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ABSTRACT 

 
Speaker recognition remains a challenging task under noisy 
conditions. Inspired by auditory perception, computational 
auditory scene analysis (CASA) typically segregates speech by 
producing a binary time-frequency mask. We first show that a 
recently introduced speaker feature, Gammatone Frequency 
Cepstral Coefficient, performs substantially better than 
conventional speaker features under noisy conditions. To deal with 
noisy speech, we apply CASA separation and then either 
reconstruct or marginalize corrupted components indicated by the 
CASA mask. Both methods are effective. We further combine 
them into a single system depending on the detected signal to noise 
ratio (SNR). This system achieves significant performance 
improvements over related systems under a wide range of SNR 
conditions. 
 

Index Terms— Robust speaker identification, gammatone 
frequency cepstral coefficient, GFCC, CASA, ideal binary mask 
 

1. INTRODUCTION 
 
The goal of speaker recognition system is to reveal underlying 
speaker identity based on distinctive speaker features. Cepstral 
features such as mel-frequency cepstral coefficients (MFCC) and 
perceptual linear predictive (PLP) coefficients are commonly used 
speaker features. Typically a speaker’s feature space is modeled by 
a Gaussian mixture model (GMM). Recognition decision is made 
based on likelihoods of observed features given a speaker model. 
This approach has shown remarkable performance for speaker 
recognition in clean conditions. However, when the noise 
corruption is taken into account, the observed features mismatch 
clean speaker models, and yield poor recognition performance. 

To address this robustness problem, RASTA filtering, cepstral 
mean normalization, and speech enhancement methods such as 
spectral subtraction have been explored. Studies of robust speech 
recognition on Aurora have yielded an advanced front-end feature 
extraction algorithm (AFE) [13], which is standardized by the 
European Telecommunication Standards Institute (ETSI). ETSI-
AFE adds robustness to conventional MFCC features by 
sophisticated front-end processes, including speech activity 
detection and Wiener filtering. Alternative approaches seek to 
improve robustness by modeling noise and combining it with clean 
speaker models, or directly modeling speaker in noisy 
environments. However, these alternatives are heavily dependent 
on the a priori information of noise sources.  

In a noisy acoustic environment, human listeners perform 

robustly in speaker recognition tasks, due to the perceptual process 
of auditory scene analysis (ASA) [1]. Inspired by ASA research, 
computational auditory scene analysis (CASA) aims to organize 
sound based on ASA principles [15]. In this paper, we propose a 
robust speaker identification (SID) system using CASA as a front-
end to perform speech segregation. The output of CASA 
segregation is a binary time-frequency (T-F) mask that indicates 
whether a particular T-F unit is dominated by speech or noise. In 
[12], we proposed Gammatone Feature (GF) and Gammatone 
Frequency Cepstral Coefficient (GFCC), based on an auditory 
periphery model, and showed that GFCC performs significantly 
better than MFCC in terms of speaker identification performance. 
The proposed system has two modules. To account for the 
deviations of noisy features from clean ones, the first module 
enhances the GF by reconstructing corrupted components. The 
second module performs bounded marginalization on the noisy GF. 
Each module yields substantial improvement over baseline SID 
systems. As the two modules perform well in different SNR 
ranges, we propose a combined system based on a simple SNR 
detection. 

The rest of the paper is organized as follows. Section 2 
describes the overall system architecture. Auditory feature 
extraction and binary mask estimation are discussed in Section 3. 
Section 4 introduces the two modules and the combined system. 
SID evaluations are presented in Section 5. Further discussions are 
given in Section 6. 
 

2. SYSTEM OVERVIEW 
 

The proposed system uses CASA as a front-end processor for 
robust SID. Figure 1 presents the block diagram of the overall 
system. Input speech is decomposed using a gammatone filterbank 
and subsequent time windowing to generate a time sequence of 
GFs. This T-F analysis results in a cochleagram [15]. 
Simultaneously, we feed the input signal to a CASA system that 
computes a binary mask corresponding to the target speech [4]. 
Each element of this mask corresponds to a T-F unit in the 
cochleagram, with 1 indicating the T-F unit is dominated by target 
speech and 0 by noise. The binary mask and input speech are fed to 
an SNR detector to select either the reconstruction module or 
marginalization module for SID.  

In the reconstruction module, the noise-corrupted components 
indicated by the CASA mask are reconstructed using a speech 
prior and the enhanced GF is converted to the cepstral domain by 
discrete cosine transform (DCT). Subsequently, the obtained 
cepstral feature, GFCC, is used in conjunction with trained speaker 
models to derive the underlying speaker identity. In the 
marginalization module, bounded marginalization is performed on
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the noisy GF directly to marginalize noise-corrupted components. 
Each module provides an SID system by itself. Our 

experiments suggest that the reconstruction module works better in 
high SNR conditions and the marginalization module in low SNR 
conditions. To leverage their respective advantages, our combined 
system assigns the input signal to one of the modules based on its 
estimated SNR. 

 
3. FEATURE EXTRACTION AND MASK 

ESTIMATION 
 
In our previous paper [12], we described how to generate GF and 
GFCC. First we perform auditory filtering by decomposing an 
input signal into the T-F domain using a bank of gammatone 
filters. After decimating fully rectified filter responses to 100 Hz 
followed by a cubic root operation, a variant of cochleagram is 
obtained. We call each time slice in this cochleagram GF.  By 
taking DCT, we convert GF to GFCC. Specifically, cepstral 
coefficients, C [j], j = 0, …, N-1 are obtained from a GF as follows 
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Here N=64 refers to the number of frequency channels. G[ i ]  is the 
ith element of the corresponding GF vector. 

As described earlier, a cochleagram is a T-F representation of a 
signal. With such a representation, a binary mask furnishes the 
crucial information about whether a T-F unit is dominated by 
target speech or noise. As a main computational goal of CASA, an 
ideal binary mask (IBM) is a binary matrix where a mask element 
equals 1 if the target energy exceeds the noise energy in 
corresponding T-F unit, and 0 otherwise [14]. The IBM concept is 
motivated by the auditory masking phenomenon, and is the optimal 
binary mask in terms of SNR gain.  

To estimate the IBM from an input mixture, we employ a 
recent CASA system that performs feature-based classification [4]. 
This system is employed because it makes few assumptions about 
the underlying noises and performs well under various SNR 
conditions, even with room reverberation. First, we estimate the 
pitch of the speech signal at each frame using a multipitch tracking 
algorithm [5]. This algorithm formulates multipitch tracking as a 
hidden Markov model (HMM), which can produce up to 2 pitch 
points at each frame. As we deal with noises that are mostly 
aperiodic, the multipitch tracker tends to output at most one pitch 
per frame. Given an estimated pitch, a 6-dimensional pitch-based 
feature vector is extracted for each T-F unit [4]. These features are 
fed to a multilayer perceptron (MLP) classifier, whose output can 
be interpreted as the posterior probability of a T-F unit being target 

dominant. This statistical interpretation naturally leads to the 
decision threshold of 0.5 in binary mask generation. This process 
will produce IBM estimation errors. We observe that the bounded 
marginalization method is more adversely affected by false-alarm 
errors (0 mistakenly labeled as 1) than by miss errors (1 mistakenly 
labeled as 0). This observation leads us to choose a higher decision 
threshold for converting the posterior probabilities as the MLP 
output to a binary mask than 0.5. We find that raising the threshold 
from 0.5 to 0.6 yields good results, and we will use this raised 
threshold in the marginalization module (no change is made in the 
reconstruction module).  

 
4. COMBINED SYSTEM 

 
4.1. Reconstruction Module 
 
The aforementioned speech segregation system produces a binary 
T-F mask that indicates whether a GF component is speech 
dominant or noise dominant. The former one is regarded as reliable 
while the latter is deemed missing. In order to enhance a noise 
corrupted GF, we first reconstruct its missing components from a 
speech prior model, which is a large GMM obtained from pooled 
training data [10]. With the reconstructed GF, we convert it to 
GFCC by applying DCT. GFCC can be directly used for 
recognition in conjunction with trained speaker models [12]. 
 
4.2. Marginalization Module 
 
An alternative approach to reconstruction is marginalization, which 
has shown good performance in robust speech recognition and has 
been applied to robust speaker recognition [3, 11]. The main idea 
behind marginalization is to base recognition decision on reliable 
T-F units. In other words, we want to marginalize unreliable T-F 
units. To achieve this goal, we can integrate the unreliable T-F 
units either from minus infinity to positive infinity or in a tighter 
range, from 0 to the observed feature value. The latter is called 
bounded marginalization. A systematic evaluation we have done 
shows that bounded marginalization produces substantially better 
SID performances than full marginalization. Therefore in the 
marginalization module, we employ bounded marginalization on 
GF features.  
 
4.3. Combined System 
 
Between the reconstruction module and the marginalization 
module, we expect the former to perform better at high SNRs as it 
is well known that cepstral features outperform spectral features in 
recognition. On the other hand, marginalization is expected to 

 
 

Figure 1. Schematic diagram of a CASA-based robust speaker identification system. 
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perform better in low SNR conditions, as reconstruction based on 
few reliable T-F units likely has poor quality. Also, bounded 
marginalization makes use of some information from unreliable T-
F units. These differing performance trends are indeed confirmed 
by the evaluation results presented in the next section. To utilize 
the relative advantages, we propose to combine them into one 
system using a simple SNR detector.  

From a CASA mask, we can resynthsize the target signal out of 
the mixture [15]. Similarly, we can resynthesize the noise by 
inverting the binary mask (the complement mask). Because the 
CASA mask is generated only in voiced frames, the complement 
mask should be used only in the frames where the original mask 
has at least one T-F unit labeled as 1. Given the estimated target 
speech and the estimated interference in voiced frames, SNR is 
readily calculated. This SNR detector tends to overestimate the 
mixture SNR because the estimation is taken during intervals when 
the target speech is voiced, hence having strong energy. This factor 
will be considered when choosing a decision threshold for 
distinguishing low and high SNRs. On the other hand, this simple 
estimator suffices for our purposes as we do not need to precisely 
detect the mixture SNR, rather only deciding whether the mixture 
SNR is high or low. If the detected SNR is high, the combined 
system chooses the reconstruction module to perform SID. 
Otherwise, it chooses the marginalization module. 
 

5. EVALUATIONS 
 
5.1. Experiment Setup 
 
We employ speech material from the 2002 NIST Speaker 
Recognition Evaluation corpus [8]. The speaker data is drawn from 
a randomly selected set of 50 speakers (20 males and 30 females). 
Each speaker has a roughly 2-minute long telephone recording 
sampled at 8 kHz. It is divided into 5s long pieces, and 4 of them 
are used as test utterances and others for training. Totally there are 
200 test utterances. To study how the proposed system performs 
under different types of noisy conditions, the test utterances are 
mixed with multitalker babble noise (nonstationary), speech shape 
noise (stationary), and factory noise (nonstationary). Each noise is 
mixed with test utterances at various SNR levels from -12 dB to 18 
dB at 6 dB intervals. 

A gammatone filterbank with 64 channels is applied to 
decompose input signal into cochleagram, and 64-dimensional GF 
is extracted from it to model speaker dependent characteristics. To 
reconstruct the noisy GF, a speech prior with 2048 Gaussian 
components is trained using all the pooled training data. The 
reconstructed GF is converted to GFCC using DCT. Each speaker 
is modeled by a 64-component GMM using HTK. 

We find the lower 23-order GFCCs largely retain the 
information in 64-dimensional GFs. This is due to the “energy 
compaction” property of DCT [7]. Additionally, the 0th cepstral 
coefficient corresponds to the energy of the whole frame, and is 
susceptible to noise corruption. Our experiments using the IBM for 
separation show that removing the 0th coefficient improves the SID 
performance significantly. Hence, in our experiments we will use 
22-dimensional GFCCs. 

Considering that the SNR estimator tends to overestimate the 
input SNR, we set the threshold to 7.5 dB, which can reliably 
separate individual mixtures into a high-SNR set that selects the 
reconstruction module for SID and a low-SNR set that selects the 
marginalization module. 

 

5.2. Evaluation Results 
 
Table 1 shows the SID results of the two modules individually and 
the combined system for three noises at different SNRs. By 
assigning the input signal to different modules, the combined 
system is able to take advantage of both modules. In every noise 
condition, the combined system outperforms each individual 
module on average.  

We should point out that, in terms of computational 
complexity, the reconstruction module is faster as it uses 22-
dimensional GFCC features, as opposed to 64-dimensional GF 
features used in the marginalization module. Also, the integration 
operation in bounded marginalization takes time. These factors 
lead to the reconstruction module taking about 1/3 of the 
computing time of the marginalization module. 

 
Next we compare our system with several baseline systems. 

Table 2 gives the SID results of the combined system along with 
the three baselines. GFCC_22 is a baseline method that uses raw 
22-dimensional GFCC features without CASA-based 
reconstruction [12]. MFCC_22 is the baseline using 22-
dimensional MFCC features. It achieves the best performance 
among a variety of MFCC baselines we have tested. ETSI-AFE_D 
denotes 12-dimensional ETSI-AFE features plus their delta 
features. The combined system’s SID results are nearly more than 
20 percentage points higher than those of MFCC and ETSI-AFE_D 
baselines. The gain over the GFCC baseline is smaller, reflecting 
the robustness of GFCC features themselves. Note that, as shown 
in Table 1, the reconstruction and the marginalization module each 
already outperforms the baseline systems. 

 

 

Method Babble Factory SSN Average 

Combined System 52.5 69.5 64.75 62.25 

GFCC_22 43 53.58 56.33 50.97 

MFCC_22 40 38.67 38.75 39.14 

ETSI-AFE_D 39.5 45.58 44 43.03 
 

Table 2: SID accuracy (%) of the combined system and baselines. 
Performance is averaged across different SNR conditions. 

Babble -12 dB -6 dB 0 dB 6 dB 12 dB 18 dB Avg. 

REC 3.5 14.5 47 76.5 83 84.5 51.5 

MAR 4.5 16 52 61 76.5 85.5 49.25 

CMB 4.5 16 52 75.5 82.5 84.5 52.5 

Factory -12 dB -6 dB 0 dB 6 dB 12 dB 18 dB Avg. 

REC 7.5 37 72 86.5 90.5 93.5 64.5 

MAR 21.5 49 75 84 88.5 90.5 68.08 

CMB 21.5 49 77 85.5 90.5 93.5 69.5 

SSN -12 dB -6 dB 0 dB 6 dB 12 dB 18 dB Avg. 

REC 6 26.5 61 86.5 89.5 90.5 60 

MAR 15.5 46 63 77 81.5 83.5 61.08 

CMB 15.5 46 63.5 84.5 89 90 64.75 
 

Table 1: SID accuracy (%) of the proposed methods. REC 
denotes the reconstruction module, MAR the marginalization 
module and CMB the combined system. 
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5.3. Comparison with a Related System 
 
Pullella et al. [9] recently proposed a system for robust speaker 
recognition, which also utilizes bounded marginalization to 
achieve noise robustness. The difference from our marginalization 
module lies in two aspects. First, we use the gammatone filterbank 
as the front-end followed by decimation to derive GF features. 
They use a mel-scale filterbank as the front-end. The second 
difference is in mask estimation. They compute a binary mask 
using spectral subtraction, and then feature selection to refine the 
initial mask. As described earlier, our system uses CASA-based 
speech segregation to directly estimate the IBM.  

Our comparison uses the same experimental setup as in [9]. 
The speech signals are from the TIDigits corpus [6]. Test 
utterances are corrupted by white noise and factory noise at -5, 0, 5, 
10, 15, and 20 dB. 

     Figure 2 shows the SID performances of the proposed 
combined system and Pullella et al.’s system with their respective 
methods of mask estimation. The comparison shows that our 
combined system performs much better than their system in both 
noise conditions, particularly at lower SNR levels. While our 
system’s performance does not vary a lot for the two noises, their 
system performs considerably worse in the factory noise, 
presumably because of the ineffectiveness of spectral subtraction 
for attenuating this nonstationary noise. 

6. CONCLUDING REMARKS 
 
Our earlier work used the speech separation and recognition corpus 
(SSC) [2] as our test data [12], and achieved large performance 
gains. However, we have found that such gains are somewhat 
inflated by the large lexicon overlap between training and test 
material. The SSC corpus has a small vocabulary. Each sentence 
has a fixed grammar and every word appears in both training and 
testing data. This situation is similar to the TIDigits corpus 
discussed in Sec. 5.3. On the other hand, the NIST corpus is a 
standard dataset for speaker recognition, which is much closer to 
practical situations. 

IBM estimation plays a key role in the SID results, as 
underscored by the comparison in Figure 2.  CASA based speech 
segregation provides a promising direction to improve SID 
robustness. As pitch tracking and mask estimation continue to 
improve, further elevation in SID performance in adverse acoustic 
conditions can be expected. 

To conclude, we have proposed a novel system for robust 
speaker identification in noisy conditions. By using CASA masks 
for speech segregation, we can either reconstruct or marginalize 
unreliable T-F units. Our systematic evaluations show that the 
reconstruction and marginalization methods and a combined 
system achieve significant performance improvements over 

alternative SID systems. It is important to note that our proposed 
system does not require pretrained noise models, and as a result it 
is expected to generalize well to noise types not tested in this 
paper. 
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Figure 2. SID accuracy (%) comparisons of the proposed
combined system and Pullella et al.’s system. 

-5 0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

S
ID

 A
cc

ur
ac

y 
(%

)

White  Noise

 

 

Combined System
Pullella et al.

-5 0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

S
ID

 A
cc

ur
ac

y 
(%

)

Factory  Noise

 

 

Combined System
Pullella et al.

5471


