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Abstract
Processing latency is a critical issue for active noise control
(ANC) due to the causality constraint of ANC systems. This
paper addresses low-latency ANC in the deep learning frame-
work (i.e. deep ANC). A time-domain method using an atten-
tive recurrent network is employed to perform deep ANC with
smaller frame sizes, thus reducing algorithmic latency of deep
ANC. In addition, a delay-compensated training strategy is in-
troduced to perform ANC using predicted noise for several mil-
liseconds. Moreover, we utilize a revised overlap-add method
during signal resynthesis to avoid the latency introduced due to
overlaps between neighboring time frames. Experimental re-
sults show that the proposed strategies are effective for achiev-
ing low-latency deep ANC. Combining the proposed strategies
is capable of yielding zero, even negative, algorithmic latency
without significantly affecting ANC performance.
Index Terms: Active noise control, deep ANC, attentive recur-
rent network (ARN), algorithmic delay, low-latency

1. Introduction
Active noise control (ANC) is a noise cancellation technology
based on the principle of destructive superposition of acoustic
signals. It works by generating an anti-noise with the equal
amplitude and opposite phase of the primary (unwanted) noise,
hence resulting in the cancellation of both when they are su-
perposed at an error microphone [1]. Conventionally, ANC is
accomplished by optimizing controller weights using adaptive
algorithms so that the error signal is minimized [2]. Filtered-
x least mean square (FxLMS) and its extensions are the most
widely used active noise controllers and have been implemented
in both time and frequency domains [3]. However, these meth-
ods are fundamentally linear and do not perform satisfactorily
in the presence of nonlinear distortions [4].

Recently, deep learning has been utilized for fixed-
parameter ANC [5] considering the capacity of deep neural net-
works in modeling complex nonlinear relationships [6, 7, 8, 9,
10]. In a previous study, we proposed a deep learning approach,
called deep ANC, to address nonlinear ANC [6, 7]. Subse-
quently, Shi et al. introduced a deep learning based selective
fixed-filter active noise control method [9]. More recently, Chen
et al. proposed a secondary path-decoupled ANC method using
two pre-trained convolutional recurrent networks [10].

A unique constraint of ANC is that it targets noise in physi-
cal space unlike, say, noise reduction in mobile communication.
Specifically, the error microphone of an ANC system adds pri-
mary noise and anti-noise signals arriving at its location acous-
tically. This leads to the causality constraint of ANC systems;
that is, the sum of controller processing time and the secondary
path acoustic delay must be no greater than the primary path
acoustic delay (the time for noise to propagate along the pri-
mary path) [11, 12]. The causality constraint is a dominant fac-

tor in the design of ANC systems, and it must be satisfied to per-
form noise attenuation [13]. However, block-based algorithms
such as frequency-domain FxLMS and deep ANC, possess an
algorithmic delay determined by the frame size since they are
implemented in a frame-by-frame manner [14, 15]. This delay
could violate the causality constraint and is considered a major
limitation for block-based ANC algorithms.

Building on deep ANC, this paper aims to reduce its algo-
rithmic delay and achieve low-latency deep ANC. The contri-
butions of this paper are summarized below. First, we introduce
a time-domain deep ANC utilizing attentive recurrent network
(ARN) [16], which enables the implementation of deep ANC
with smaller frame sizes. Second, to effectively account for al-
gorithmic latency, a delay-compensated training strategy is pro-
posed to perform ANC using predicted noise. Third, a revised
overlap-add (OLA) method is utilized during signal resynthe-
sis to avoid the latency introduced by overlaps between neigh-
boring frames. Finally, we combine the proposed strategies
to achieve deep ANC with zero or even negative algorithmic
latency, which represents a big stride towards alleviating the
causality constraint of ANC and allowing for more flexibility
in ANC design.

The remainder of this paper is organized as follows. Section
2 introduces the signal model and deep ANC method. Section
3 describes proposed low-latency deep ANC techniques. Com-
parisons and experimental results are presented in Section 4.
Section 5 concludes the paper.

2. Active noise control
2.1. Signal model

A typical feedforward ANC system consists of a reference mi-
crophone, a canceling loudspeaker, and an error microphone, as
is shown in Figure 1 (a). The reference signal x(n) sensed by
a reference microphone is fed to the active noise controller to
generate a canceling signal y(n). The canceling signal is then
passed through a canceling loudspeaker and the secondary path
to get an anti-noise a(n) in order to cancel or attenuate the pri-
mary noise d(n). The corresponding error signal received at the
error microphone is obtained as

e(n) = d(n)− a(n) (1)
= p(n) ∗ x(n)− s(n) ∗ fLS{y(n)}

where n is the time index, p(n) and s(n) denote the primary and
secondary path, respectively, symbol fLS{·} denotes the func-
tion of loudspeaker, and ∗ denotes linear convolution. Note that
the anti-noise is subtracted in (1) to achieve noise cancellation.

The system causality of ANC is determined by the posi-
tions of devices and the control unit’s processing latency. With a
given ANC setup, the algorithmic latency of a controller should
be designed as low as possible to satisfy the causality constraint.
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(a) Single-channel feedforward ANC system

(b) Deep ANC approach

Figure 1: Diagrams of (a) single-channel feedforward ANC sys-
tem, and (b) deep ANC approach.

2.2. Deep ANC

Unlike traditional ANC methods, which require individually es-
timating the secondary path and adaptive filter, deep ANC em-
ploys supervised learning to train a deep neural network using
large-scale multi-condition training to directly approximate an
optimal controller to minimize the error signal in a variety of
noisy environments [6, 7]. A diagram of the deep ANC ap-
proach is given in Figure 1(b). The overall goal is to estimate
a canceling signal from the reference signal so that the cor-
responding anti-noise cancels the primary noise. Deep ANC
takes as input a reference signal and sets the ideal anti-noise as
the training target. The ideal anti-noise should be the same as
the primary noise to accomplish complete noise cancellation.
During training, the output of deep ANC is treated as an “in-
termediate product”, and the anti-noise is produced by passing
deep ANC output through the loudspeaker and secondary path.
The loss function calculated from the error signal is then used
to guide model training.

3. Low-latency deep ANC
3.1. Algorithmic latency of deep ANC

Deep ANC is a block-based method where signals are processed
in a frame-by-frame manner. Specifically, an input signal is first
divided into short overlapping blocks of time-domain samples
and then transformed into a sequence of frames. Resynthesis of
a time-domain signal is achieved by converting frames back to
samples and combining neighboring frames using the overlap-
add (OLA) method [17]. These procedures incur an algorithmic
delay determined by the frame length and frame shift.

An illustration of OLA is given later in Figure 4(a), where
a signal withM samples is chunked into T frames with a frame
size of L and frame shift of J . Due to overlaps between neigh-
boring frames, to fully synthesize a sample, all frames that con-
tain this sample need to be processed. For example, we have to
wait till the end of a frame to generate the first J−1 samples of
it, which results in a delay in the range of (L − J, L] samples.
In this paper, we define the algorithmic latency as the maximum
delay, L, for simplicity.
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Figure 2: Diagrams of (a) ARN based time-domain ANC, and
(b) ARN architecture.

3.2. ARN based time-domain ANC

The most direct way of reducing algorithmic latency of deep
ANC is to shorten the frame size. For frequency-domain meth-
ods, using a smaller frame size results in a lower frequency res-
olution and may degrade system performance [18]. We propose
to implement deep ANC using ARN in the time-domain, which
can be easily extended to be used with smaller frame sizes. Fur-
ther, we find ARN to be highly effective for the deep ANC task
even with smaller frame sizes.

ARN is recently proposed in [19] for efficiently combin-
ing attention mechanisms [20] with recurrent neural network
(RNN). The processing flow of ARN based time-domain deep
ANC is shown in Figure 2(a). A reference noise x(n) with
M samples is first chunked into T overlapping frames with a
frame size of L and frame shift of J . Following that, a linear
layer is used to project these frames to a representation of size
N , which is then processed by a four-layered ARN. The output
of ARNs is projected back to size L using another linear layer.
Finally, OLA is utilized to obtain the waveform of canceling
signal y(n).

The architecture of the ARN layer used in this study is
shown in Figure 2(b). It comprises an RNN with LSTM, a self-
attention block, and a feed forward block. The input to ARN
is firstly layer normalized [21] and fed to an RNN. The output
of the RNN is then normalized using two parallel layer normal-
izations, where the fist layer normalized output is used as query
(Q) and the second one is used as key (K) and value (V) for the
following attention block. The output of the attention block is
added to Q to form a residual connection. Afterwards, the final
output is normalized using two separate layer normalizations, in
which the first output is processed using the feedforward block
and the second output is added to the output of the feedforward
block in a residual way. Details on the underlying attention
block and feedforward block can be found in [16].

3.3. Delay-compensated training

Another strategy for reducing latency is to perform ANC us-
ing predicted noise, and the resulting strategy is named delay-
compensated training. During model training, instead of cor-
rectly aligning input and training target, we train the model to
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Figure 4: Illustrations of (a) OLA, and (b) revised OLA. The
corresponding algorithmic latency are L and J , respectively.

predict the target signal K samples in advance, as is shown in
Figure 3. By doing prediction, the proposed strategy can cancel
primary noise with K/fs ms time advance, where fs denotes
the sampling frequency, thus compensating for the delay intro-
duced by the controller. The delay-compensated training pro-
posed in this paper is a generalized version of that introduced in
[7], where the latter one predicts noise on frame level while the
proposed one on sample level.

Doing prediction is the roughest way of reducing algorith-
mic latency, and it undoubtedly degrades ANC performance to
some extent. However, such a strategy is necessary for ANC
tasks since it can intrinsically alleviate the causality constraint
of ANC systems.

3.4. Revised overlap-add for signal resynthesis

Part of the algorithmic latency of block-based methods origi-
nates from the overlap-add procedure. Having overlaps between
neighboring frames benefits from averaging/pooling of multi-
ple frames and results in a smooth estimation. Considering that
noise signals are relatively stationary and easy to estimate, we
propose to revise the OLA method by setting the overlapped
samples to zeros during signal resynthesis. The revised OLA,
as is shown in Figure 4(b), reduces the algorithmic latency from
frame size L to frame shift J . Using revised OLA reduces the
algorithmic latency of deep ANC at the cost of acceptable ANC
performance degradation.

4. Experiments
4.1. Experiment setting

To train a noise-independent model, we create a training set
using 10000 non-speech environmental sounds from a sound-
effect library (http://www.sound-ideas.com) [22]. Babble noise,
engine noise, speech-shaped noise (denoted as SSN), and fac-
tory noise from NOISEX-92 dataset [23] are used for testing.

Table 1: Average NMSE (dB) of traditional ANC methods and
deep ANC models in situations with untrained noises and loud-
speaker nonlinearity η2 = 0.5. Algorithmic latency of each
deep ANC model is provided inside the parentheses.

Linear Nonlinear
Babble Factory SSN Babble Factory SSN

FxLMS -6.04 -5.88 -5.95 -4.32 -4.73 -4.38
THF-FxLMS – – – -6.02 -5.86 -5.98

CRN
20 ms - 10 ms (20 ms) -10.58 -10.66 -11.36 -10.54 -10.57 -11.30
16 ms - 8 ms (16 ms) -10.43 -10.02 -10.76 -10.39 -9.95 -10.70
4 ms - 2 ms (4 ms) -9.51 -9.07 -10.25 -9.48 -9.00 -10.21

ARN
20 ms - 10 ms (20 ms) -11.32 -11.24 -11.74 -11.29 -11.18 -11.70
16 ms - 8 ms (16 ms) -11.57 -11.72 -12.20 -11.55 -11.66 -12.16
4 ms - 2 ms (4 ms) -11.57 -11.49 -11.68 -11.56 -11.46 -11.68

The test noises are unseen during training, and hence can eval-
uate the generalization ability of the proposed method.

Many studies have shown the effectiveness of ANC systems
for noise canceling in enclosed rooms [24, 25]. We follow the
setup given in [6, 7] and simulate a rectangular enclosure of size
3 m × 4 m × 2 m (width × length × height) to carry out ex-
periments. The primary and secondary paths are simulated as
room impulse responses (RIRs) using the image method [26].
The reference microphone is located at the position (1.5, 1, 1)
m, the canceling loudspeaker is located at (1.5, 2.5, 1) m, and
the error microphone at (1.5, 3, 1) m. Five reverberation times
(T60s) 0.15 s, 0.175 s, 0.2 s, 0.225 s, 0.25 s are used for gener-
ating training RIRs. The RIRs with reverberation time 0.2 s are
used for testing.

The saturation nonlinearity of loudspeaker is simulated us-
ing the scaled error function (SEF) [27, 28]:

fSEF(y) =
∫ y

0
e
− z2

2η2 dz, (2)

where y is the input to the loudspeaker, η2 defines the strength
of nonlinearity. The SEF becomes linear as η2 tends to infinity,
and a hard limiter as it tends to zero. To investigate the robust-
ness of the proposed method against nonlinear distortions, four
loudspeaker functions are used during training: η2 = 0.1 (se-
vere nonlinearity), η2 = 1 (moderate nonlinearity), η2 = 10
(soft nonlinearity), and η2 =∞ (linear).

We create 20000 training signals and 100 test signals. Each
noise signal is created by randomly cutting a 3-second signal
from the original noise signals. The ARN model is trained us-
ing the Adam optimizer [29] with a learning rate of 0.0001 for
30 epochs. Normalized mean square error (NMSE) is used for
ANC evaluation and it is defined as

NMSE = 10 log10[
∑M

n=1 e
2(n)/

∑M
n=1 d

2(n)] (3)

NMSE values are typically below zero, with a lower value indi-
cating better noise attenuation.

4.2. Deep ANC with shorter frame sizes

We first evaluate the performance of deep ANC using dif-
ferent frame sizes, and the results are provided in Table 1.
The frame shift is set to half of the frame size, and the cor-
responding algorithmic latency is shown inside the parenthe-
ses. The proposed ARN based deep ANC is compared with a
CRN based one introduced in [7]. ARN and CRN have sim-
ilar trainable parameters while the former is implemented in
time-domain and the latter in frequency-domain. Two tradi-
tional ANC algorithms, FxLMS and tangential hyperbolic func-
tion based FxLMS (THF-FxLMS) [28] are utilized for compar-
ison. FxLMS is the most commonly used ANC algorithm and
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Figure 5: Performance of ARN based deep ANC with delay-
compensated training to attenuate noise with a time advance
of different milliseconds. Value inside the parentheses provides
algorithmic latency (in ms) of the corresponding model.

THF-FxLMS is its modified version for handling nonlinear dis-
tortions. The step sizes of FxLMS and THF-FxLMS are chosen
carefully for different noises according to the criteria given in
[28, 30] to ensure stable updating and good noise attenuation.

All ANC methods are tested with untrained noises in both
linear and nonlinear situations. It can be seen that ARN based
time-domain ANC consistently outperforms comparison meth-
ods in both linear and nonlinear situations, and generalizes well
to untrained noises. For CRN based frequency-domain method,
shortening frame size results in lower ANC performance, e.g.,
its noise attenuation level drops by more than 1 dB when frame
size is reduced from 20 ms to 4 ms. In general, ARN based
time-domain method is more proper for low-latency deep ANC
since reducing frame size does not affect ANC performance.

4.3. Deep ANC with delay-compensated training

This subsection investigates the performance of deep ANC with
delay-compensated training. The frame size and frame shift of
ARN are set to 4 ms and 2 ms, respectively. We vary the value of
K and train ARN based deep ANC to cancel primary noise with
a time advance of different lengths (K/fs, in ms). The predict-
ing results are shown in Figure 5 with the algorithmic delay of
each model provided inside the parentheses. The overall noise
attenuation performance drops with the increase of predicting
length. Predicting 6 ms in advance achieves comparable NMSE
values compared to that without doing any prediction while the
algorithmic latency is reduced to -2 ms. Therefore, the proposed
delay-compensated training strategy can effectively reduce the
algorithmic latency of deep ANC to some extent at the cost of
slight performance drop.

4.4. Deep ANC with revised overlap-add

Deep ANC with revised OLA is evaluated in this part, and the
NMSE values are provided in Table 2. For both CRN and ARN
based deep ANC methods, using revised OLA leads to accept-
able performance drop while achieving lower algorithmic la-
tency, and ARN based method consistently outperforms CRN
based method. The results of deep ANC models with the same
algorithmic latency but using delay-compensated training are
provided for comparison. It is seen that using revised OLA
achieves better performance than doing prediction for reduc-
ing the same amount of algorithmic latency, especially for CRN
based method.

Table 2: Average NMSE (dB) of deep ANC models with revised
OLA. The results of models with the same algorithmic latency
but using predicted noise are provided for comparison.

Babble Engine SSN Factory

CRN
20 ms - 10 ms

No prediction (20 ms) -10.58 -12.87 -11.36 -10.66
Predict 10 ms (10 ms) -8.76 -9.69 -9.10 -8.57
Revised OLA (10 ms) -9.85 -11.13 -10.37 -9.86

ARN
20 ms - 10 ms

No prediction (20 ms) -11.32 -12.67 -11.74 -11.24
Predict 10 ms (10 ms) -10.57 -12.14 -11.56 -10.81
Revised OLA (10 ms) -10.91 -12.15 -11.62 -10.98

ARN
4 ms - 2 ms

No prediction (4 ms) -11.57 -11.96 -11.68 -11.49
Predict 2 ms (2 ms) -10.89 -11.18 -11.46 -11.12
Revised OLA (2 ms) -10.91 -11.30 -11.62 -11.22

Table 3: Average NMSE (dB) of deep ANC models trained using
different strategies to achieve zero or even negative algorithmic
latency.

ARN Babble Engine SSN Factory
20 ms - 10 ms, predict 20 ms (0 ms) -7.62 -8.44 -8.51 -7.88
20 ms - 10 ms, revised OLA + predict 10 ms (0 ms) -7.75 -8.46 -8.52 -7.98
20 ms - 5 ms, revised OLA + predict 5 ms (0 ms) -10.04 -10.30 -10.85 -10.28
4 ms - 2 ms, predict 4 ms (0 ms) -10.80 -11.12 -11.23 -11.00
4 ms - 2 ms, revised OLA + predict 2 ms (0 ms) -10.85 -11.23 -11.58 -11.16
4 ms - 2 ms, revised OLA + predict 4 ms (-2 ms) -10.62 -11.05 -11.28 -10.93

4.5. Low-latency deep ANC

Table 3 shows our investigations of combining the proposed
strategies to achieve deep ANC with zero and even negative
algorithmic latency. For purely predicting based cases, using
smaller frame sizes is preferred to achieve zero algorithmic la-
tency since the total samples need to be predicted are substan-
tially lower. If the frame length is fixed, a shorter frame shift
is desired. This is because the algorithmic latency is reduced
to the length of frame shift with the help of revised OLA, us-
ing smaller frame shifts requires predicting fewer samples to
achieve zero latency, which is easier than using larger ones.
Smaller frame shifts, on the other hand, results in more overlaps
between input frames, which is helpful for estimation. In gen-
eral, ARN based time-domain ANC is effective for low-latency
deep ANC. Combining ARN with the proposed strategies leads
to zero or even negative algorithmic latency without affecting
ANC performance much.

5. Conclusion
This study focuses on low-latency deep ANC. We have pro-
posed a time-domain deep ANC method using an attentive re-
current network with smaller frame sizes to reduce algorithmic
latency. Augmented with delay-compensated training and re-
vised OLA, the algorithmic latency of deep ANC is substan-
tially reduced, which goes a long way towards alleviating the
causality constraint of ANC systems and facilitating ANC de-
sign. The performance of low-latency deep ANC using differ-
ent strategies has been evaluated, and the combinations of these
strategies lead to zero and even negative algorithmic latency.
Future work includes exploring the device implementation of
deep ANC and extending the proposed low-latency strategies to
other tasks like speech enhancement and speaker separation.
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