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Abstract—Processing latency is a critical issue for active noise
control (ANC) due to the causality constraint of ANC systems. This
paper addresses low-latency ANC in the context of deep learning
(i.e. deep ANC). A time-domain method using an attentive recur-
rent network (ARN) is employed to perform deep ANC with smaller
frame sizes, thus reducing algorithmic latency of deep ANC. In
addition, we introduce a delay-compensated training to perform
ANC using predicted noise for several milliseconds. Moreover, a
revised overlap-add method is utilized during signal resynthesis
to avoid the latency introduced due to overlaps between neigh-
boring time frames. Experimental results show the effectiveness
of the proposed strategies for achieving low-latency deep ANC.
Combining the proposed strategies is capable of yielding zero, even
negative, algorithmic latency without affecting ANC performance
much, thus alleviating the causality constraint in ANC design.

Index Terms—Active noise control, deep ANC, algorithmic
latency, ARN, low-latency.

I. INTRODUCTION

NOISE is an auditory annoyance that has negative effects on
human listeners and is recognized as a type of pollution.

Two different strategies exist for controlling noise: passive and
active noise control. Passive noise control is the traditional way
to reduce noise, and it achieves noise attenuation using pas-
sive methods like insulation and silencers. Active noise control
(ANC) is a noise cancellation technology based on the principle
of destructive superposition of acoustic signals. It works by
generating an anti-noise with the equal amplitude and opposite
phase of the primary (unwanted) noise, hence resulting in the
cancellation of both when they are superposed at an error mi-
crophone [1]. ANC has attracted increasing attention in research
over the past few decades and has been used in automobiles [2],
headphones [3], airplanes [4], and so on [5], [6].

Conventionally, ANC is accomplished by optimizing con-
troller weights using adaptive filters so that the error signal is
minimized [7]. Filtered-x least mean square (FxLMS) and its
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extensions are the most widely used ANC algorithms. They work
by estimating a secondary path beforehand and then filtering
the reference noise with the estimated secondary path before
feeding it to the controller [8]. However, nonlinear distortions
are inevitably introduced due to the use of electronic devices like
loudspeakers [9], [10]. The adaptive filter approach is fundamen-
tally linear and does not perform satisfactorily in the presence
of nonlinear distortions [11].

Recently, deep learning has been utilized for fixed-parameter
ANC [12] considering the capacity of deep neural networks in
modeling complex nonlinear relationships [13], [14], [15], [16],
[17], [18]. In a previous study, we formulated ANC as a super-
vised learning problem for the first time and proposed a deep
learning approach, called deep ANC, to address the nonlinear
ANC problem [13], [14]. Subsequently, a deep learning based
selective fixed-filter ANC method that employs a convolutional
neural network for noise type classification and control filter
selection was introduced in [16]. Later, Chen et al. proposed
a secondary path-decoupled ANC method (SPD-ANC) using
two pre-trained convolutional recurrent networks to address
the nonlinearity of the secondary path [17]. More recently, we
expanded the single-channel deep ANC to the multi-channel
domain and developed a deep learning approach for active
noise control at multiple spatial points and within a spatial
zone [15]. All these deep learning based methods can be viewed
as fixed-parameter ANC and they achieve active noise control
by training a deep neural network (DNN) offline. Compared to
traditional fixed-parameter ANC methods, deep ANC is capable
of nonlinear active noise reduction for a variety of noises through
large-scale multi-condition training.

A unique constraint of ANC is that it targets noise in physical
space unlike, say, noise reduction in mobile communication.
Specifically, the error microphone of an ANC system adds pri-
mary noise and anti-noise signals arriving at its location acous-
tically. This leads to the causality constraint of ANC systems;
that is, the sum of controller processing time and the secondary
path acoustic delay must be no greater than the primary path
acoustic delay (the time for noise to propagate along the primary
path) [19], [20]. Many studies have demonstrated the effects
of causality on the performance of ANC systems. Burdisso
et al. investigated system causality and developed a formulation
to carry out causality analysis of feedforward ANC systems
subjected to broadband excitations [21]. Kong and Kuo stud-
ied the efficiency of ANC systems for ducts under non-causal
conditions [19]. Zhang and Qiu presented a causality study on a
typical feedforward ANC headset and systematically analyzed
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the performance of ANC headsets in terms of delays [20].
Kurczyk and Pawelczyk addressed the latency problem of ANC
systems by using soft computing algorithms, including fuzzy
inference. [22], [23], [24]. Effects of primary source locations
and microphone locations on causal configuration and ANC
performance are studied in [25], [26].

The causality constraint is a dominant factor in the design
of ANC systems, and it must be satisfied to perform noise at-
tenuation. However, block-based algorithms such as frequency-
domain FxLMS and deep ANC, possess an algorithmic delay
determined by the frame size since they are implemented in
a frame-by-frame manner [27], [28]. This delay could violate
the causality constraint and is considered a major limitation for
block-based ANC algorithms. The connection between time-
domain and frequency-domain effort weighting in ANC design
was introduced in [29]. Yang et al. studied the delays introduced
by frequency-domain ANC methods and presented different
schemes for addressing these delays [30]. Shi et al. utilized a
virtual-sensing technique for frequency-domain multi-channel
ANC to satisfy the causality constraint between the locations of
the physical and virtual microphones [31]. A training strategy
using predicted anti-noise to compensate for the delay of the
frequency-domain ANC method was proposed in [14]. Although
many studies have been proposed for latency reduction, the
latency problem remains for block-based ANC algorithms.

Time-domain methods have been recently proposed for super-
vised speech separation. Compared to frequency-domain meth-
ods that use time-frequency representations for extracting input
features and training targets, time-domain methods directly pre-
dict target signal samples from input signal samples, and can
enhance magnitude and phase jointly in the process [32], [33]. In
addition, frequency-domain methods usually require a relatively
longer frame size to ensure an adequate frequency resolution,
leading to longer algorithmic latencies. There is no such limi-
tation for time-domain methods and they can be implemented
using smaller frame sizes. Fu et al. proposed a time-domain
network to optimize the short-term objective intelligibility met-
ric [34]. A fully convolutional time-domain audio separation
network was introduced in [35] for end-to-end time-domain
speaker separation, and the frame size can be set as small as
2 ms. A convolutional neural network with a frequency-domain
loss was proposed in [36] to address speech enhancement in
the time domain. Very recently, Pandey and Wang proposed
an attentive recurrent network (ARN) for time-domain speech
enhancement [37]. Time-domain methods are potentially more
suitable for achieving low-latency deep ANC.

Building on deep ANC, this paper aims at achieving low
latencies by reducing the algorithmic latency of deep ANC.
The contributions of this paper are summarized below. First, we
introduce time-domain deep ANC utilizing an attentive recurrent
network [37], which enables the implementation of deep ANC
with smaller frame sizes. Second, to counter algorithmic latency,
a delay-compensated training strategy is proposed to perform
ANC using noise predicted ahead of time. Third, a revised
overlap-add (OLA) method is utilized during signal resynthesis
to avoid the latency introduced by overlaps between neighboring
frames. Finally, we combine the proposed strategies to achieve

Fig. 1. Diagrams of (a) feedforward ANC system, and (b) deep ANC approach.

deep ANC with zero or even negative algorithmic latency. The
proposed approach represents a big stride towards alleviating the
causality constraint of ANC and expanding the scope of ANC
design.

A preliminary version of this study has recently been accepted
for conference presentation [38]. Compared to the conference
version, this paper conducts more extensive evaluations, inves-
tigates different strategies, and provides insights into combining
the proposed strategies for low-latency deep ANC.

The remainder of this paper is organized as follows. Section II
introduces the signal model and deep ANC method. Section III
describes the proposed low-latency deep ANC techniques. The
experimental setup is given in Section IV. Section V provides
the evaluation results and comparisons. Section VI concludes
the paper.

II. ACTIVE NOISE CONTROL

A. Signal Model

A typical feedforward ANC system consists of a reference
microphone, a canceling loudspeaker, and an error microphone,
as shown in Fig. 1(a). The primary noise picked up by the error
microphone, d(n), is generated by convolving the reference
noise with the primary path. The reference signal x(n) sensed
by a reference microphone is fed to the active noise controller
to generate a canceling signal y(n). The canceling signal is then
played by a canceling loudspeaker and propagated through the
secondary path to get an anti-noise, a(n), which then cancels
or attenuates the primary noise d(n). The corresponding error
signal received at the error microphone is obtained as

e(n) = d(n)− a(n)

= p(n) ∗ x(n)− s(n) ∗ fLS{y(n)} (1)

where n is the time index, p(n) and s(n) denote the primary
and secondary path, respectively, fLS{·} denotes the function of
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a loudspeaker, and symbol ∗ denotes convolution. Note that the
anti-noise is subtracted in (1) to achieve noise cancellation.

B. Causality Constraint of a Feedforward ANC System

To achieve noise attenuation, the anti-noise has to reach the
error microphone no later than the primary noise. In other words,
the total delay of the controller and the secondary path should
not be larger than that of the primary path. This is the so-called
causality constraint, and it must be satisfied or the primary noise
cannot be reduced by the system.

The causality constraint can be expressed as

Tp ≥ TANC + Ts or TANC ≤ Tp − Ts (2)

where Tp and Ts denote the acoustic delays introduced by the
primary and secondary paths, respectively, which are propor-
tional to the lengths of the corresponding paths.TANC denotes the
latency introduced by the controller, which equals the sum of the
ANC processing latency and the total system delay (including
those of A/D and D/A converters, and loudspeaker) [19].

The causality constraint given in (2) is obtained from the
fundamental wave propagation point of view. The practical
constraint of an ANC system also depends on noise type and
prediction. For example, a tonal noise is easy to predict, and
causality would not be an issue in this case. The system causal-
ity is also affected by the ANC configuration as well as the
processing latency of ANC algorithms. Positions of loudspeaker
and microphones determine the maximum latency allowed for
TANC, and they need to be chosen carefully in the design of an
ANC system. With a given ANC configuration, the algorithmic
delay of ANC should be controlled to be as low as possible to
guarantee the system causality.

C. Deep ANC

Unlike traditional ANC methods, which require estimating
the secondary path and the adaptive filter individually, deep
ANC trains a DNN using large-scale multi-condition training
to directly approximate an optimal controller that minimizes
the error signal in a variety of noisy environments [14]. A
diagram of the deep ANC approach is given in Fig. 1(b). The
overall goal is to estimate a canceling signal from the reference
signal so that the corresponding anti-noise cancels the primary
noise. Deep ANC takes as input a reference signal and sets the
ideal anti-noise as the training target. The ideal anti-noise is
the same as the primary noise to accomplish complete noise
cancellation. During training, the output of deep ANC is treated
as an “intermediate product,” and the anti-noise is produced by
passing the output through the loudspeaker and secondary path.
The loss function calculated from the error signal is then used
to guide model training.

III. LOW-LATENCY DEEP ANC

A. Algorithmic Latency of Deep ANC

Deep ANC is block-based, where signals are processed in
a frame-by-frame manner. Specifically, an input signal is first
chunked into short overlapping blocks of waveform samples

Fig. 2. Illustrations of (a) OLA, and (b) revised OLA. The corresponding
algorithmic latency are L and J , respectively.

and the blocks are then transformed into a sequence of frames.
Taking a frequency domain method for example, each block in
the input sequence is multiplied by an analysis window and then
converted to the frequency domain using discrete Fourier trans-
form (DFT). Resynthesis of a time-domain signal is achieved by
taking the inverse DFT of the transformed frames, multiplying
the obtained samples with a synthesis window, and combining
neighboring frames using the OLA method [39]. These steps
incur an algorithmic delay determined by the frame length and
frame shift.

An illustration of OLA is given in Fig. 2(a), where a signal
with M samples is chunked into T frames with a frame size of
L and frame shift of J . Due to overlaps between neighboring
frames, to fully synthesize a single sample, all frames that
contain this sample need to be processed. For example, we have
to wait till the end of the current frame to generate its initial
J − 1 samples, which results in a delay in the range of (L− J, L]
samples. In this paper, we define the algorithmic latency as the
maximum delay, L, for simplicity.

B. ARN Based Time-Domain ANC

The most straightforward way of reducing algorithmic latency
of deep ANC is to shorten the frame size. For frequency-domain
methods, using a smaller frame size results in a lower frequency
resolution and may degrade system performance [40]. We pro-
pose to realize deep ANC using ARN in the time domain, which
can be easily implemented with smaller frame sizes. Further, we
find ARN to be highly effective for the deep ANC task even with
smaller frame sizes.

ARN is recently proposed in [41] for effectively incorporating
an attention mechanism [42] into recurrent neural networks
(RNNs). The processing flow of ARN based time-domain deep
ANC is shown in Fig. 3(a). A reference noise x(n) with M
samples is first divided into T overlapping frames with a frame
size of L and frame shift of J . Subsequently, a linear layer is
used to project these frames to a representation of size N , which
is then processed by a four-layered ARN. The output of the ARN
is projected back to size L using another linear layer. Finally,
OLA is utilized to obtain the waveform of canceling signal y(n).

The architecture of an ARN layer used in this study is shown
in Fig. 3(b). It comprises a recurrent neural network (RNN)
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Fig. 3. Diagrams of (a) ARN based time-domain ANC, and (b) ARN archi-
tecture.

Fig. 4. Attention block in ARN.

with long short-term memory (LSTM), a self-attention block,
and a feedforward block. The input to ARN is firstly layer
normalized [43] and fed to an RNN. The output of the RNN is
then normalized using two parallel layer normalizations, where
the first layer normalized output is used as query (Q), and the
second one is used as key (K) and value (V) for the following
attention block. The output of the attention block is added to
Q to form a residual connection. Afterwards, the final output is
normalized using two separate layer normalizations, in which
one of the outputs is processed using the feedforward block and
the other one is added to the output of the feedforward block in
a residual way.

The attention block in ARN, shown in Fig. 4, takes
{Q,K,V} ∈ RT×N as inputs and comprises three trainable
vectors {Q,′ K,′ V′} ∈ R1×N . A gating mechanism is utilized
to refine the inputs as

Kr = K⊗ σ (K′)

Qr = Lin(Q)⊗ σ (Q′)

Vr = V ⊗ [σ (Lin (V′))⊗ Tanh (Lin (V′))] (3)

where σ is sigmoidal nonlinearity, Lin() is a linear layer, and ⊗
denotes element-wise multiplication. Note that σ(Lin(V′))⊗

Fig. 5. Feedforward block in ARN.

Fig. 6. Illustration of using deep ANC to predict K samples in advance.

Tanh(Lin(V′)) represents a constant vector computed from V,
and this operation is used during training for better optimization
of V. Once the model is trained, its value from the best model
is used during evaluation.

The output of the attention block is obtained as

A = Softmax

(
QrA

T
r√

N

)
Vr (4)

The feedforward block in ARN is a fully connected network
with one hidden layer of size 4N , Gaussian error linear unit
(GELU) nonlinearity [44], and dropout. A diagram of the block
is shown in Fig. 5. A detailed description of the ARN can be
found in [37].

C. Delay-Compensated Training

Another strategy for reducing latency is to perform ANC
using predicted noise, and the resulting strategy is called delay-
compensated training [14]. The main idea is to train a deep ANC
model to predict the canceling signal a few samples ahead of
time, thus compensating for the overall delay. During model
training, instead of correctly aligning input and training target,
we train the model to predict the target signal K samples in
advance, as shown in Fig. 6. By prediction, the proposed strategy
can cancel primary noise with K/fs ms in advance, where fs
denotes the sampling frequency. The delay-compensated train-
ing technique proposed in this paper extends the one introduced
in [14], which predicts noise at the frame level (not the sample
level in the present study).

A predicted noise is an estimate of the actual noise, and
ANC using the predicted noise will lead to reduced performance
compared to using the actual noise. However, the controller may
be required to predict the primary noise if the causality constraint
is violated. Such a strategy is useful for ANC tasks since it can
intrinsically alleviate the causality constraint of ANC systems.

D. Revised Overlap-Add for Signal Resynthesis

Part of the algorithmic latency of block-based methods origi-
nates from the overlap-add procedure. Having overlaps between
neighboring frames benefits from the averaging/pooling of mul-
tiple frames and results in a smoother estimate. We propose
to revise the OLA method by setting a part of or the entire
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Fig. 7. Illustration of the ANC experimental setup.

overlapping samples to zero during signal resynthesis, in order to
reduce the latency introduced by overlaps between neighboring
frames. The revised OLA with all the overlapping samples set
to zero, as shown in Fig. 2(b), reduces the algorithmic latency
from frame size L to frame shift J . Considering the power of
deep learning in prediction and that noise signals are relatively
stationary and hence predictable, deep ANC with revised OLA
has the potential to achieve low algorithmic latency without
sacrificing ANC performance by much.

IV. EXPERIMENTAL SETUP

A. Experimental Setting

Deep ANC is trained utilizing large-scale multi-condition
training, exposing the ANC model to a large variety of noisy
environments. To achieve a noise-independent model, we create
a training set using 10000 non-speech environmental sounds
from a sound-effect library (http://www.sound-ideas.com) [45].
Babble noise, engine noise, speech-shaped noise (denoted as
“SSN”), and factory noise from NOISEX-92 dataset [46] are
used for testing. The test noises are unseen during training, and
hence can evaluate the generalization ability of the proposed
method.

Many studies evaluate ANC systems for noise canceling in
an enclosure [47], [48]. We follow the setup given in [14] and
simulate a rectangular room of size 3 m × 4 m × 2 m (width
× length × height) to carry out experiments. The primary and
secondary paths are simulated as room impulse responses (RIRs)
using the image method [49]. The reference microphone is
located at the position (1.5, 1, 1) m, the canceling loudspeaker
at (1.5, 2.5, 1) m, and the error microphone at (1.5, 3, 1) m. This
experimental setup is illustrated in Fig. 7. Five reverberation
times (T60 s) 0.15 s, 0.175 s, 0.2 s, 0.225 s, 0.25 s are used for
generating training RIRs. The RIRs with reverberation time 0.2 s
are used for testing. Their corresponding frequency responses
are plotted in Fig. 8.

Nonlinear saturation effects are a common type of loud-
speaker nonlinearity, and they can be simulated using the scaled
error function (SEF) [10], [50]

fSEF(y) =
∫ y

0 e
− z2

2η2 dz, (5)

where y is the input to the loudspeaker, and η2 defines the
strength of nonlinearity. The SEF becomes linear as η2 tends to

Fig. 8. Room frequency response with T60 = 0.2 s for (a) primary path, and
(b) secondary path.

infinity, and a hard limiter as it tends to zero. In our experiments,
the loudspeaker function fLS{·} in (1) is implemented using
fSEF(y). Our model is trained using four loudspeaker functions:
η2 = 0.1 (severe nonlinearity), η2 = 1 (moderate nonlinear-
ity), η2 = 10 (soft nonlinearity), and η2 = ∞ (linear). During
training, we randomly select a loudspeaker function for each
input signal, and generate the loudspeaker signal by passing a
canceling signal through the loudspeaker function. For testing,
both trained and untrained (η2 = 0.5) loudspeaker functions are
used.

We create 20000 training signals and 100 test signals for each
test noise. Each training noise is created by randomly cutting
a 3-second segment from the concatenated signal of the 10000
non-speech sounds. The test noises are generated similarly from
the 4 test noises. The primary noise at the error microphone is
generated by convolving a source noise with a randomly selected
RIR for the primary path. An estimated anti-noise is generated by
passing the canceling signal successively through a loudspeaker
function and the secondary path (see Fig. 1(b)). All the signals
are resampled to 16 kHz.

Parameter N in ARN is set to 512, and a dropout rate of 5%
is used in the feedforward block. Utterance level mean-squared
error loss in the time domain is used for model training. The
ARN model is trained using the Adam optimizer [51] with a
learning rate of 0.0001 for 30 epochs.

B. Comparison Methods

We compare the proposed time-domain deep ANC method
with FxLMS, tangential hyperbolic function based FxLMS
(THF-FxLMS), [50], an optimal FxLMS solution [52], SPD-
ANC [17], and a convolutional recurrent network (CRN) based
frequency-domain method [14] in both linear and nonlinear
situations.

FxLMS works by estimating a secondary path first and then
applying it to the reference signal to compensate for the effect
of the secondary path. It is a popular ANC algorithm due to
its robust performance and ease of implementation. However, it
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fails to identify the secondary path accurately in the presence
of nonlinear distortions and consequently degrades the overall
ANC performance. THF-FxLMS uses the tangent hyperbolic
function (THF) to model the saturation effect of loudspeaker
and then design the nonlinear ANC controller utilizing the
predicted degree of nonlinearity [50]. It has been shown by
Ghasemi et al. [50] that THF-FxLMS outperforms FxLMS for
noise attenuation in situations with nonlinear distortions. In the
optimal FxLMS solution [52], the ground-truth secondary path
(including the distortions introduced by a canceling loudspeaker
with nonlinearity) is used in ANC controller update and the
steady-state results are presented for comparison.

The step sizes of FxLMS related methods in our experiments
are chosen carefully for different noises according to the criteria
given in [53] and [54] to ensure stable updating and good noise
attenuation. Specifically, the step size used for updating FxLMS
for babble noise, engine noise, SSN, and factory noise is set
to 0.3, 0.05, 0.4, 0.4, respectively. The step size for updating
THF-FxLMS is set to 0.3, 0.05, 0.4, 0.4, and for obtaining the
optimal FxLMS solution is set to 0.25, 0.05, 0.2, 0.4 for the four
noises, respectively. The algorithmic delay of all the adaptive
ANC methods in the time domain is one signal sample.

The recently proposed SPD-ANC [17] is a hybrid ANC
method where controller weights are updated using a least
mean square (LMS) algorithm, and the secondary path and its
reverse are modeled using two pre-trained time-domain CRNs.
It is essentially an LMS based adaptive ANC method with the
nonlinear distortions in the secondary path modeled by deep
learning.

The CRN based frequency-domain method employs a CRN
for complex spectral mapping and works by estimating the real
and imaginary spectrograms of a canceling signal from the
real and imaginary spectrograms of the reference signal [14].
The CRN has an encoder-decoder architecture with a two-layer
grouped LSTM between them. The model sizes (the number of
trainable parameters within a model) of the CRN and ARN based
deep ANC methods are around 8.8 million and 15.9 million,
respectively. Their multiply-accumulate (MAC) operations are
1.82 G and 5.24 G, respectively, for processing a 3-second
noise.

C. Performance Metric

Normalized mean square error (NMSE) is used to evaluate the
noise attenuation performance of the proposed method. NMSE
is a widely used metric for ANC evaluations and it is defined as

NMSE = 10 log10

[∑M
n=1 e

2(n)/
∑M

n=1 d
2(n)

]
(6)

where M is the total number of samples in a time-domain
signal. NMSE values are typically below zero, and a lower value
indicates better noise attenuation. The results shown in this paper
are the average NMSE of 100 test signals.

V. EVALUATION RESULTS AND COMPARISONS

A. Deep ANC With Shorter Frame Sizes

We first evaluate the performance of the proposed deep ANC
model using different frame sizes. All ANC methods are tested
with untrained noises in both linear (η2 = ∞) and nonlinear
(η2 = 0.5 and η2 = 0.1) situations and the comparison results
are provided in Table I. Frame length and frame shift are con-
nected by a dash, and the latter is set to half of the former. The
corresponding algorithmic latency is shown inside the parenthe-
ses.

It can be seen that the performance of FxLMS degrades in the
presence of nonlinear distortions. THF-FxLMS and the hybrid
SPD-ANC yield better noise attenuation for nonlinear ANC.
As expected, the optimal FxLMS solution with ground-truth
secondary path and nonlinear distortion obtains the best noise
attenuation among the adaptive ANC methods. Deep learning
based methods are effective for noise attenuation in both linear
and nonlinear situations and generalize well to untrained noises.
Using shorter frame sizes results in lower algorithmic latencies.
As mentioned previously, a longer frame size is usually used
in frequency-domain methods to ensure acceptable frequency
resolution. For CRN based deep ANC, which is a frequency-
domain method, shortening frame size leads to worse ANC
performance, e.g., noise attenuation level drops by more than
1 dB when the frame size is reduced from 20 ms to 4 ms.
ARN based time-domain ANC consistently outperforms all the
comparison methods, and it is even more advantageous for
low-latency ANC as reducing frame size does not affect the
performance.

We provide spectrograms of the outputs obtained using ARN
based method with 4 ms frame size under different untrained
noises in Fig. 9 to illustrate its noise attenuation performance.
The first row of each panel shows the spectrogram of a primary
noise, and the second row shows the residual noise (error signal)
obtained after ANC. It is observed that the proposed method
is capable of achieving wideband noise attenuation and its
performance generalizes well to untrained noises.

B. Deep ANC With Delay-Compensated Training

This subsection investigates the performance of deep ANC
with delay-compensated training. We start by comparing the
performance of ARN and CRN based methods for noise at-
tenuation with predicted noise. We use 20 ms frame size and
10 ms frame shift and train the deep ANC models to predict
canceling signal for 5 ms, 10 ms, 15 ms, and 20 ms ahead. The
results are given in Table II, and the corresponding algorithmic
latencies are provided inside parentheses. Not surprisingly, the
noise attenuation performance drops with the increase of pre-
diction length. The table shows that ARN based time-domain
deep ANC is more efficient at predicting noise; for example
its noise attenuation performance drops only by 0.95 dB when
predicting babble noise 15 ms ahead while the corresponding
performance drop is 2.61 dB for the CRN based method. In
the most challenging case of no algorithmic latency, the ARN
based model exhibits a significant performance drop compared
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TABLE I
AVERAGE NMSE (DB) OF TRADITIONAL ALGORITHMS AND DEEP ANC MODELS WITH DIFFERENT FRAME SIZES AND FRAME SHIFTS. ALGORITHMIC LATENCY OF

EACH MODEL IS PROVIDED INSIDE THE PARENTHESES

Fig. 9. Spectrograms and power spectra of test results for four noises. The first and second rows of each panel show the spectrograms of primary noise and output
of deep ANC, respectively, and third row their power spectra. ARN-based ANC is implemented with frame size and frame shift set to 4 ms and 2 ms, respectively.

TABLE II
AVERAGE NMSE (DB) OF DEEP ANC MODELS WITH DELAY-COMPENSATED

TRAINING TO PREDICT DIFFERENT NOISE LENGTHS. THE VALUE INSIDE THE

PARENTHESES PROVIDES ALGORITHMIC LATENCY (IN MS) OF THE

CORRESPONDING MODEL

to the case of 5 ms latency, although it still yields higher noise
attenuation than the CRN based model.

There is a tradeoff between prediction length and ANC perfor-
mance. To examine the ability of the proposed method for noise
prediction, we gradually increase the prediction length and train
multiple ARN models for active noise control. The frame size
and frame shift of ARN are set to 4 ms and 2 ms, respectively.
We vary the value ofK and train the ARN based model to cancel
primary noise with different time advances. The prediction

results are shown in Fig. 10 with the algorithmic latency of
each model provided inside the parentheses. It can be observed
that the noise attenuation performance drops gradually with
the increase of prediction length. Predicting 6 ms in advance,
which reduces the algorithmic latency to −2 ms, still achieves
good NMSE values. Predicting more than 6 ms ahead results
in considerable performance drop compared to no prediction.
We can conclude that, the proposed delay-compensated training
strategy effectively reduces the algorithmic latency of deep ANC
with acceptable levels of ANC performance degradation.

C. Deep ANC With Revised Overlap-Add

Deep ANC with revised OLA is evaluated in this part. First,
we investigate the effects of revised OLA on ANC performances
and provide the results using the original OLA method and two
variations of it in Table III. The frame size and frame shift are
set to 20 ms and 5 ms, respectively. We revise the OLA method
by setting a portion (5 ms) of or the entire (15 ms) overlapping
part to zero, with the corresponding algorithmic latencies of
15 ms and 5 ms, respectively. For both CRN and ARN based
methods, using revised OLA leads to lower algorithmic latencies
with small performance drops, and the ARN based method
consistently outperforms the CRN based method. Having more
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Fig. 10. Average NMSE (dB) for ARN based deep ANC with delay-compensated training to predict different noise lengths. The value inside the parentheses
provides algorithmic latency (in ms) of the corresponding model.

TABLE III
AVERAGE NMSE (DB) OF DEEP ANC MODELS USING REVISED OLA WITH

DIFFERENT ALGORITHMIC LATENCIES. THE VALUE INSIDE THE PARENTHESES

PROVIDES ALGORITHMIC LATENCY (IN MS) OF THE CORRESPONDING MODEL

TABLE IV
AVERAGE NMSE (DB) OF DEEP ANC MODELS USING REVISED OLA WITH

NO OVERLAP. THE NMSE RESULTS OF MODELS WITH THE SAME

ALGORITHMIC LATENCY BUT USING PREDICTING ARE PROVIDED

overlapping samples is beneficial for signal resynthesis and
results in better noise attenuation. It is observed that the revised
OLA method with fewer overlapping samples has slightly worse
performance but lower latency. Compared to the original OLA
method, setting the first 15 ms of each frame to zeros results in
a 1.22 dB less noise attenuation for CRN based deep ANC, and
0.86 dB less attenuation for ARN based deep ANC.

We will use the revised OLA with no overlapping samples as
the default setting in the following experiments.

Second, we compare the effectiveness of delay-compensated
training and revised OLA for reducing algorithmic latency. The
results of deep ANC models with the same algorithmic latency
but using different strategies are provided in Table IV.

Using revised OLA achieves a little better performance than
noise prediction for reducing algorithmic latency by the same
amount, especially for the CRN based method. Where using

TABLE V
AVERAGE NMSE (DB) OF DEEP ANC MODELS TRAINED USING DIFFERENT

STRATEGIES TO ACHIEVE ZERO OR NEGATIVE ALGORITHMIC LATENCIES

revised OLA produces more than 1 dB noise attenuation than us-
ing delay-compensated training with 10 ms algorithmic latency.
However, this does not indicate that revised OLA is superior to
delay-compensated training since the former can at most reduce
the algorithmic latency to the length of frame shift J while
there is no restriction for delay-compensated training. However,
revised OLA and delay-compensated training can be combined
to further reduce algorithmic latency.

D. Low-Latency Deep ANC

We now evaluate deep ANC using different frame sizes,
frame shifts, and combine different training strategies to achieve
low-latency ANC. Table V shows the results with zero and
even negative algorithmic latency. The first five rows give the
results of the CRN based model and the last 6 rows provide
the results of the ARN based model. We know from Table I
that without considering algorithmic latency, using longer frame
sizes results in better ANC performance for the CRN based
method. However, for pure prediction cases (the first and the
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TABLE VI
AVERAGE NMSE (DB) OF ARN BASED LOW-LATENCY DEEP ANC TESTED ON

RECORDED NOISES

fourth rows of Table V), using smaller frame sizes is preferred
to achieve zero algorithmic latency since the total samples that
need to be predicted are substantially fewer. A similar trend
is observed in the results of the ARN based model. From the
first two rows of CRN and ARN, we observe that combining
revised OLA and delay-compensated training is more efficient
for reaching zero algorithmic latency than relying on noise
prediction only. Given the same frame length, we find that a
shorter frame shift is desirable for achieving zero latency. This is
because the algorithmic latency is reduced to the length of frame
shift with the help of revised OLA, and using smaller frame
shifts requires predicting fewer samples, a relatively easier task
than using larger shifts. Moreover, smaller frame shifts result
in more overlaps between input frames, which is helpful for
estimation. Using the ARN based model with 4 ms frame size,
2 ms frame shift, revised OLA, and delay-compensated training
(predicting 2 ms) achieves the best ANC performance among
all these models with 0 ms algorithmic latency. The average
NMSE is −11.20 dB in this case, and there is only 0.47 dB
performance drop compared to the average NMSE of the ARN
based model with the same frame size and frame shift but without
using revised OLA and delay-compensated training (the last row
of Table I). A clear way to measure progress is by comparing to
the model in our previous study [14] (i.e. row 1 of Table II), and
the algorithmic latency is reduced from 20 ms to 0 ms with no
performance degradation.

Finally, non-stationary noises from the DEMAND corpus [55]
are used to test the performance of deep ANC in realistic
conditions. The DEMAND dataset has six categories of noises,
and we choose one noise from each category to represent distinct
environments:
� NRIVER noise: from the “Nature” category, recorded be-

sides a creek of running water.
� OMEETING noise, from the “Office” category, recorded

in a meeting room.
� DLIVING noise: from the “Domestic” category, recorded

inside a living room.
� PRESTO noise: from the “Public” category, recorded in a

university restaurant at lunchtime.
� SPSQUARE noise: from the “Street” category, recorded in

a public town square with many tourists.
� TMETRO noise: from the “Transportation” category,

recorded in a subway.
Table VI gives the average NMSE results, which show that the

proposed deep ANC works well for recorded noises in different
realistic environments.

In general, ARN based time-domain ANC is effective for
low-latency deep ANC. Combining ARN with the proposed

strategies leads to zero or even negative algorithmic latency with-
out significantly affecting ANC performance. Zero or negative
algorithmic latency would be impossible for traditional ANC
methods, and goes a long way to alleviating the causality con-
straint, facilitating the design of ANC systems, and expanding
the scope of ANC applications.

VI. CONCLUSION

This study focuses on low-latency deep ANC. We have pro-
posed a time-domain deep ANC method based on attentive re-
current networks with smaller frame sizes to reduce algorithmic
latency. Augmented with delay-compensated training and re-
vised OLA, the algorithmic latency of deep ANC is substantially
reduced, which largely alleviates the causality constraint of ANC
systems and facilitates ANC design. The performance of low-
latency deep ANC using different strategies has been evaluated,
and the combination of these strategies leads to zero and even
negative algorithmic latency. Future research will investigate
practical issues of device implementation. For example, DNN
model compression has been shown to be effective for reduc-
ing model sizes dramatically without significant performance
degradation [56]. We also plan to evaluate the proposed system
using measured acoustic paths. In addition, we will extend the
proposed low-latency strategies to other audio processing tasks
such as speech enhancement and speaker separation.
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