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Abstract—Conventional speaker recognition systems perform
poorly under noisy conditions. Inspired by auditory perception,
computational auditory scene analysis (CASA) typically segre-
gates speech by producing a binary time–frequency mask. We
investigate CASA for robust speaker identification. We first
introduce a novel speaker feature, gammatone frequency cep-
stral coefficient (GFCC), based on an auditory periphery model,
and show that this feature captures speaker characteristics and
performs substantially better than conventional speaker features
under noisy conditions. To deal with noisy speech, we apply
CASA separation and then either reconstruct or marginalize
corrupted components indicated by a CASA mask. We find that
both reconstruction and marginalization are effective. We further
combine the two methods into a single system based on their
complementary advantages, and this system achieves significant
performance improvements over related systems under a wide
range of signal-to-noise ratios.

Index Terms—Computational auditory scene analysis (CASA),
gammatone frequency cepstral coefficient (GFCC), ideal binary
mask, robust speaker identification.

I. INTRODUCTION

A SPEAKER recognition system, performing either
speaker identification (SID) or speaker verification (SV)

tasks, comprises three processes: feature extraction, speaker
modeling, and decision making using pattern classification
methods [3], [8]. Typically, extracted speaker features are
short-time cepstral coefficients such as Mel-frequency cepstral
coefficients (MFCCs) and perceptual linear predictive (PLP)
coefficients, or long-term features such as prosody [32]. For
speaker modeling, Gaussian mixture models (GMMs) are
widely used to describe feature distributions of individual
speakers [26]. Recognition decisions are usually made based
on likelihoods of observing feature frames given a speaker
model. Such systems usually do not perform well under noisy
conditions [10], [31] because extracted features are distorted
by noise, causing mismatched likelihood calculation.
To tackle this robustness problem, speech enhancement

methods that are widely used in speech recognition, such as
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spectral subtraction, have been explored for robust speaker
recognition [23], [38]. However, these methods do not perform
well when noise is nonstationary. RASTA filtering [11] and
cepstral mean normalization (CMN) [9] have been used in
speaker recognition but they are mainly intended for convo-
lutive noise. Studies of robust speech recognition on Aurora
[20] have yielded an advanced front-end feature extraction
algorithm (AFE) [35], which is standardized by the European
Telecommunication Standards Institute (ETSI). ETSI-AFE
derives robust MFCC features using a set of sophisticated
front-end processes, including speech activity detection and
Wiener filtering. An alternative approach to feature enhance-
ment seeks to improve robustness by modeling noise and
combining it with clean speaker models [17], [39].
On the other hand, similar to speech recognition tasks, human

listeners perform robustly in speaker recognition tasks [28]. The
human ability to function well in noisy acoustic environments
is due to a perceptual process termed auditory scene analysis
(ASA) [2]. Inspired by ASA research, computational auditory
scene analysis (CASA) aims to organize sound based on ASA
principles [37]. The robust performance of the auditory system
motivates us to explore CASA for robust speaker recognition.
In this paper, we propose a robust speaker identification

system by using CASA as a front-end to perform speech
segregation. The output of CASA segregation is in the form
of a binary time–frequency (T-F) mask that indicates whether
a particular T-F unit is dominated by speech or background
noise. We first propose new speaker features, gammatone
feature (GF) and gammatone frequency cepstral coefficients
(GFCC), based on an auditory periphery model. Specifically, a
GF is first obtained from a bank of gammatone filters. Then,
GFCC is derived from GF by a cepstral analysis. We show
that GFCC achieves an SID level of performance in noisy
environments that is significantly better than MFCC. The pro-
posed system has two modules. To account for the deviations
of noisy features from clean ones, the first module enhances
the GF by reconstructing corrupted components indicated by
a CASA-generated binary T-F mask. The second module per-
forms bounded marginalization on the noisy GF. Each module
yields substantial improvement over baseline SID systems.
As the two modules perform well in different conditions, we
propose a combined system integrating these two modules.
The rest of the paper is organized as follows. Section II

describes the overall system architecture. Auditory feature ex-
traction and binary mask estimation are discussed in Section III.
Sections IV and V introduce the reconstruction module and
the marginalization module, respectively. The two modules
are combined in Section VI. SID evaluations and comparisons
are presented in Section VII. Further discussions are given in
Section VIII.
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Fig. 1. Schematic diagram of a CASA-based robust speaker identification system.

II. SYSTEM OVERVIEW

The proposed system uses CASA as a front-end processor for
robust SID. Fig. 1 presents the diagram of the overall system.
Input speech is decomposed using a gammatone filterbank and
subsequent time windowing to generate a time sequence of GFs.
This T-F analysis results in a cochleagram [37], which is a two-
dimensional representation of the input signal. Simultaneously,
we feed the input signal to a CASA system that computes a
binary mask corresponding to the target speech [13]. Elements
of this mask correspond to T-F units in the cochleagram, with
1 indicating that the corresponding T-F unit is dominated by
target and 0 by noise. The binary mask and GFs are fed to both
the reconstruction module and the marginalization module.
In the reconstruction module, the noise-corrupted compo-

nents indicated by the CASA mask are reconstructed using a
speech prior [24] and the enhanced GF is converted to the cep-
stral domain by discrete cosine transform (DCT). Subsequently,
the obtained cepstral feature, GFCC, is used in conjunction
with trained speaker models to derive the underlying speaker
identity. In the marginalization module, there is no need for
missing feature reconstruction. Bounded marginalization is
performed on the noisy GF directly with the CASA mask
providing the information of which T-F units are corrupted and
hence marginalized.
Each module provides an SID system by itself. Our experi-

ments suggest that the reconstruction module and the marginal-
ization module work well in different conditions. To leverage
their respective advantages, our combined system assigns the
input signal to both modules and integrates the individual out-
puts to make the final decision. Note that the two modules as
well as the combined system operate on a per utterance basis.

III. FEATURE EXTRACTION AND MASK ESTIMATION

In this section, we describe how to extract GF and GFCC
features from the cochleagram, and compute a CASA mask.

A. Auditory Features

Our system first performs auditory filtering by decomposing
an input signal into the T-F domain using a bank of gammatone

filters. Gammatone filters are derived from psychophysical and
physiological observations of the auditory periphery and this fil-
terbank is a standard model of cochlear filtering [21]. We use a
bank of 64 filters whose center frequencies range from 50 Hz
to 4000 Hz or 8000 Hz depending on the sampling frequency
of speech data. Since the filter output retains the original sam-
pling frequency, we decimate fully rectified 64-channel filter re-
sponses to 100 Hz along the time dimension. This yields a corre-
sponding frame rate of 10 ms, which is used in many short-time
speech feature extraction methods. The magnitudes of the dec-
imated outputs are then loudness-compressed by a cubic root
operation

(1)

Here, refers to the number of frequency (filter) chan-
nels. is the number of time frames obtained after decimation.
The resulting responses form a matrix, representing the
T-F decomposition of the input. This T-F representation is a
variant of cochleagram. Note that, unlike the linear frequency
resolution of a spectrogram, a cochleagram provides a finer fre-
quency resolution at low frequencies than at high frequencies.
Fig. 2 shows a cochleagram and a spectrogram of an utterance.
Darker regions represent stronger energy. Note the difference in
energy-concentrated regions below 1000 Hz between these two
T-F representations. We base our subsequent processing on the
cochleagram representation.
We call a time slice of the above matrix gammatone feature

(GF), and use to denote its th channel. Time index
is dropped for simplicity. Here, a GF vector comprises 64
frequency components. Note that the dimension of a GF vector
is larger than that of MFCC vectors used in a typical speaker
recognition system. Additionally, because of the frequency
overlap among neighboring filter channels, GF components
are correlated with each other. In order to reduce dimension-
ality and de-correlate the components, we apply a DCT to a
GF. We call the resulting coefficients gammatone frequency
cepstral coefficients (GFCCs) [29], [30]. Specifically, cepstral
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Fig. 2. Illustrations of a cochleagram (top) and a spectrogram (bottom) of a
clean speech utterance. Note the asymmetric frequency resolution at low and
high frequencies in the cochleagram.

coefficients, , , are obtained from a GF as
follows:

(2)
Note that the zeroth-order coefficient summates all the GF com-
ponents. Thus, it relates to the energy of a GF vector.
Rigorously speaking, the newly derived coefficients are not

cepstral coefficients because a cepstral analysis requires a log
operation between the first and the second frequency analysis
for the deconvolution purpose [19]. Here, we call them cepstral
coefficients because of the functional similarities between the
above transformation and that of a typical cepstral analysis in
the derivation of MFCC.

B. CASA-Based Mask Estimation

As described earlier, a cochleagram is a T-F representation of
a signal.With such a representation, a binary T-Fmask furnishes
the crucial information about whether a T-F unit is dominated
by target speech or background noise. As a main computational
goal of CASA, an ideal binary mask (IBM) is a binary matrix
defined as follows [36]:

if
otherwise.

(3)

is indexed by time and frequency .
refers to the local signal-to-noise ratio (SNR) (in dB) for the T-F
unit in time frame and frequency channel . Given premixed
target and interference signals, the IBM can be readily con-
structed. The IBM concept is motivated by the auditory masking
phenomenon [18], and is the optimal binary mask in terms of
SNR gain [16].
To estimate the IBM from an input mixture, we employ a

recent CASA system that performs feature-based classification
[13]. First, we estimate the pitch of the speech signal at each
frame using a multipitch tracking algorithm [12]. This algo-
rithm formulates multipitch tracking as a hidden Markov model

Fig. 3. Illustration of estimated IBM produced by a voiced speech segregation
system. The top plot shows the cochleagram of an utterance mixed with white
noise at 0-dB SNR. The bottom plot presents an estimated IBM from themixture
in the top plot, where 1 is shown as white and 0 as black.

(HMM), which can produce up to two pitch points at each frame.
As we deal with noises that are mostly aperiodic, the multip-
itch tracker tends to output at most one pitch per frame. Given
an estimated pitch, a six-dimensional pitch-based feature vector
is extracted for each T-F unit [13]. These features are fed to
an MLP (multilayer perceptron) classifier, whose output can
be interpreted as the posterior probability of a T-F unit being
target dominant. The desired output during MLP training is the
IBM. Note that we take the binarized MLP output as the re-
sulting CASA mask without using a subsequent segmentation
and grouping stage in the original system of [13].
Fig. 3 shows an estimated IBM for a noisy speech utterance.

If input SNR is given, an SNR-dependent MLP can be trained
to estimate the IBM. Otherwise, one can train multiple MLPs at
different SNRs, and select the MLP whose corresponding SNR
is closest to the estimated input SNR. In this paper, the latter is
adopted as we assume no prior knowledge of input SNR. More
details about MLP training will be provided in Section VII-A.

IV. RECONSTRUCTION MODULE

In speaker recognition, the probability distribution of an ex-
tracted feature vector produced by a speaker is typically
modeled as a GMM [26], parameterized by diagonal covariance
matrices. Under noisy conditions, the aforementioned speech
segregation system produces a binary T-F mask that indicates
whether a GF component is speech dominant or noise dominant.
The former one is regarded as reliable since the system has more
speech information in the speaker models while the latter one is
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deemed missing. Thus, the feature vector is partitioned into re-
liable components , and unreliable ones :

(4)

In order to enhance a noise corrupted GF, we first reconstruct its
missing components from a speech prior model, which is similar
to a universal background model in speaker verification [25].
Specifically, the speech prior is modeled as a large GMM
[24], and obtained from pooled training data:

(5)

where is the number of mixture components, and denotes
the index and the prior probability of a mixture component.

is the th Gaussian distribution with a mean vector
and a diagonal covariance . Given a binary mask, the compo-
nents of the mean and variance of each Gaussian are also split
into reliable and unreliable ones. We then calculate the a poste-
riori probability of the th component given reliable GF com-
ponents as

(6)

As shown in [4], [34], the unreliable components are esti-
mated as the expected value or the mean conditioned on :

(7)

where refers to the mean vector of the unreliable compo-
nents of the th Gaussian in the speech prior. The reliable com-
ponents are retained in the reconstruction. Since GF is an en-
ergy-based feature, the underlying target signal is expected to
be smaller than the mixture value. Therefore, we replace a re-
constructed value with the observed value if the former is larger.
As shown in the above equations, the quality of reconstruc-

tion is largely determined by the amount of reliable speech infor-
mation. With little reliable information, the quality of recogni-
tion is expected to be very poor. Therefore, we introduce a frame
selection step in the reconstruction module to choose relatively
clean frames, when there are plenty frames available for recog-
nition. Some criterion such as frame level SNR or the number
of reliable units is needed for selection, and details will be pro-
vided in Section VII-D.
With the reconstructed GF, we convert it into GFCC by ap-

plying DCT. GFCC is a speaker feature that can be directly used
for recognition in conjunction of trained speaker models as de-
scribed in Section III-A.

V. MARGINALIZATION MODULE

An alternative approach to reconstruction is marginalization,
which has shown good performance in robust speech recogni-
tion [4] and has been applied to robust speaker recognition [7],

[31]. The main idea behind marginalization is to base recog-
nition decisions on reliable components; in other words, we
want tomarginalize unreliable components.WithGMMspeaker
models and diagonal covariance matrices, we have

(8)

In the above equation, an unreliable feature dimension inte-
grates to 1 and the likelihood calculation reduces to a simple
case where the feature dimensions of reliable T-F units are in-
serted into each speaker model to get the likelihood of a frame.
Although from the unreliable T-F units we cannot precisely

predict the underlying target feature value, the feature value
should be within the range from 0 to the observed value as a
GF feature is derived from the cubic root operation [see (1)].
This analysis provides a more accurate range of integration than
that from minus infinity to positive infinity in (8). Utilizing the
tighter range leads to bounded marginalization [4], described as
follows where “low” and “high” define the range:

(9)

Consistent with earlier studies [4], [7], we have found that
bounded marginalization produces substantially better recogni-
tion performance than full marginalization. Therefore, we em-
ploy bounded marginalization on GF features. It is worth em-
phasizing that this marginalization method operates in the spec-
tral domain, whereas the reconstruction method described in
Section IV performs recognition in the cepstral domain.

VI. COMBINED SYSTEM

Between the reconstruction module and the marginalization
module, we expect the former to perform better at high SNRs as
it is well known that cepstral features outperform spectral fea-
tures in recognition [6], [33]. On the other hand, marginalization
is expected to perform better in low SNR conditions, as recon-
struction based on few reliable T-F units likely has poor quality.
Also, bounded marginalization makes use of some information
from unreliable T-F units. These differing performance trends
are indeed confirmed by the evaluation results presented in the
next section. To utilize the relative advantages, we combine
them into one system.
In our study, we have noticed that when a module makes a

recognition mistake, the underlying target speaker tends to have
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a top ranked score although it is not the highest. Meanwhile,
wrong identities from these two modules tend not to agree. Mo-
tivated by this observation, we simply use a linear combination.
We derive an SID score vector for each frame by feeding

the frame signal to each speaker model. Note that each ele-
ment of this vector is a log-likelihood corresponding to a partic-
ular speaker model. An utterance level score vector is derived
by adding frame level log-likelihood score vectors. After inte-
grating SID scores from all the available frames, each module
outputs a score vector with the number of elements equal to the
total number of the speaker models. As the scores from the two
modules may not be on the same scale, normalization should be
applied before adding them together. We perform the following
simple normalization:

(10)

where and denote the original and nor-
malized score vectors of an individual module respectively. The
SID score of the combined system is given as follows:

(11)

We refer to the frames containing at least one reliable T-F
unit as “active frames.” The frames containing no reliable unit
are either unvoiced speech mixed with noise or voiced speech
completely masked by noise. Our study shows that unvoiced
speech plays a relatively minor role in speaker recognition and
our CASA-mask estimation algorithm cannot separate unvoiced
speech. Completely masked voiced speech provides little infor-
mation for SID and it seems reasonable to ignore these frames.
Therefore, we only feed active frames to the two modules.

VII. EVALUATION AND COMPARISON

In this section, we systematically evaluate the noise robust-
ness of the proposed SID methods. We also compare the perfor-
mance of our system with baseline systems using the conven-
tional MFCC feature and the ETSI-AFE feature. In addition, we
compare with a related robust SID system by Pullella et al. [23].

A. Experiment Setup

We employ speech material (one-speaker detection, cellular
data) from the 2002 NIST Speaker Recognition Evaluation
corpus [22], which is a standard dataset for automatic speaker
recognition (particularly verification). The speaker dataset con-
tains 330 speakers. Each speaker has a roughly 2-minute-long
telephone recording sampled at 8 kHz for training. It is divided
into 5-s-long pieces, and 2 of them are included in the test set,
2 in the development set and the remaining ones in the training
set. To study how the proposed system performs under different
types of noisy conditions, the test utterances are mixed with
multitalker babble noise which is nonstationary, speech shape
noise (stationary), and factory noise (nonstationary). Each noise
is mixed with telephone speech at various SNR levels from
6 dB to 18 dB at 6-dB intervals. Note that the test utterances

are different from the training ones.

Fig. 4. Illustrations of energy compaction by GFCCs. Plot (a) shows a cochlea-
gram of an utterance. Plot (b) shows a GF frame at 1 s of (a). The original GF
is plotted as the solid line and the resynthesized GF by 23 GFCCs is plotted as
the dashed line. Plot (c) presents the resynthesized cochleagram from (a) using
23 GFCCs.

Sixty-four dimensional GF is extracted to model speaker
dependent characteristics. To reconstruct the noisy GF, a speech
prior with 2048 Gaussian components is trained using all the
pooled training data. The reconstructed GF is converted to
GFCC using DCT. Each speaker model is adapted from a
1024-component universal background model (UBM) trained
using all the training data [27]. Compared with individually
trained GMMs, this GMM-UBM approach scores much faster
and is more discriminative.
As the NIST dataset contains telephone speech, little speech

information exists below 200 Hz. Therefore, we only use fea-
tures above 200 Hz. In the gammatone filterbank, the ten lowest
channels correspond to frequencies below 200 Hz and thus GF
consists of channels 11–64 (i.e., 54 channels). As confirmed
using the development set, excluding the low-frequency chan-
nels increases SID performance.
For MLP training, we randomly select 50 utterances from the

training set and mix them with speech shape, factory, babble,
and white noises at SNR levels from 12 dB to 18 dBwith 6-dB
increments. At each SNR, an SNR-specific MLP is trained. In
addition, a generic MLP is trained by pooling mixtures from all
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SNR levels. Given a test speech signal, the generic MLP is used
to generate a binary mask, from which we estimate the input
SNR (during voiced intervals). For separation, we choose the
MLP whose training SNR is closest to the estimated SNR.

B. GFCC Dimensions and Dynamic Features

In the reconstruction module, when converting 64-dimen-
sional GF to GFCC, keeping all the 64 dimensions of GFCC
may not be necessary. After inverting DCT of GFCC, we find
that the lower 23-order coefficients capture almost all the GF
information and the coefficients above the 23th have values
close to 0, which means that they provide negligible information
(see also [30]). As an illustration, Fig. 4(a) shows the cochlea-
gram of an utterance, Fig. 4(b) shows a comparison of a GF
frame at 1 s of Fig. 4(a) and the resynthesized GF from the
first 23 GFCC coefficients, and Fig. 4(c) presents the resyn-
thesized cochleagram from the top plot using only the 23 co-
efficients. As can be seen from the figure, the lower 23-order
GFCCs largely retain the information in 64-dimensional GFs.
This is due to the “energy compaction” property of DCT [19].
Additionally, the zeroth cepstral coefficient corresponds to the
energy of the whole frame, which is susceptible to noise corrup-
tion. Our experiments using the IBM for separation show that
removing the zeroth coefficient improves the SID performance
significantly. Hence, in the later experiments we will use 22-di-
mensional GFCCs.
Since a typical speaker recognition system uses MFCCs and

their first-order (delta) dynamic coefficients, it is reasonable
to study how GFCC dynamic features fare for recognition.
GFCCs with 22 dimensions have shown good SID performance
in our experiments. After appending 22-dimensional dynamic
features, we find that the performance improvement is not
significant. Therefore, we use 22-dimensional static GFCCs as
speaker features in the reconstruction module.

C. Baseline Comparisons

To show the utility of GFCC as speaker features, we choose
MFCC and ETSI-AFE as baseline features. ETSI-AFE is essen-
tially enhanced MFCC features. Our experiments suggest that
MFCC without delta or acceleration features performs better.
This is probably because without noise reduction, the delta
and acceleration features are very noisy and cannot encode the
underlying dynamic speaker information. However, ETSI-AFE
with delta features works better than static features. Therefore,
we choose static MFCC features and ETSI-AFE with delta
features as two baselines. For the GFCC baseline, we directly
derive noisy GFCC features out of a mixture without separation
or reconstruction. In this way, we could directly evaluate the
effectiveness of GFCC as a new speaker feature. To make a
fair comparison, since the GFCC feature has 22 dimensions,
we also derive 22-dimensional MFCCs in addition to the com-
monly used 12-dimensional version (after removing the zeroth
coefficient). As mentioned in Section VII-A, we only use GF
features above 200 Hz. This is also the case for MFCC features.
As for ETSI-AFE features, we use the default frequency range
as it is unclear how to adjust the frequency range.
Fig. 5 gives the SID accuracies of different baseline systems

with respect to SNR. When performing SID, we only consider

Fig. 5. SID performance of different baseline systems for three noises.

active frames. The results in the figure show that the GFCC
baseline on average gives significantly better performance than
the other baselines for all three noises. This indicates that the
GFCC feature has more robustness in noisy conditions. ETSI-
AFE_D (_D indicates delta features) works better than 12-di-
mensional MFCC features. After we increase MFCC dimen-
sions to 22, the same dimensionality as GFCC, MFCC features
yield closer performance to ETSI-AFE_D but still underper-
form GFCC features.

D. Evaluation Results

Now we present SID results of the proposed methods using
estimated IBM. We also compare the performance of the indi-
vidual modules and the combined system. In the frame selection
step of the reconstruction module, we use as the selection cri-
terion the smaller of half of the frequency channels (i.e., 27 for
the NIST dataset—see Section VII-A) and the median number
of reliable T-F units of all active frames for a noisy speech ut-
terance. Given an active frame, it will be selected if its number
of reliable units is greater than the criterion.
Table I shows the SID performances of the three methods:

the reconstruction module, the marginalization module, and the
combined system. As shown in the table, at high SNR con-
ditions, particularly at 18 dB, the reconstruction module with
GFCC performs well, better than GF plus bounded marginal-
ization that operates in the spectral domain. On the other hand,
the marginalization module performs consistently better under
low SNR conditions. This suggests that, when there are rela-
tively many reliable T-F units, reconstructing unreliable ones
and using GFCC features yield performance advantages. On the
contrary, if there are few reliable T-F units, bounded marginal-
ization in the spectral domain is a more effective strategy. We
should point out that, in terms of computational complexity,
the reconstruction module is faster as it uses 22-dimensional
GFCC features, as opposed to 54-dimensional GF features used
in the marginalization module. Also, the integration operation
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TABLE I
SID ACCURACY (%) OF THE PROPOSED METHODS. REC DENOTES THE
RECONSTRUCTION MODULE, MAR THE MARGINALIZATION MODULE,

AND CMB THE COMBINED SYSTEM

in bounded marginalization [see (9)] takes time. These factors
lead to the reconstruction module taking about 1/3 of the com-
puting time of the marginalization module.
The combined system attempts to take advantage of the two

methods. By looking at the SID results in Table I, it is clear that
on average the marginalization module works better than recon-
structionmodule for babble and SSN. The combined system sig-
nificantly outperforms the individual modules.
To evaluate the quality of IBM estimation, we present the

SID performance using the IBM in Table II. The table shows
that both modules work very well using the IBM, especially
the marginalization module. Compared with Table I, the re-
construction module has less significant improvement than the
marginalization module. This may reflect the robustness of the
reconstruction module to mask estimation errors. The dramatic
gap between the two modules at 6 dB leads to a little perfor-
mance degradation in the combined system. However, at 0 dB,
although the gap is still large, the combined system is able to
further improve the individual results.
Equation (11) weights the two modules equally. This com-

bination is very simple, and it is possible that using unequal
weights, e.g., assigning a higher weight to the more accurate
module, produces better identification results. In the above IBM
evaluation, we have found that, when we weight the two mod-
ules proportional to the numbers of selected frames, the perfor-
mance of the combined system is improved a little compared to
(11) as marginalization uses more active frames and therefore
contributes more to the combination.
Table III lists the average SID results of the combined system

along with those of the baseline systems given in Section VII-C.
Clearly the combined system outperforms all three baselines.
The combined system’s SID results are more than 28 percentage
points higher than those of MFCC and ETSI-AFE_D baselines.
The gain over the GFCC baseline is smaller, reflecting the ro-
bustness of GFCC features themselves.
Under clean conditions, MFCC_22 yields the SID accuracy

of 96.67% (94.39% for MFCC_12), whereas the accuracy is

TABLE II
SID ACCURACY (%) OF THE PROPOSED METHODS WITH THE IBM

TABLE III
SID ACCURACY (%) OF THE COMBINED SYSTEM AND BASELINES.
PERFORMANCE IS AVERAGED ACROSS DIFFERENT SNR CONDITIONS

97.12% for GFCC_22. GF as a spectral feature gives the accu-
racy of 95.76%, which is slightly worse than the 22-dimensional
cepstral features. In a similar task on the 2002 NIST dataset,
the accuracy of 89.39% was reported on the clean test set using
MFCC features [1].

E. Comparison With a Related System

Pullella et al. recently proposed a system for robust speaker
recognition, which also utilizes bounded marginalization
to achieve noise robustness [23]. The difference from our
marginalization module lies in two aspects. First, we use the
gammatone filterbank as the front-end followed by decimation
to derive GF features. They use a mel-scale filterbank as the
front-end. The second difference is in mask estimation. They
compute a binary mask using spectral subtraction, and then
feature selection to refine the initial mask. It is question-
able whether spectral subtraction can effectively deal with
nonstationary noises. As described earlier, our system uses
CASA-based speech segregation to directly estimate the IBM.
Our comparison uses the same experimental setup as in [23].

The speech signals are from the TIDigits corpus [14], from
which 31 speakers (21 males and 10 females) are randomly
chosen. Each speaker has speech utterances corresponding to
77 connected digits. Out of them, 50 are randomly chosen for
training and 27 for testing. Test utterances are corrupted by
white noise and factory noise at 5, 0, 5, 10, 15, and 20 dB.
In the following figures, the performance of their system
and MFCC baseline is directly taken from [23]. It is worth
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Fig. 6. SID accuracy (%) comparisons of the proposed marginalization
module and Pullella et al.’s system. Both systems utilize the ideal binary mask
for separation.

Fig. 7. SID accuracy (%) comparisons of the proposed combined system and
Pullella et al.’s system using estimated binary masks.

mentioning that in this simulation we use individually trained
GMMs instead of the GMM-UBM scheme to be consistent
with their system, and the frame selection step is not employed
due to relative short test utterances. The mask estimation
process is the same as described in Section VII-A except that
babble, white, factory and destroyer (operation room) noises
are employed for MLP training.
Fig. 6 shows the SID performance with the IBM. To sharpen

the comparison, we give the performance of the marginalization
module of our system. The figure shows that our marginaliza-
tion module yields SID accuracies that are about 10 percentage
points higher than those in [23] for both white noise and factory
noise conditions. In our system, only active frames are used for
recognition, while their system appears to use all the frames. In
this case, our system using all the frames achieves almost the
same performance as using active frames. Therefore, this im-
provement should reflect the relative advantage of GF features
over their mel-scale features.
Fig. 7 shows the SID performances of the proposed methods

and Pullella et al.’s system with their respective methods of
mask estimation. The comparison shows that all of our pro-
posed methods perform much better than their system in both
noise conditions, particularly at lower SNR levels. While our
methods’ performance does not vary a lot for the two noises,
their system performs considerably worse in the factory noise,
presumably because of the ineffectiveness of spectral subtrac-
tion for attenuating this nonstationary noise.
Comparing Figs. 6 and 7, our system with estimated binary

masks does not degrade the performance by much compared to
the use of the IBM, unlike the performance gaps in the NIST
corpus shown earlier (cf. Tables I and II). We believe that this
can be attributed to the large lexicon overlap between training

and testing in the TIDigits corpus, which has a very small vocab-
ulary. In the NIST corpus, there is no overlap between training
and test utterances. We will come back to this point in the next
section.

VIII. DISCUSSION

An important finding in our study is that GFCC features out-
perform conventional MFCC features under noisy conditions.
MFCC is obtained by a discrete Fourier transform (DFT), fol-
lowed by a conversion to the Mel-frequency scale with a bank
of triangular filters. Applying DCT to the log energy of the
filter output produces MFCC. There are two main differences
between GFCC and MFCC. First, GFCC uses a gammatone fil-
terbank whereas MFCC uses a triangular filterbank applied to
DFT. Gammatone filters constitute a more accurate model of
cochlear filtering than triangular filters. Second, a log operation
is applied in deriving MFCC whereas a cubic root operation is
used in GFCC derivation. We believe that the performance ad-
vantage of GFCC is mainly due to the first difference, which is
corroborated by the comparison in Fig. 6.
Our earlier work used the speech separation and recognition

corpus (SSC) [5] as our test data [29], [30], and achieved large
performance gains (see also [15]). However, we have found that
such gains are somewhat inflated by the large lexicon overlap
between training and test material. The SSC corpus has a small
vocabulary and a large amount of training data. Each sentence
in SSC has a fixed grammar and every word appears in both
training and testing data. This situation is similar to the TIDigits
corpus discussed in Section VII-E. On the other hand, the NIST
corpus is a standard dataset for speaker recognition, which is
much closer to practical situations.
Our previous work also employed uncertainty decoding in

conjunction with GF feature reconstruction [29], [30]. Theoret-
ically, uncertainty decoding is expected to improve recognition
performance as the contributions of unreliable feature dimen-
sions are discounted during decoding. Our experiments show
that ideal information about feature uncertainty can indeed bring
about considerable performance improvement. However, with
estimated uncertainty, the decoding process does not provide
significant performance improvements due to inevitable errors
in the estimation process. How to estimate spectral uncertainty
accurately is an interesting topic for future research.
In robust speech recognition, the reconstruction method

shows better performance compared with bounded marginal-
ization in larger vocabulary tasks [24], [33]. In our SID results,
marginalization generally produces better results than recon-
struction. The effectiveness of marginalization for SID has
been shown in a number of previous studies [7], [23], [31].
We should note that speaker and speech recognition are two
different tasks despite the fact that approaches are often shared
between them.
Although the combined system in this study significantly out-

performs the individual modules on the NIST dataset, the im-
provement on the Tidigits dataset is insignificant. The simple
combination strategy in (11) seems to lose its advantage when
the performance profiles of the individual modules are similar.
In such situations, more sophisticatedmethods of classifier com-
bination may be needed. Our future work will investigate this
topic, which is a promising direction for further progress.
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We should point out that this paper deals with additive noise
in robust speaker identification, not handset/channel variations
which are widely studied topics in robust speaker recognition.
Are GF and GFCC features also robust to handset variations?
There is no reason to believe so as these features are not
designed for such variations. Whether common techniques for
handling convolutive distortions such as CMN can be effec-
tively combined with our approach to deal with both additive
noise and handset variations is an interesting topic for future
research.
To conclude, we have proposed new methods for robust

speaker identification in noisy conditions, including novel
speaker features of GF and GFCC. By using CASA masks for
speech segregation, we can either reconstruct or marginalize
unreliable components. Our systematic evaluations show that
the proposed systems and their combination achieve significant
performance improvements over alternative SID systems.
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