-
ity. The numbers in the parentheses after “Inf” show the per-
centage of test mixtures that obtained infinity ERLE. The other
two values show the ERLE and percentage of test utterances
that are not improved to infinity. Take the results of CRN-NSD
with RIR1 as an example. Of the 300 test samples, ERLE of
229 samples are improved to infinity, and the average ERLE
of the 71 remaining samples is improved to 43.27 dB. We also
observe that the improvement of CRN-NSD in terms of ERLE
is at the cost of an acceptable reduction in PESQ. Besides, the
proposed method can be generalized to untrained RIRs (RIR1,
RIR2). The comparison results in different background noises
and SERs are given in Fig. 3. The proposed method consis-
tently outperforms the conventional methods, and the perfor-
mance generalizes well to untrained noises and SERs.

3.4. Performance in double-talk, background noise and
nonlinear distortions situations

The nonlinear distortions introduced by a power amplifier and a
loudspeaker are simulated by following steps [17]. First, a hard
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Figure 4: Waveforms and spectrograms with 3.5 dB SER, 10 dB SNR (babble noise) and nonlinear distortions (RIR1): (a) near-end
speech , (b) microphone signal, (c) CRN estimated near-end speech, (e) CRN-NSD estimated near-end speech, and (d) estimated NSD.

Table 2: Performance in the double-talk, background noise and
nonlinear distortions situations with 3.5 dB SER, 10 dB SNR.

RIR1
Babble Oproom White

ERLE

AES-DNN 19.28 24.16 22.79
LSTM 43.02 38.77 31.78
CRN 35.90 32.89 29.46

CRN-NSD Inf (80.00%)
46.14 (20.00%)

Inf (70.67%)
42.35 (29.33%)

Inf (64.67%)
34.62 (34.33%)

PESQ

None 1.96 1.97 1.90
AES-DNN 2.33 2.38 2.22
LSTM 2.26 2.28 2.24
CRN 2.53 2.56 2.58
CRN-NSD 2.45 2.49 2.51

RIR3
Babble Oproom White

ERLE

AES-DNN 18.91 24.31 22.69
LSTM 50.01 47.47 48.42
CRN 37.15 35.41 35.84

CRN-NSD Inf (95.00%)
52.78 (5.00%)

Inf (84.00%)
54.68 (16.00%)

Inf (96.33%)
53.01 (3.67%)

PESQ

None 1.97 1.99 1.90
AES-DNN 2.34 2.39 2.24
LSTM 2.32 2.40 2.36
CRN 2.48 2.56 2.50
CRN-NSD 2.40 2.50 2.51

clipping [32] is applied to each far-end signal to simulate the
characteristic of a power amplifier:

xhard(n) =

−xmax x(n) < −xmax
x(n) |x(n)| ≤ xmax
xmax x(n) > xmax

(8)

where xmax is set to 0.8 as the maximum amplitude of |x(n)|.
Then a memoryless sigmoidal nonlinearity [14] is applied to
the clipped signal to simulate an asymmetric loudspeaker dis-
tortion:

xNL(n) = γ
(

2
1+exp(−a·b(n))

− 1
)

(9)

where b(n) = 1.5 × xhard(n) − 0.3 × x2hard(n). The sigmoid
gain γ is set to 4. The sigmoid slope a is set to 4 if b(n) > 0 and
0.5 otherwise. Finally, a loudspeaker signal, xNL, is convolved
with an RIR to generate an echo with nonlinear distortions.

Waveforms and spectrograms in Fig. 4 illustrate an echo
cancellation example of the proposed method, where ‘Amp’
stands for amplitude. The CRN based method can remove most
of the echo and noise in the microphone signal. However, it is
obvious that there still exists some amount of residual echo and
noise, which can be completely removed by using NSD based
residual echo suppression.

We compared the proposed method with a DNN based
residual echo suppression method [17] and an LSTM based
method [18] (we replace the BLSTM by a unidirectional

Table 3: Performance under echo path change and untrained
speakers conditions with 3.5 dB SER,10 dB SNR (babble noise).

RIR None CRN CRN-NSD
Echo path
change RIR3 , RIR4

ERLE - 35.43 Inf (85.67%) | 55.86 (14.33%)
PESQ 1.99 2.43 2.35

Untrained
speakers RIR1

ERLE - 36.51 Inf (79%) | 47.37 (21%)
PESQ 1.95 2.53 2.46

LSTM). In [17], AES [10] was used for preprocessing and a
DNN was employed to remove the residual echo. The parame-
ters for AES-DNN are set to the values given in [17]. The com-
parison results are given in Table 2. It is evident that all of these
deep learning based methods are capable of suppressing echoes
in the presence of nonlinear distortions. The proposed CRN-
NSD method outperforms the other two methods in most of the
cases. Note that the LSTM outperforms the CRN in terms of
ERLE. An explanation for this is that the target of LSTM based
method is a ratio mask, of which the value range is [0, 1]. Gen-
erally, the estimation of a ratio mask can be easier and more ac-
curate than directly estimating complex spectrogram. The CRN
employs complex spectral mapping which enhances the mag-
nitude and phase responses simultaneously, and hence it yields
significantly higher PESQ values than the LSTM.

Table 3 shows the behavior of the proposed method when
the echo path is changed and the test speakers are untrained.
The echo path change is simulated by toggling between RIR3

and RIR4 every 1.5 seconds for each test mixture. To create
the untrained test mixtures, we randomly select 10 pairs of un-
trained speakers from the 430 remaining speakers of TIMIT
dataset and create 100 test mixtures. The results in this table
indicate high robustness of the proposed method.

4. Conclusion
In this paper, we propose a complex spectral mapping based
system to address the integrated echo and noise cancellation
problem with nonlinear distortions. The performance of the
proposed method is further improved by estimating a near-end
speech detector. Evaluations show that the proposed system is
effective for removing echo and noise for untrained noises as
well as untrained simulated and real measured RIRs, and it sub-
stantially outperforms previous techniques.
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