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ABSTRACT

Music source separation is important for applications such as
karaoke and remixing. Much of previous research focuses on
estimating short-time Fourier transform (STFT) magnitude and
discarding phase information. We observe that, for singing voice
separation, phase can make considerable improvement in separa-
tion quality. This paper proposes a complex ratio masking method
for voice and accompaniment separation. The proposed method
employs DenseUNet with self attention to estimate the real and
imaginary components of STFT for each sound source. A simple
ensemble technique is introduced to further improve separation per-
formance. Evaluation results demonstrate that the proposed method
outperforms recent state-of-the-art models for both separated voice
and accompaniment.

Index Terms— Singing voice separation, convolutional neural
network, self attention mechanism, complex domain separation, en-
semble learning

1. INTRODUCTION

Music source separation is the task of separating or isolating differ-
ent sound sources (or components) from a music recording. Music
components can be voice, piano, violin and other accompaniments.
As an important task of music source separation, singing voice sep-
aration has received a lot of attention due to commercial applica-
tions such as automatic karaoke creation and lyric generation, and
its role in facilitating related tasks such as singing melody extraction
and singer identification [1], [2]. Traditionally, matrix decomposi-
tion methods such as non-negative matrix factorization (NMF) [3],
sparse coding [4] and independent component analysis [5], are used
to address music source separation. These methods model a mixture
signal as a weighted sum of bases under certain assumptions. How-
ever, the diversity of music signals makes such assumptions (e.g.
statistical independence) difficult to hold [2].

With the rapid development of deep learning and the availabil-
ity of large databases, deep neural network (DNN) based methods
[6], [7], [8] have achieved substantial improvements over conven-
tional methods for singing voice separation. The general approach
is to perform source separation in the frequency domain by feed-
ing spectral features calculated from an audio mixture to DNN. It
is commonly assumed that the magnitude spectrogram carries suffi-
cient information for source separation, and the phase spectrogram
is not considered [9], [10], [11]. In other words, only magnitude
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spectrogram is estimated for each source and the separated audio is
re-synthesized with mixture phase. Although this assumption is long
held in speech enhancement [12], we observe that phase is important
for singing voice separation.

After Williamson et al. [13] first studied complex-domain
speech separation by introducing the real-imaginary representation
instead of the standard magnitude-phase representation, several
studies attempt to estimate the phase of music sources. In [14],
methods such as Wiener filter and iterative procedure that incor-
porate phase constraints are discussed in singing voice separation
systems. Lee et al. [15] estimate the complex-valued STFT of music
sources by a complex-valued deep neural network. PhaseNet [16]
handles phase estimation as a classification problem. Moreover,
there are recent studies [17], [18], [19] that address the music source
separation problem in the waveform domain. Wave-U-Net [17]
adapts the U-Net structure to the time domain, although its perfor-
mance is worse than the best spectrogram-based published in SiSEC
2018 [20] ([18]). Very recently, a time-domain model [19] achieves
comparable performance with state-of-the-art spectrogram-based
models for extracting instrument sources. But their performance for
singing voice separation is still lower than that in [10].

In contrast to the above studies, we estimate the magnitude and
phase spectrograms simultaneously in the complex domain. Our
work is inspired by complex-domain speech separation [13]. Af-
ter comparing several training targets in the complex domain, such
as the complex ideal ratio mask (cIRM) [13] and the target com-
plex spectrum [15], [21], we estimate the cIRM but define the loss
function in terms of the complex spectrogram. Our DNN structure
is based on the self-attention Dense-UNet (SA-DenseUNet) in [11],
which reports the state-of-the-art results on the basis of magnitude
spectrogram. In addition, we adopt an ensemble learning strategy
[22] to boost the performance. Our method substantially outper-
forms current state-of-the-art approaches.

The rest of this paper is organized as follows. In the next section,
we describe the details of our proposed method. The experiment
setup and evaluation results are described in Section 3. Concluding
remarks are given in Section 4.

2. PROPOSED METHOD

2.1. Importance of phase in singing voice separation

To examine the the importance of phase, we use SA-DenseUNet [11]
to estimate magnitude spectrograms of singing voice and accom-
paniment for 63 songs with different signal-to-noise ratios (SNRs)
from the test set described in Section 3.1, and compare the signal-
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Fig. 1. SDR of separated singing voice (left) and accompaniment
(right) with mixture phase versus clean phase.

to-distortion ratio (SDR) of output audios re-synthesized with clean
phase versus mixture phase. Fig. 1 shows the experimental results
for singing voice and accompaniment respectively. Each song at a
certain SNR has two scores on a vertical line in each plot: cross
‘x’ and dot ‘.’, which represent output SDR with mixture phase and
clean phase respectively. For both singing voice and accompani-
ment, the use of clean phase leads to considerable improvement,
about 4 to 5 dB on average. Note that we calculate the SNR of
singing voice/accompaniment of each song without removing non-
vocal portions of a mixture, which do not constitute a large propor-
tion. These results demonstrate the importance of phase in singing
voice separation, and motivate us to investigate complex-domain
separation.

2.2. Training targets

Proper training targets play a significant role in supervised source
separation [23]. Mapping-based methods directly estimate the spec-
tra of singing voice and accompaniment from the spectra of the mix-
ture. For complex spectral mapping, the training target is the real
and imaginary components of the STFT of a target source [13] [15]
[21].

On the other hand, masking-based methods estimate the time-
frequency mask of a target source. We propose to employ the cIRM
of a target source as the training target. With this target one can
define the loss function as the difference between the cIRM and its
estimate (cRM). Another way is to define the loss as the difference
between clean spectrum and estimated spectrum [24]:

L =
∑

j=1,2

[
|Re(Sj − cRMj � Y ))|+ |Im(Sj − cRMj � Y ))|

]
,

(1)

where cRMj is an estimate of the cIRM for source j, and� denotes
element-wise complex multiplication. Y denotes the complex STFT
of the input mixture, and S1 and S2 represent the complex STFT of

singing voice and accompaniment respectively. We make use of the
loss in (1) along with complex ratio masking.

2.3. Complex SA-DenseUNet

This study extends SA-DenseUNet [11] to estimate the real and
imaginary components of the STFT of target sources. The network
diagram is shown in Fig. 2. The input has three dimensions: fre-
quency, time and channel, with the real and imaginary components
treated as two separate channels. The network adopts a DenseUNet
structure which consists of an encoder and a corresponding decoder.
The encoder comprises a series of densely-connected convolutional
layers (referred to as dense blocks), self-attention modules and
downsampling layers. The encoder enables the network to generate
higher level features, making it possible for the network to process
longer temporal contexts efficiently. The decoder consists of dense
blocks, self-attention modules and upsampling layers. Through the
decoder, the resolution of encoded features is increased to their
original levels. Skip connections are introduced between the en-
coder and the decoder to connect two dense blocks with the same
scale, and they transmit relatively raw features from earlier layers
to later ones. A dense block contains several convolutional layers,
and the input of each layer is a concatenation of the outputs from all
preceding layers. The output of the ith layer xi can be formulated as

xi = Hi([xi−1, xi−2, ..., x0]), (2)

where the dense block input is denoted as x0 andHi(·) denotes non-
linear transformation in the ith layer which, in our case, is a convo-
lutional layer followed by ELU (exponential linear unit) activation
function. Symbol [·] denotes the concatenation operation. A dense
block allows each layer to receive and reuse the output features from
preceding layers, which improves parameter efficiency and reduces
redundant calculations.

In addition, several self-attention modules are placed after dense
blocks at different levels. Self-attention is designed to capture the
repetitive patterns in the accompaniment. To compute Key K, Query
Q and Value V matrices, the input of a self-attention module, with
dimensions F × T × C, is first fed into three 1 × 1 convolutional
layers. F , T , C denote frequency, time and channel dimensional-
ity, respectively. The first two layers reduce C to C′ and the last
one has the original number of channels C. The outputs of the first
two convolutional layers are reshaped to 2-D representations with
dimensions (C′ · F ) × T , and that of the last one with dimensions
(C · F )× T . The first two feature maps are further processed to K,
Q by reducing the size of the first dimension from (C′ ·F ) toE. The
last feature map is denoted as V. With Q ∈ RE×T and K ∈ RE×T

matrices, the attention map β ∈ RT×T is calculated by:

βi,j =
exp aij∑T

j=1 exp(aij)
, (3)

where aij = Q(i)TK(j) and βi,j denotes the value of the ith
row and the jth column of attention map β. Note that Q(t) ∈ RE×1

and K(t) ∈ RE×1 represent the time segment of Query and Key.
The attention map matrix is then multiplied with the Value matrix
V ∈ R(C·F )×T to get the output, which is further reshaped to
the original size of the input and concatenated with the input fea-
ture to feed the next level. In this process, voice and accompani-
ment segments attract attention separately at different levels of SA-
DenseUNet.
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Finally, the neural network estimates the real and imaginary
components of the cIRM of each source, which are then multiplied
with the complex STFT of the mixture audio to get the estimated
complex STFT of each source [13].

2.4. Multi-context averaging

Multi-context averaging is an ensemble learning technique that aver-
ages the outputs of DNNs whose inputs have different contexts [22].
To let attention sub-networks model music repetitions at different
levels, we exploit different contexts of the input by using different
windows. Suppose that P (P > 1) DNNs form a DNN ensemble
and every DNN has a different window length. Given the mixture Y
and the corresponding clean singing voice S1 and accompaniment
S2, the pth DNN is trained to estimate the real and imaginary com-
ponents of the STFT of S1 and S2 with window length set to wp. In
the test stage, for the pth DNN, the corresponding complex STFT is
also computed with window length wp. The outputs of all P DNNs
are transformed to the time domain by inverse STFT. After that, we
calculate the average of waveform outputs by

ŝj =
1

P
·

P∑
p=1

ŝj,p, (4)

where ŝj corresponds to the final estimated singing voice for j = 1
and accompaniment for j = 2. ŝj,p corresponds to the estimated
sound waveform from the pth DNN.

2.5. Network details

In complex SA-DenseUNet, for each source we use two output lay-
ers with linear activation to estimate the real and imaginary compo-
nents of the cIRM with the value range of (−∞,+∞) as illustrated
in Fig. 2. A 1×1 convolutional layer is applied before output layers
for feature reorganization. As portrayed in Fig. 2, our model has
in total 9 dense blocks, 4 downsampling layers and 4 upsampling
layers. Each dense block has 4 convolutional layers with kernel size
of 3, stride of 1, and use ELU as the activation function. In a dense
block, the first three layers use SAME padding and the last layer
uses VALID padding. All input audios are downsampled to 16 kHz.
STFT is computed with 64 ms frame length and 25% frame shift for
experiments in Section 3.2. The network input corresponds to an
excerpt of a song which contains 1250 time frames. All networks
are trained using the ADAM [25] optimizer with a learning rate of
0.00005 for 35 epochs. The model with the best loss on the valida-
tion set is used for testing. Test songs are divided into excerpts with
1250 time frames and 3/4 overlap between consecutive excerpts, the
results of which are averaged to get the final output.

3. EVALUATION AND COMPARISON

3.1. Experimental setup

To facilitate comparisons, our evaluations are set up in a similar way
to [11]. The dataset is constructed from DSD100 [26], MedleyDB
[27] and CCMixter1. DSD100 consists of Dev and Test sets, and
each contains 50 songs. MedleyDB includes 122 songs in which 70
tracks contain vocals. CCMixter has 50 vocal songs. The training

1www.ccmixter.org

Table 1. Comparison of different training targets

Singing Voice Accompaniment

Metric (dB) SDR SIR SAR SDR SIR SAR

TMS 8.08 15.44 9.34 14.10 18.42 16.50

TCS 8.40 18.74 9.07 14.50 22.29 15.70

cIRM-CS 8.92 20.04 9.54 14.99 23.06 16.12

Table 2. Evaluation of phase estimation
Singing Voice Accompaniment

Metric (dB) SDR SIR SAR SDR SIR SAR

Mixture phase 8.08 15.44 9.34 14.10 18.42 16.50

Estimated phase 8.77 19.52 9.42 14.99 22.67 16.23

set contains 450 songs, in which 50 are from DSD100’s Dev Set
and 400 songs are generated by randomly scaling, shifting, remix-
ing different music sources from these 50 songs for data augmenta-
tion. The validation set contains one third of tracks from MedleyDB
and CCMixter and half of tracks from DSD100’s Test Set. The test
set is constructed with another third of tracks from MedleyDB and
CCMixter, and the remaining half of DSD100’s Test Set. Since not
all tracks in MedleyDB contain vocals, we remove the non-vocal
tracks from the test set, which results in 20 vocal tracks from Med-
leyDB. The singing voice SNR of the test set is -5.6 dB on average.
All songs are downsampled from 44.1 kHz to 16 kHz for training
and testing, to avoid high computational costs. For evaluation met-
ric, we use mir eval [28] to calculate the average SDR, SIR, SAR of
each song.

3.2. Comparisons of different training targets

Table 1 presents the evaluation results for different training targets
described in Section 2.2. We compare a magnitude-domain and two
complex-domain training objectives. One complex-domain train-
ing target is the target complex spectrum, referred to as the TCS
[21]. The other is the cIRM with the loss function defined in com-
plex spectrum, referred to as the cIRM-CS. It can be observed that
complex-domain training targets achieve better SDR and SIR perfor-
mances compared with the target magnitude spectrum (TMS) [23].
The proposed cIRM-CS performs uniformly better than the TCS,
and achieves the best SDR score.

With the estimates of real and imaginary components, phase can
be easily estimated. To evaluate the effectiveness of the estimated
phase, we take the magnitude STFT estimated by SA-DenseUNet
and re-synthesize the source waveform with either mixture phase or
the phase estimated by cRM. As shown in Table 2, with the estimated
phase, the SDRs of singing voice and accompaniment are increased
by 0.69 dB and 0.89 dB respectively, demonstrating the effectiveness
of phase estimation.

3.3. Multi-context averaging

Since the cIRM-CS outperforms other training targets, we use it in
the following experiments. To create inputs with different contexts,
we first train our complex SA-DenseUNet with different window
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Fig. 3. Average SDR (dB) results for different frame lengths and
frame shifts.

Table 3. Average test results on the test set
Singing Voice Accompaniment

Metric (dB) SDR SIR SAR SDR SIR SAR

Complex SA-DenseUNet 9.09 20.15 9.76 15.21 22.77 16.45

Multi-context averaging 9.73 20.76 10.36 15.57 21.78 17.28

lengths and shifts. We test three window lengths, i.e. 32 ms, 64
ms, 128 ms, and for each window length, three frame shifts: 12.5%,
25%, 50%. In total, 9 experimental results are obtained and plotted
in Figure 3. We can observe that with the same window length,
the performance improves with reduced frame shift for both singing
voice and accompaniment. With a smaller frame shift, each time
sample is estimated more times, leading to a larger ensemble and
better performance. As observed in Figure 3, the model achieves the
best result with the 64 ms window length and 12.5% frame shift.

We choose 3 complex SA-DenseUNets whose window lengths
of 32 ms, 64 ms, 128 ms to create a multi-context averaging (MCA)
ensemble, all with 12.5% frame shift. Table 3 compares the results
of the MCA ensemble and the single best window length of 64 ms
with 12.5% frame shift. Compared to the single best window length,
the MCA network improves the mean SDRs of singing voice and
accompaniment by 0.64 dB and 0.36 dB respectively.

3.4. Overall evaluation and comparisons with other methods

Finally, we evaluate the proposed method and compare with four
state-of-the-art methods, which are MMDenseNet [9], MMDenseL-
STM [10], and SA-SHN-4 [29], SA-DenseUNet [11]. MMDenseNet
has a similar encoder-decoder structure to SA-DenseUNet. The net-
work is applied to multiple frequency bands to learn local patterns.

Table 4. Comparison of median SDR values on DSD100 dataset

Metric (dB) Singing Voice Accompaniment

MMDenseNet [9] 6.00 12.10

MMDenseLSTM [10] 6.31 12.73

SA-SHN-4 [29] 6.44 12.60

SA-DenseUNet [11] 7.72 13.90

Proposed 9.78 15.20

MMDenseNetLSTM further improves MMDenseNet by incorporat-
ing BLSTM (bidirectional long short-term memory) layers to learn
longer contexts. In the SiSec2018 campaign, both MMDenseNet and
MMDenseLSTM achieved very good results in singing voice separa-
tion and MMDenseLSTM held the highest SDR score for separating
singing voice and accompaniment. SA-SHN-4, an attention-driven
network published very recently also achieves competitive results in
singing voice separation.

The evaluation and comparisons are conducted on the DSD100
Test Set, which is used in the 2016 signal separation evaluation cam-
paign (SiSEC) [26]. To be consistent with the comparison methods,
we evaluate the test set at the original sampling frequency of 44.1
kHz. Different from the construction described in Section 3.1, the
validation set in this case comprises MedleyDB and CCMixter, and
does not include any song from the test set of DSD100. A median
SDR score is the median of SDR scores of all songs, and it is docu-
mented separately for singing voice and accompaniment.

The results of the proposed model and comparison systems are
presented in Table 4. From the table one can observe that, among the
comparison methods, SA-DenseUNet has the best scores for both
singing voice and accompaniment. Our method further outperforms
SA-DenseUNet by 2.06 dB for singing voice and 1.30 dB for accom-
paniment.

4. CONCLUDING REMARKS

This study addresses complex-domain deep learning for singing
voice separation. We observe that phase is important for singing
voice separation. We find the cIRM to be an effective training
target when the loss is defined in terms of complex spectrogram.
Moreover, we introduce a simple ensemble learning technique. Sys-
tematic evaluation results show that the proposed method produces
outstanding separation results, outperforming current state-of-the-art
methods.
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