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Abstract

This paper presents online AV-CrossNet, a computationally
efficient audiovisual speech enhancement/extraction system ca-
pable of causal and real-time processing. We aim to improve
the state-of-the-art AV-CrossNet by enabling causal, frame-by-
frame processing. To achieve this, we incorporate causal lay-
ers and compression techniques, reduce model size, and em-
ploy only one-frame look-ahead, thereby substantially enhanc-
ing real-world applicability. Additionally, we analyze compres-
sion ratio in both audio and visual modules, providing valuable
insights into audiovisual model compression. Experimental re-
sults demonstrate an inference latency of 4.73 ms, capable of
real-time processing. Moreover, the system maintains compet-
itive performance while reducing size by a factor of 10. These
findings highlight the efficiency and effectiveness of the pro-
posed system, offering a promising solution for real-time au-
diovisual speech enhancement and speaker extraction in acous-
tically adverse environments.

Index Terms: Audiovisual speech enhancement, audiovisual
target speaker extraction, TF-CrossNet, AV-CrossNet

1. Introduction

In real-world environments, speech signals are corrupted by var-
ious types of noise, leading to significant degradation in both
speech quality and intelligibility. Recently, the deep learning
based speech separation systems have demonstrated remarkable
performance across a wide range of scenarios [1]. Despite these
advances, existing systems face limitations in extremely noisy
conditions [2] or when the noisy mixture includes speech inter-
ference, such as in meetings and conversations [3].

Recent advancements in audiovisual (AV) speech process-
ing have led to significant improvements in both audiovisual
speech enhancement (AVSE) and audiovisual target speaker ex-
traction (AVTSE) tasks [4]. These approaches leverage both
visual and auditory cues, with the visual information associ-
ated with talking unaffected by acoustic interference [5]. By
integrating multimodal features, these AV separation methods
effectively overcome the limitations of audio-only models, par-
ticularly in adverse acoustic environments that severely degrade
acoustic cues [6—12]. Despite these advance, a notable gap re-
mains in the application of these techniques for real-world de-
ployment. A main reason is that these high-performing AV al-
gorithms are not designed to support online inference, a crucial
requirement for real-time applications.

A real-time system must maintain algorithmic causality and
computational efficiency. While some studeis have addressed
real-time AVSE on edge devices [13, 14], these studies do not
evaluate real-time performance. Others have demonstrated their
systems on the server side. Zhu et al. [15] proposed an LSTM-

based AVSE system with multi-stage fusion and an efficient vi-
sual encoder. Montesinos et al. [16] introduced a transformer-
based AV voice separation system. Gu et al. [17] presented a
multi-channel audiovisual speaker separation (AVSS) system.
However, these approaches do not compare between causal and
non-causal systems, and hence the performance cost of causal
implementation is unclear. Chen et al. [18] proposed a resyn-
thesis based AVSE and conducted extensive evaluations of sys-
tem efficiency and effectiveness, including comparisons to non-
causal systems. While these methods have demonstrated real-
time processing, they do not address both AVSE and AVTSE.
Furthermore, deep model compression is not investigated, and
a small model is often necessary for ensuring real-world appli-
cability across various devices.

To address these challenges, we propose online AVCross-
Net, which builds on the AV-CrossNet model [19] by intro-
ducing causal processing. Specifically, online AV-CrossNet is
a causal and efficient AV system that can performs both AVSE
and AVTSE tasks on the basis of frame-by-frame complex spec-
tral mapping. We also perform model compression on the pro-
posed system, exploring the compression of auditory and vi-
sual modules. Experimental results show that our proposed sys-
tem maintains high performance compared to the non-causal
counterparts in various conditions. In addition, we are able to
compress our system up to 10 times while retaining competitive
AVSE and AVTSE results.

2. Methodology

This section describes our system, including its architecture and
loss functions. Our system is extended from the AV-CrossNet
model [19]. We introduce several key improvements to the orig-
inal architecture to enable online inference capabilities.

2.1. Algorithmic Causality

AV-CrossNet is algorithmically non-causal. Both the visual
encoder [20] and TF-CrossNet blocks [21] are designed to
leverage future information to achieve optimal performance.
Specifically, the convolutional layers require up to three
frames of look-ahead, while the global multi-head self-attention
(GMHSA) module depends on both past and future features
within a data batch. Consequently, directly applying online in-
ference to non-causal systems would lead to a significant per-
formance degradation [18]. We propose online AV-CrossNet
with algorithmic 1-frame look-ahead (40 ms). Figure 1 shows
a diagram of the proposed online system, and its details are de-
scribed as follows.
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Figure 1: Diagram of the proposed online AV-CrossNet. The
auditory and visual input, y and v are encoded by short-time
Fourier transform (STFT) and a causal visual encoder re-
specitvely, generating the embeddings e, and e,. Then, the
online TF-CrossNet blocks takes the concatenated embeddings
and predict for the enhanced speech . B denotes the number
of blocks.

x

2.1.1. Causal Visual Encoder

As shown in Figure 1, online AV-CrossNet includes a causal
visual encoder. This encoder consists of three modules: a 3-D
causal convolutional encoder, a causal ResNet-18 model, and a
five-layered causal visual temporal convolutional network (V-
TCN) block to capture long-term feature dependencies [22]. In
the original visual encoder, the convolutional layers require a
look-ahead of up to three video frames, which violates algo-
rithmic causality. Additionally, the batch normalization layers
depend on the statistics from all time frames during training.
To make this encoder algorithmically causal, we introduce two
modifications.

First, we replace each convolutional layer with a causal
convolutional layer. These layers apply left-padding to the
features along the time axis according to the kernel size [23].
Specifically, for an arbitrary convolutional layer with kernel size
k along the time axis, the padding size is | £ |, where |- | denotes
the floor operation. Second, we replace batch normalization
layers with group normalization layers [24]. The group nor-
malization layer is independent of batch size and maintains al-
gorithmic causality, providing performance comparable to that
of batch normalization. Unlike AV-CrossNet, which relies on
a pretrained visual encoder from DeepAVSR [20], our system
cannot utilize pretrained encoder due to its causal model de-
sign, which does not permit pretraining in the same way as non-
causal models. In addition to model architecture, we introduce
causal linear interpolation to maintain algorithmic causality in
the video stream. Specifically, for the first visual cue, we repli-
cate it until the system receives the subsequent frame. Then, we
perform linear interpolation between the past and present frame
to ensure a smooth transition of visual cues along the temporal
axis, until the last frame.

2.1.2. Online TF-CrossNet

As illustrated in Figure 1, the online TF-CrossNet block con-
sists of three modules: a masked-GMHSA module, a cross-
band module, and a narrow-band module. To strike a balance
between system efficiency and performance, we chose not to
include the narrow-band multi-head self-attention (MHA) mod-
ule [19]. We design the masked-GMHSA module by imple-
menting a causal self-attention mechanism, which applies a
lower triangular mask to the attention logits, thereby preventing
future information from influencing the attention computation.
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For the rest of the architecture, we replace convolutional layers
with causal convolutional layers. To enhance efficiency and ef-
fectiveness, we introduce a variant of the narrow-band module
that incorporates the Mamba state-space model [25], which has
gained prominence in speech processing. The Mamba layer,
built from causal convolutional layers, is effective and effi-
cient in processing complex spectral features [26]. The Mamba
narrow-band module enhances both training and inference effi-
ciency, slightly decreases the model size, and improves overall
performance. To differentiate this version from the original ver-
sion, we refer to it as online TF-CrossNet-Mamba.

2.2. Model Compression

To enhance the online applicability of our system, we further
investigate model compression techniques, including weight
pruning and quantization [27]. Weight pruning identifies and re-
moves weights with lower values within a weight group, assum-
ing these weights contribute less to the model’s performance.
Weight quantization clusters weights and replaces them within
each cluster with their core value, which is then stored in a code-
book. In this work, we apply unstructured weight pruning and
quantization to our proposed system. We define weight groups
in the proposed systems following [28]. The weights are stored
as 32-bit floating-point numbers. The overall compression rate
r for a system with NV total weights, /N, non-zero weights af-
ter pruning and clustered into K clusters, can be computed as
follows:
32N

_ 2N 1
"7 Nylog, K + 32K )

In this study, we adopt the 16-bit precision for inference, which
significantly improves the system’s efficiency.

2.3. Loss Functions

‘We use the hybrid loss function [29] to train all models. This hy-
brid loss combines the scale-invariant signal-to-distortion ratio
(SI-SDR) loss, which optimizes signal-level performance, and
the multi-resolution STFT loss, which ensures accurate spectral

mapping.

3. Experimental Setup

This section provides details of the preparation of the proposed
system, including datasets and hyper-parameters.

3.1. Datasets

In this work, we propose online AV-CrossNet to tackle two re-
lated tasks: AVSE and AVTSE. For each task, we employ dis-
tinct datasets for training, validation, and test. The video and
audio modalities in these datasets are synchronized, with video
frame rate of 25 frames per second and audio sampling rate of
16,000 Hz.

3.1.1. Audiovisual Speech Enhancement

For AVSE, we prepare LRS3-AudioSet and COG-MHEAR
AVSE Challenge [12] datasets. The LRS3-AudioSet is com-
posed of speech signals from LRS3 dataset [30], which consists
of about 100k, 10k, and 2.1k utterances for training, validation,
and test. The noise signals are from the non-speech subset of
the AudioSet [31], which consists of 2.7k, 305, and 86 signals
for training, validation, and test. For training and validation,
we adopt the dynamic mixing with signal-to-noise ratio (SNR)



range of [—15, 15] dB, and truncate all utterances into 3 sec-
onds. For test set, we prepare 2.1k utterances in 7 SNR levels in
the range of [—15, 15] dB, with 5 dB gap between each level.

The COG-MHEAR AVSE Challenge dataset uses speech
signals from the LRS3 dataset, and noise signals from the Clar-
ity challenge [32], Demand [33], and Freesound datasets [34].
Following [19], we reorganize this dataset into training, vali-
dation, and test sets. The validation set includes 1,339 utter-
ances for AVSE and 1,358 for AVTSE, selected from the 24
most frequent speakers in the training set. The training, valida-
tion, and test sets contain 30,297, 3,017, and 3,306 utterances,
respectively. Training and validation utterances are truncated to
3 seconds, while test utterances vary from 2 to 30 seconds. This
dataset adopts speech-weighted SNRs sampled in the range of
[—10, 10] dB for AVSE and [—15, 5] dB for AVTSE.

3.1.2. Audiovisual Target Speaker Extraction

Following [7-10, 19], we evaluate the proposed system on the
AVTSE task under various conditions. All systems are trained
on the VoxCeleb2 dataset [35], with 48,000 utterances from 800
speakers for training, and 36,237 utterances from 118 speak-
ers for test, ensuring no overlap between training, validation,
and test speakers. All utterances are at least 4 seconds long.
The training, validation, and test sets contain 20,000, 5,000,
and 3,000 mixtures of two speakers, respectively. For the mis-
matched evaluation, we use the LRS3 and TCD-TIMIT [36]
datasets, generating 3,000 mixtures by randomly mixing target
speech with a competing speaker. The target-to-interferer ratio
(TIR) is randomly sampled in the range of [—10, 10] dB.

3.2. Hyperparameters

For the AVSE task, we prepare a system consisting of twelve
online TF-CrossNet blocks (B = 12). For the AVTSE task, we
prepare a smaller system consisting of six online TF-CrossNet
blocks (B = 6). The rest of the modules remain the same in
both systems. For each training, we utilize Adam optimizer
with a maximum learning rate of 0.001. We apply the ReduceL-
ROnPlateau learning rate scheduler with a decay factor of 0.85
and patience of 3 epochs. We adopt the SNR-scheduler [37]
for the COG-MHEAR AVSE Challenge dataset, starting with
SNR range of [—15, —5] dB for AVSE and [—20, —10] dB
for AVTSE. The scheduler increases both the upper and lower
bounds by 5 dB if no validation improvement is observed for 6
consecutive epochs. The scheduler stops when it reaches the
objective SNR range, which is [—10, 10] dB for AVSE and
[—15, 5] dB for AVTSE. Each system is trained with a batch
size that maximizes GPU memory usage. Training continues
until no further improvement in validation loss is observed over
20 epochs.

4. Experimental Results

In this section, we present the experimental results for the
proposed online TF-CrossNet (oTF-CrossNet) model, online
AV-CrossNet (0AV-CrossNet) model and online AV-CrossNet-
Mamba (0AV-CrossNet-Mamba) model in both AVSE and
AVTSE scenarios. Additionally, we provide a model compres-
sion analysis of the proposed system.

4.1. Audiovisual Speech Enhancement

In Table 1, we evaluate and compare our proposed sys-
tems, oTF-CrossNet, oTF-CrossNet-Mamba, oAV-CrossNet,
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Table 1: Evaluation results of the proposed online AV-CrossNet
and baseline models on the LRS3-Audio Set test set.

Method AV PESQ STOI SI-SDR
Unprocessed - 132 0.72 0.08
Offline Systems

TF-CrossNet X 277 090 13.90
AV-CrossNet v o282 092 13.61
Online Systems

HD-Demucs X 225 083 10.70
AV-HD-Demucs v 235 087 11.80
oSpatialnet-Mamba X 251 087 11.36
oTF-CrossNet X 245 0.86 11.22
0oTF-CrossNet-Mamba X 253 0.87 11.49
0AV-CrossNet v 250 086 11.73
0AV-CrossNet-Mamba v 260 090 1232

and oAV-CrossNet-Mamba, with several baseline models on
AVSE task. The audio-only oTF-CrossNet outperforms both
audio-only and AV HD-Demucs [38]. However, it falls short
of oSpatialNet-Mamba [26]. In contrast, the proposed oTF-
CrossNet-Mamba slightly outperforms oSpatialNet-Mamba in
both perceptual evaluation of speech quality (PESQ) and SI-
SDR metrics. This advantage is from GMHSA module, which
models global time-frequency feature more effectively [21].
Furthermore, both 0TF-CrossNet-Mamba and oAV-CrossNet-
Mamba outperform their generic counterparts, confirming the
Mamba layer’s effectiveness in processing time-frequency fea-
tures. Moreover, the performance degradation from the non-
causal systems to the proposed systems is within a reasonable
range for the AVSE task, as reported in [18].

Table 2: Evaluation results of the proposed online AV-CrossNet
and baseline models on the development set for the second
COG-MHEAR Audiovisual Speech Enhancement Challenge.

Speech+Noise Speech+Speech
Method PESQ STOI SI-SDR PESQ STOI SI-SDR
Unprocessed 1.15 0.68 -44 1.17 0.60 -5.0
Offline Systems
AV-DPRNN 202 086 114 223 090 126
AV-GridNet 262 091 139 3.10 095 16.7
SAV-GridNet 268 091 142 323 095 175
AV-CrossNet 275 092 143 323 095 173
Online Systems
0AV-CrossNet 235 0.88 127 261 092 143
0AV-CrossNet- 2.41 0.89 131 272 093 149
Mamba

In Table 2, we evaluate our proposed system and com-
pare with non-causal baseline models in both the AVSE and
AVTSE tasks. The oAV-CrossNet-Mamba outperforms both
0AV-CrossNet and the non-causal AV-DPRNN [39] in both
tasks, demonstrating the superior performance of the Mamba
narrowband module over the original module. However, it
falls short of the more complex AV-GridNet and the ensem-
ble system SAV-GridNet [11]. Furthermore, the performance
degradation observed when transitioning from the non-causal
to causal model is more pronounced in AVTSE task, indicating
that AVTSE exhibits greater sensitivity to algorithmic causality
than AVSE.



4.2. Audiovisual Target Speaker Extraction

We then evaluate our system on AVTSE task utilizing a smaller
model configuration (B = 6). Table 3 presents a comparison
of the systems under matched training and test conditions us-
ing the VoxCeleb2 dataset. Although the proposed systems un-
derperform to AV-CrossNet, they outperform other non-causal
baseline systems in terms of PESQ score, while requiring sig-
nificantly fewer parameters, thereby demonstrating the effec-
tiveness of the architecture. In Table 4, we evaluate the gen-
eralizability of the system. To investigate the role of the vi-
sual encoder, we prepare *AV-CrossNet-small in addition to the
original AV-CrossNet, with the visual encoder trained with ran-
dom initialization. The proposed online systems demonstrate
competitive performance on the LRS3 dataset, but notably un-
derperform on the TCD-TIMIT dataset. A similar trend is ob-
served with ¥ AV-CrossNet-small. These results suggest that the
pre-trained visual encoder plays a crucial role in the system’s
generalizability on AVTSE task.

Table 3: Evaluation results on VoxCeleb? test set. Param is in-
dicative of the overall system parameters, measured in millions
(M). Each system is trained on the VoxCeleb?2.

Method Param (M) PESQ SI-SDR
Unprocessed - -0.08 1.24
Offline Systems

Visual Voice [8] 63.9 1.97 9.73
AV-ConvTasNet [7] 22.2 1.97 10.38
MuSE [9] 26.2 220 11.24
AV-SepFormer [10] 40.8 2.31 12.13
AV-CrossNet-small [19] 16.9 2.93 14.71
Online Systems

0AV-CrossNet-small 16.9 2.31 10.17
0AV-CrossNet-Mamba-small 16.5 2.34 9.86

Table 4: Evaluation results on mismatched test sets. Each sys-
tem is trained on the VoxCeleb?2.

LRS3 TCD-TIMIT
Method PESQ SI-SDR PESQ SI-SDR
Unprocessed 1.21 013 147 -0.15
Offline Systems
Visual Voice [8] 227 11.60 225 10.88
AV-ConvTasNet [7] 233 12,13 221 11.53
MuSE [9] 2.56 1297 245 1250
AV-SepFormer [10] 2.67 13.81 257 13.44
AV-CrossNet-small [19] 3.14 1742 3.25 18.15
*AV-CrossNet-small 3.13 16.89 294 12.35
Online Systems
0AV-CrossNet-small 2,50 1275 213 434
0AV-CrossNet-Mamba-small 2.54 13.13 2.17 4.82

4.3. Model Compression

We examine model compression rates using oAV-CrossNet-
Mamba on the COG-MHEAR dataset. In Tables 5 and 6, we re-
port evaluation scores and the corresponding compression rates
(r) with respect to the number of clusters for weight quantiza-
tion (K) and the pruning ratios for the visual and audio modules
(pv, Pa), Where a higher ratio means more pruning. The results
indicate that, for both AVSE and AVTSE tasks, the visual mod-
ule demonstrates higher sparsity compared to the audio module.
Notably, the compressed model with K =128, p, = 0.1, and p,
= 0.9 outperforms the other compressed models that have p,
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values between 0.2 and 0.3 and p, values ranging from 0.5 to
0.7 on both PESQ and short-time objective intelligibility (STOI)
metrics, while also achieving a substantially higher compres-
sion rates. Moreover, the AVTSE task experiences a more pro-
nounced performance degradation than the AVSE task, suggest-
ing its greater sensitivity to weight compression. Additionally,
the AVTSE task exhibits more significant degradation as p, in-
creases, highlighting the pivotal role of the visual modality in
this task.

Table 5: Compression rates on the AVSE task

K=128 K=64
PalPv PESQ STOI r PESQ STOI r
0.0/0.0 232 088 46 217 088 53
0.1/0.5 2.14 088 6.2 208 087 172
0.1/0.7 225 088 74 1.84 0.85 8.6
0.1/0.9 221 088 92 .72 0.83 10.8
0.2/0.5 2.16 0.88 6.5 1.84 086 7.6
0.2/0.7 216 0.88 79 1.77 0.83 9.2
0.2/0.9 1.86 0.86 10.0 1.85 0.84 11.7
0.3/0.5 206 087 6.7 1.77 084 7.8
0.3/0.7 212 087 8.1 1.84 0.84 95
0.3/0.9 2.09 0.87 104 1.67 0.82 121
Table 6: Compression rates on the AVTSE task
K=128 K=64
DalDo PESQ STOI r PESQ STOI r
0.0/0.0 260 092 46 239 091 53
0.1/0.5 233 092 62 228 091 72
0.1/0.7 246 092 74 200 0.88 8.6
0.1/0.9 234 091 92 1.80 0.85 10.8
0.2/0.5 223 091 6.5 193 089 7.6
0.2/0.7 228 091 79 1.81 0.86 9.2
0.2/0.9 1.85 0.88 10.0 1.88 0.85 11.7
0.3/0.5 209 090 6.7 1.78 0.87 7.8
0.3/0.7 215 089 8.1 1.87 0.87 95
0.3/0.9 2.03 0.88 104 1.55 081 121

Following the approach in [18], we evaluate the inference
latencies per frame on a system equipped with an NVIDIA
RTX 2080 Ti GPU and an Intel(R) Xeon(R) Gold 5115 CPU,
with results averaged over 100 utterances. The full-sized oTF-
CrossNet and oTF-CrossNet-Mamba (B = 12) exhibit latencies
of 5.84 ms and 4.43 ms, respectively. The causal visual encoder
contributes approximately 0.3 ms, resulting in overall inference
latencies of 6.14 ms for 0oAV-CrossNet and 4.73 ms for oAV-
CrossNet-Mamba.

5. Conclusion

‘We have introduced online AV-CrossNet, a computationally ef-
ficient audiovisual system for causal and real-time AVSE and
AVTSE. By integrating causal convolutional layers and lever-
aging model compression techniques, we substantially enhance
the system’s efficiency, achieving a minimal inference latency
while maintaining competitive performance. Compared to the
original AV-CrossNet, online AV-CrossNet operates frame-by-
frame with a one-frame look-ahead and shrinks the model size
up to 10 times. These findings underscore the potential of the
proposed system for real-time AVSE applications in acousti-
cally challenging environments.
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