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ABSTRACT 

 
We present an algorithm for reverberant speech enhancement 
using one microphone. We first propose a novel pitch-based 
reverberation measure for estimating reverberation time (RT60) 
based on the distribution of relative time lags. This measure of 
pitch strength correlates with reverberation and decreases 
systematically as detrimental effects of reverberation on 
harmonic structure increase. Then a reverberant speech 
enhancement method is developed to estimate and subtract later 
echo components. The results show that our approach 
appreciably reduces reverberation effects. 

 
1. INTRODUCTION 

 
Two causes of degradation in speech exist in practically all 
listening situations: background noise and room reverberation. 
Many techniques such as spectral subtraction, adaptive noise 
cancellation, and comb filtering have been developed to improve 
the perceived quality of speech degraded by background noise, 
and are effective in low to moderate noise level [7]. 
Alternatively, computational auditory scene analysis systems 
treat background noise as distinct sound sources and segregate 
acoustic waveforms into different streams representing different 
sources, therefore are capable of segregating speech from noise 
interference and speech utterances from each other (for example, 
see [10]). 

Most algorithms developed to enhance reverberant speech 
utilize more than one microphone. Microphone array based 
methods [5] attempt to suppress the sound energy coming from 
directions other than the direct source and therefore enhance 
target speech. Other methods, such as the system developed by 
Gillespie et al. [6], employ prior knowledge of speech signal 
distribution to estimate an inverse filter of the room impulse 
response. These approaches require the source (loudspeaker) and 
the microphones to be static. Brandstein [3] simulates the effect 
of moving a source within a few centimeters range and 
concludes that effective systems applying inverse filters have to 
update the filters on a frame-by-frame basis. 

Reverberant speech enhancement using one microphone has 
also been studied. A cesptrum-based method is employed by 
Bees et al. [2] to estimate reverberation impulse response, and 
then its inverse is used to dereverberate the signal. 
Yegnanarayana and Murthy [12] develop a reverberant speech 
enhancement system by manipulating LP residual signals based 

on the residual characteristics of clean speech. Single 
microphone approaches, however, only achieve moderate 
success on dereverberation. 

In this paper, we propose a robust algorithm for reverberant 
speech enhancement using one microphone. A pitch-based 
measure is employed for estimating the reverberation time, and a 
method based on estimating and subtracting later echo 
components is developed for enhancement of reverberant 
speech. 

 
2. MODEL DESCRIPTION 

 
The proposed model consists of two stages. In the first 

stage, described in Section 2.1, a pitch-based reverberation 
measure is developed for estimating the reverberation time. 
Then, in the second stage of the model, described in Section 2.2, 
we develop a method of reverberant speech enhancement using 
the reverberation time estimated in the first stage. 

Many tasks require a robust measure on degraded speech 
indicating the degree of reverberation. For example, 
Yegnanarayana and Murthy [12] employ the kurtosis of LP 
residual signal as a measure to estimate signal-to-reverberation 
component ratio in a time frame. Extending this idea, Gillespie 
et al. [6] utilize the kurtosis as an optimization criterion to derive 
an inverse filter and therefore to dereverberate the degraded 
signal. 

Reverberation corrupts harmonic structure in voiced speech, 
and we find that the degree of corruption can be used as a 
measure of reverberation. Brandstein [4] employs a criterion of 
signal periodicity for time-delay estimation using microphone 
arrays. The criterion, indicating the degree of speech signal 
influenced by the detrimental effect of noise and reverberation, 
is used to weight generalized cross-correlations across all time 
frames. As a result, the weights of time frames with less 
degradation are increased relatively and the robustness of the 
system is improved. However, this criterion measures the 
influence from both noise and reverberation. Our goal is to 
develop a pitch-based measure on the degree of reverberation. It 
is robust to noise and can be used for estimating key parameters 
of room impulse response such as the reverberation time (RT60). 

Reverberation corrupts the speech by blurring its temporal 
structure. However, due to the spectral continuity of speech, the 
early echoes in the reverberation mainly increase the intensity of 
the reverberant speech, whereas the later ones are deleterious to 
speech quality and intelligibility [8]. Estimating the effects of 
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later echoes and subtracting them from the reverberant speech 
should enhance the speech quality. 
 
2.1. A pitch-based reverberation measure 
 
Speech contains three types of time frames: voiced, unvoiced, 
and silence. A pitch-based measure of reverberation should be 
based only on voiced time frames. Moreover, in a noisy 
background, some frequency channels in a voiced frame may be 
severely corrupted by noise. This measure should be based on 
the signals from “clean” frequency channels. 

In order to satisfy these criteria, our measure, to be detailed 
below, is extended from a recent multi-pitch tracking algorithm 
[11]. This algorithm can track pitch periods reliably and can be 
used to provide voiced/unvoiced labeling. Also, it gives a 
channel selection method for identifying weakly corrupted 
frequency channels from which the pitch-based measure is 
extracted. 

The pitch-tracking algorithm consists of four stages. In the 
first stage, the input signals are sampled at 16 kHz and then 
filtered into 128 frequency channels by fourth-order gammatone 
filters [9]. Channels with center frequencies lower than 800 Hz 
(channels 1-55) are categorized as low-frequency ones, others 
(channels 56-128) as high-frequency ones. Envelopes are 
extracted in high-frequency channels. At the end of the first 
stage, normalized correlograms are computed using a window 
size of 16 ms in all channels. Channel and peak selection forms 
the second stage. Based on the shapes of normalization 
correlograms, only channels weakly corrupted by noise are 
selected and passed to later processing. The third stage integrates 
periodicity information across all channels and the final stage 
forms continuous pitch tracks using a hidden Markov model. A 
revised version of the algorithm restricted to only one pitch track 
is used for the present study, which deals with single speech 
sources. 

We observe that the differences between the pitch periods 
determined by the pitch tracker and the time lag from the closest 
peaks of normalized correlograms in selected channels indicate 
the level of degradation in the harmonic structure. More 
specifically, relative time lag ∆ is defined as the distance from 
the detected pitch period to the closest peak in correlograms. We 
then collect the ∆ statistics from the selected channels across all 
voiced frames from 16 clean speech utterances chosen from the 
TIMIT database for every channel separately. As a typical 
example, the ∆ histogram for channel 22 is shown in Fig. 1(a). 
As can be seen, the distribution is sharply centered at zero.  

We propose to use the spread of the distribution as an 
indication of reverberation because it measures the “cleanness” 
of harmonic structure in speech signals. A signal composed of an 
ideal stationary harmonic structure is very clean. In this case, the 
relative time lags collected from the signal have the same value 
of zero, and the distribution has zero spread. Due to the 
nonstationary nature of speech, the distribution spread of clean 
speech shown in Fig. 1(a) is greater than zero.  

Room reverberation corrupts harmonic structure, and 
echoes from natural speech tend to spread the distribution of 
relative time lags. To illustrate this, we collect the statistics of 
relative time lags from reverberant speech generated by 
convolving clean speech with a room impulse response function 
of 0.3 sec reverberation time. The histogram is shown in Fig. 
1(b). The spread is wider than that of clean speech. 

In order to measure the distribution spread, we employ a 
mixture of a Laplacian and a uniform distribution for modeling 
the distribution in channel c (see [11]): 
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where 10 << q  is a partition coefficient of the mixture and cλ  

is the Laplacian distribution parameter. );( cU η∆  is a uniform 

distribution with range cη . In a low-frequency channel, we set 
the length of the range as the wavelength of the center frequency. 

We also assume a linear relationship between the frequency 
channel index c and the Laplacian distribution parameter cλ , 

caac 10 +=λ .    (2) 

The maximum likelihood method is utilized to estimate the 
three parameters 0a , 1a , and q  in low-frequency channels. The 
estimated distributions of relative time lags in clean and 
reverberant speech are also shown in Fig. 1(a) and 1(b). As can 
be seen, the model distributions fit the histograms very well. 

Finally, the measure of distribution spread λ is defined as 
the average of parameters cλ  in low-frequency channels, for 
harmonic structure of clean speech in low-frequency channels is 
more stable than that in high-frequency ones. Fig. 2 shows the 
relationship of λ and reverberation time. Here, the reverberant 
signals are generated by convolving the same 16 clean speech 
signals with room impulse response functions of various 
reverberation times obtained from the image model [1]. As can 

 
       (a)        (b) 
Fig. 1. Histograms and estimated distributions of relative time lags in channel 22 (center 
frequency = 264 Hz) of (a) clean speech, and (b) reverberant speech with reverberation time of 
0.3 s. The bar graphs represent histograms and the solid lines represent the estimated 
distributions. 

 
Fig. 2. Average distribution spread λ of 
relative time lag with respect to 
reverberation time. 
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be seen, the plot is monotonic and therefore the relative time lag 
spread λ can be used to estimate the reverberation time. 
 
2.2. Enhancement of reverberant speech 
 
The reverberant signal received at a microphone, ( )ty , can be 
modeled as: 

 ( ) ( ) ( )txthty ∗= ,    (3) 

where ( )tx  is the original speech signal and ( )th  an FIR room 
impulse response.  

Then, short-term Fourier analysis is applied to the signals 
using non-overlapping rectangular window of length N . 
Because of the linearity of Equation 3 and the causality of 
impulse responses, the short-term spectrum of the reverberant 
signal is derived as: 
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where ( )ikS x ;  is the short-term speech spectrum of the original 

signal, and indexes k  and i  refer to frequency bins and time 
frames, respectively. 

Reverberation inter-frame influence ( )dkkI y ;,  represents 

the influence from time-frequency bin ( )dik −;  of the original 
signal to bin ( )ik y ;  of the reverberant signal, and it can be 

computed from the room impulse response ( )th  directly. The 
time-frequency bin ( )yy ik ;  of the reverberant signal is only 

affected by bins of the original signal that are in time frames 
between time frame yi  and Di y − , where D  is determined by 

the length of room impulse response. 
The reverberation inter-frame influence ( )dkkI y ;,  has two 

components: magnitude and phase. The effects of moving the 
source with the centimeter range away are simulated also using 
the image model [1]. We find that the phases of inter-frame 
influence are highly susceptible to source positions, while the 
magnitudes vary only moderately. Therefore, it is impractical to 

use the phases of inter-frame influence since they are unstable in 
real environments. Here we employ only magnitude in this 
study. 

In implementation, our speech enhancement system uses 
hamming windows of length 16 ms with 8 ms overlap for short-
term Fourier analysis. Magnitudes of inter-frame influence are 
computed by simulating reverberation effects of sinusoids of unit 
energy in a time frame on a later time frame. As an example, 
Fig. 3(a) shows the magnitudes of reverberation inter-frame 
influence from an original signal at frequency bin 62 and time 
frame i  to time frame 17+i  (136 ms later), i.e., ( )17;,62 ykI . 

As shown in the figure, the magnitudes of inter-frame influence 
have one prominent peak occupying the same frequency bin of 
the original signal, i.e., frequency bin 62 in this example. Also, 
the magnitudes decrease rapidly away from this frequency bin. 
This pattern is true of all scenarios. An average pattern is 
obtained by averaging all patterns obtained from various room 
impulse response functions and time frame shifts. The average 
pattern is shown in Fig. 3(b), and it smoothes out the variations 
typically shown in Fig. 3(a). 

The second aspect of the magnitude curve is that the peak 
magnitudes are more attenuated as frame shifts increase due to 
the decaying pattern of room impulse response function. An 
example of peak magnitude attenuation is shown in Fig. 4. The 
solid line represents the attenuation in frequency bin 62 with 
different frame shifts. The decaying pattern of room impulse 
response can be approximated by an exponential decay function, 
specified by reverberation time [8]. The theoretical attenuation 
curve based on the reverberation time is shown as the dash line 
in Fig. 4. Although some variations exist, the theoretical 
attenuation curve approximates the real attenuation curve. 

Knowing the reverberation time, the magnitude of the inter-
frame influence can be estimated from the theoretical attenuation 
curve. More specifically, we obtain: 

( ) ( )kkPdAdkkI yy −= )(;,    (5) 

where ( )dA  is the theoretical attenuation curve shown as the 
dash line in Fig. 4 and ( )0kP  is the average pattern shown in 
Fig. 3(b). 

The distinction of early and later echoes for speech is 
defined as a delay of 50 ms in the room impulse response 
function [8]. This translates to approximately 7 time frame shifts 
for an inter-frame distance of 8 ms. We estimate the effects of 
later echo components using Equation 4. Since the phases are 
unknown, a frame-by-frame iterative spectral subtraction based 
method is employed for speech enhancement. We derive: 

 
Frequency bin 

 (a) 

 
Relative frequency bin 

(b) 
Fig. 3. (a) Magnitudes of reverberation inter-frame influence from 
an original signal at frequency bin 62 and a time frame i to time 
frame i+17, and (b) average pattern of the magnitudes of inter-
frame influence. 

 
Fig. 4. Peak magnitude attenuation with respect to time delay. 
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where ( )ikS y ;  is the short-term spectrum of enhanced speech,  

and ( ) xxu =  if 0≥x , and ( ) 0=xu  otherwise. Parameter 
08.0=α  is associated with spectral subtraction method. The 

short-term phase spectrum of enhanced speech is set to that of 
reverberant speech. Finally, the processed signal is reconstructed 
from ( )ikS y ; . 

 
3. RESULTS AND DISCUSSIONS 

 
Our algorithm has been evaluated with different utterances and 
reverberations. To illustrate typical performance, we show the 
enhancement result of a speech signal corresponding to the 
sentence “ She had your dark suit in greasy wash water all year”  
from the TIMIT database in Fig. 6. Fig. 6(a) and (b) show the 
clean signal and its spectrogram, respectively. The reverberant 
signal is produced by convolving the clean signal and a room 
impulse response function with a 0.3 s reverberation time. Fig. 
6(c) and (d) show the reverberant signal and its spectrogram, 
respectively. Finally, the processed speech and its spectrogram 
are shown in Fig. 6(e) and (f). The figure, as well as a listening 
test, shows that the effects of reverberation are appreciably 
reduced. For example, the tail blurs in reverberant speech filling 
the silence gaps between energy bursts in clean speech are 
significantly suppressed. In some cases, they are entirely 
removed. From visual inspection, our results are comparable to 
those of Yegnanarayana and Murthy [12]. We have also tested 
our system on reverberant signals corrupted by white noise. 
Similar improvements are obtained. 

Our pitch-based reverberation measure exploits a well-
established notion – pitch – in psychoacoustics, and can 
potentially be applied to reverberant signals of multiple speech 
sources. Moreover, the measure may be employed as a criterion 
for optimization-based dereverberation methods. This paper 
represents a first step and further performance improvements are 
expected in future research. 
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Fig. 5. Results of enhancement of reverberant speech: (a) clean 
speech, (b) spectrogram of clean speech, (c) reverberant speech, (d) 
spectrogram of reverberant speech, (e) speech processed using the 
proposed algorithm, and (f) spectrogram of the processed speech. 


