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Summary

Reverberation corrupts harmonic structure in voiced speech. We
observe that the pitch strength of voiced speech segments is in-
dicative of the degree of reverberation. Consequently, we present
an estimation method of reverberation time (T60) based on pitch
strength. The pitch strength is measured by deriving the statis-
tics of relative time lags, defined as the distances from the de-
tected pitch periods to the closest peaks in a correlogram. The
monotonic relationship between the measured pitch strength and
reverberation time learned from a corpus of reverberant speech
with known reverberation times yields an estimate of T60 up to
0.6 seconds.

1. Introduction

Reverberation time is an important quantity characterizing room
acoustics. Traditional room reverberation time measurements use
synthetic sounds, such as an impulsive excitation, a white noise,
or a swept sine wave (for example, see [1]). Such measurements
are often cumbersome in practice; for example, they need to be
conducted when a room is unoccupied by people [2]. On the
other hand, experienced acousticians are able to estimate rever-
beration times rather precisely by listening to speech or music
in a room, and in many situations it is desirable to estimate this
quantity from reverberant speech directly. Such blindly estimated
reverberation times can facilitate acoustic processing tasks in re-
verberant environments such as reverberant speech enhancement.

Cox et al. [2] proposed a reverberation time estimation algo-
rithm from reverberant speech using artificial neural networks.
Reverberation smears the temporal structure in speech and, there-
fore, flattens its energy envelopes; the flatness indicates the de-
gree of reverberation. Taking advantage of this fact, a neural net-
work model is trained on speech samples with known reverber-
ation times and later used to determine the reverberation time in
a room. However, speech utterances are restricted to individually
pronounced digits and uncontrolled situations are not considered.
In a subsequent study, Li and Cox [3] extended the neural net-
work approach to the estimation of speech transmission index
which predicts speech intelligibility in a transmission channel
that may contain both reverberation and additive noise. Super-
vised training uses the extracted envelope spectrum of speech.
The method works well with a given excitation but is not ac-
curate with arbitrary speech. Recently, Ratnam and his cowork-
ers [4] [5] attempt to estimate the reverberation time by mod-
eling a reverberation tail as an exponentially damped Gaussian
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white noise process, and the reverberation time is estimated em-
ploying a maximum-likelihood procedure. Their model assumes
source signals with abrupt offsets and long gaps between sound
segments. Consequently, the authors report that the estimated re-
verberation times are in good agreement with the actual values
when the source signals are white noise bursts and hand-claps.
The gradual offsets in speech sounds, however, violate the model
assumptions and, therefore, introduce significant bias to model
estimates, particularly when the reverberation times are relatively
short and source signals are connected speech.

Besides other manifestations of reverberation in a speech sig-
nal, reverberation corrupts harmonic structure in voiced speech;
that is, the harmonicity (or periodicity) that characterizes voiced
speech is weakened. We have found that the degree of corruption
can be used as an indication of reverberation [6]. In this letter, we
develop a pitch-based method for blind estimation of the rever-
beration time (T60), which is the time taken for the sound level
to drop by 60 dB after the excitation is turned off. The next sec-
tion gives the detailed explanation of the method and Section III
concludes this letter.

2. Proposed measure

A speech signal can be classified into three different sections:
voiced, unvoiced, and silence. Obviously, pitch-based estima-
tion of reverberation could be based only on voiced time frames.
Moreover, in a noisy background, some frequency channels in a
voiced frame may be severely corrupted by noise. This estima-
tion should be thus based on the signals from “clean” frequency
channels. In order to satisfy these criteria, our method, detailed
below, employs a simplified version of a recent multipitch track-
ing algorithm [7]. That algorithm can track pitch periods reliably
and can also be used to provide voiced/unvoiced labeling. In ad-
dition, it has a channel selection method for identifying weakly
corrupted frequency channels on which the pitch-based measure
is based.

The pitch-tracking algorithm consists of four stages. In the
first stage, the input signal is sampled at 16 kHz and then fil-
tered into 55 frequency channels by a bank of fourth-order gam-
matone filters [8] with center frequencies equally distributed on
the equivalent rectangular bandwidth scale between 80 Hz and
800 Hz. As a result of using information from only lower fre-
quency channels, strictly speaking, the estimated reverberation
time is of the lowpass nature (lower than 1275 Hz), although
no distinction is made between broadband and narrowband def-
initions of T60 in the evaluation. At the end of the first stage,
normalized correlograms (autocorrelations) are computed using
a window size of 16 ms in all channels. Channel and peak se-
lection forms the second stage. Based on the shapes of normal-
ization correlograms, only channels weakly corrupted by noise
are selected and passed to later processing (see [7] for detailed
explanations). Depending on speech and reverberation, channel
selection typically retains most of the channels, e.g. over 85%
for anechoic speech. The third stage integrates periodicity infor-
mation across all channels and the final stage forms continuous
pitch tracks using a hidden Markov model. This simplified ver-
sion of the algorithm is restricted to single pitch tracks, as the
present study only deals with single speech sources. Our exper-
iments show that this algorithm performs reliably under modest
reverberant conditions.

Our key observation is that the differences between a detected
pitch period by the pitch tracker and the time lags from the clos-
est peaks of normalized correlograms in selected channels indi-
cate the level of degradation in the harmonic structure caused by
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Figure 1. Histogram and estimated distribution of relative time
lags in channel 40 (center frequency is 507 Hz) of (a) anechoic
speech, and (b) reverberant speech with reverberation time of
0.4 s. The bar graphs represent histograms and the solid lines rep-
resent the estimated distributions.

reverberation. More specifically, a relative time lag δ is defined as
the distance from the detected pitch period to the closest peak in
correlogram. We collect the δ statistics from the selected chan-
nels across all voiced frames from anechoic speech utterances
randomly chosen from the TIMIT database [9] for every channel
separately. As a typical example, the δ histogram for channel 40
is shown in Figure 1a. As can be seen, the distribution is sharply
centered at zero with a small spread. This spread, however, is
not an artifact due to the inaccuracy of a pitch tracker. A signal
composed of an ideal stationary harmonic structure is extremely
clean. In this case, the relative time lags collected from the signal
have the same value of zero, and the distribution has zero spread.
Due to the nonstationary nature of speech, the distribution spread
of natural speech is greater than zero (see Figure 1a).

Room reverberation corrupts harmonic structure, and echoes
from natural speech tend to spread the distribution of relative
time lags. To illustrate this, we collect the statistics of relative
time lags from reverberant speech generated by convolving ane-
choic speech with a room impulse response function generated

Figure 2. Average distribution spread λ of relative time lag with
respect to reverberation time.

from the image model of Allen and Berkley [10] with T60 = 0.4 s.
The histogram is shown in Figure 1b. The spread is wider than
that of anechoic speech.

Based on the above observation, we propose to use the spread
of the distribution as an indication of reverberation. In order to
measure the distribution spread, we employ a mixture of a Lapla-
cian and a uniform distribution to model the distribution in chan-
nel c (see [7] for more details):

pc(δ) = (1 − q)
1

2λc
exp

 
− |δ|/λc

$
+ qU (δ, ηc), (1)

where 0 < q < 1 is a partition coefficient of the mixture and
λc is the Laplacian distribution parameter. U (δ, ηc) is a uniform
distribution with range ηc. We set the length of the range as the
reciprocal of the center frequency. Since the perceptual judgment
of pitch depends primarily on the lower harmonics of a complex
sound [11], our measure does not consider high-frequency chan-
nels.

We also assume a linear relationship between the frequency
channel index c and the Laplacian distribution parameter λc,

λc = a0 + a1c. (2)

The maximum likelihood method is utilized to estimate the three
parameters a0, a1, and q in low-frequency channels (channel cen-
ter frequencies lower than 1275 Hz). The estimated distributions
in anechoic and reverberant speech are also shown in Figure 1a
and b. As can be seen, the model distributions fit the histograms
very well (see [7] for more discussion). With the estimated dis-
tributions, the distribution parameter λc is 0.7 in Figure 1a and
1.1 in Figure 1b.

Finally, the measure of distribution spread λ is defined as the
average of λc’s in low-frequency channels. Figure 2 shows the
relationship of λ and reverberation time. Here, the reverberant
signals are generated by convolving a concatenated speech signal
from 2 female and 2 male utterances from four different speakers
randomly selected from the TIMIT corpus with room impulse re-
sponses of various reverberation times obtained from the image
model. For each reverberation time, three different impulse re-
sponses are generated in order to test the robustness with respect
to different room configurations. The spread for each impulse re-
sponse is indicated by a plus sign in Figure 2. The solid curve in
the figure connects the average spreads at different T60’s.
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As shown in Figure 2, the distribution spread λ rises monoton-
ically (almost exponentially) with increasing reverberation time.
From the monotonic relationship it is straightforward to estimate
the reverberation time from λ. In addition, the spread at a par-
ticular T60 holds relatively steady for different impulse responses
when T60 ≤0.6 s. This, along with the saturation trend beyond
T60 of 0.6 s, suggests that our method is not accurate when T60

is longer than 0.6 s, and hence should not be used in this situa-
tion. The utility of our method for estimating short reverberation
time is also supported by the results with more utterances pre-
sented in [12] as well as further tests not presented in this letter.
Note that the T60 range of (0, 0.6 s) covers a wide range of room
reverberations including typical living rooms [1].

Why is the proposed method not accurate for long reverber-
ation times? Our algorithm estimates the reverberation time by
examining the degree of corruption in harmonic structure. Under
a range of reverberant conditions, the distribution spread λ in-
creases as the reverberation becomes more severe. On the other
hand, severely corrupted harmonic structure or non-harmonic
components provide little information on the pitch, and tend to
be excluded by the channel selection method in our pitch track-
ing algorithm. Long reverberation times cause some harmonic
speech components to be severely corrupted, and as a result the
distribution spread is not discriminative anymore.

Pitch strength depends on speakers as well as utterances. For
example, female speech tends to be more harmonic than male
speech, and an utterance with a steady pitch contour (i.e. mono-
tone speech) tends to show higher pitch strength than an utter-
ance with a highly-varying pitch contour. It is expected that the
distribution spread has some dependency on the utterances used.
This is indeed confirmed by our experiments. On the other hand,
for given utterances we always observe a monotonic relation-
ship between the spread and the reverberation time. The depen-
dency can simply be overcome by employing a fixed set of utter-
ances, which unfortunately will compromise the “blindness” of
the method. Another way is to use a large number of representa-
tive utterances, which will smooth out variations introduced by
individual utterances. More utterances entail more computation,
which is generally undesirable. Perhaps a more promising ap-
proach is to analyze speaker and utterance characteristics, which
can then be exploited to predict a precise relationship of the dis-
tribution spread to T60. This is an interesting topic for future re-
search.

Besides reverberation time, another important characteristic of
reverberation is signal-to-reverberant energy ratio (SRR). It de-
pends on the distance from the source to the microphone and is
correlated with reverberant speech quality [13]. In low-frequency
channels, however, the relative energy of direct-path signal to
early reflections mainly determines relative phase changes and
magnitudes of harmonic components and should have little effect
on pitch strength. As a result, while low SRR causes coloration
distortion in reverberant speech, it is not expected to cause much
deviation on our estimation method. This is confirmed in our in-
formal experiments.

To our knowledge, Ratnam et al. [4, 5] is the only other re-
verberation time estimate that utilizes arbitrary speech sources.
Their model tends to overestimate the reverberation time due to
the gradual offsets of speech sounds. Our method, however, does
not have this systemic bias and is effective for a range of rever-
beration times.

3. Conclusion

We have observed a monotonic relation between room reverber-
ation and a well-established quantity in psychoacoustics – pitch.
This relation in turn gives an estimate of the reverberation time
utilizing only reverberant speech signal. This estimation method
should be useful for many acoustic processing tasks in reverber-
ant environments when prior knowledge of room reverberation is
not available.
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