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Binaural Detection, Localization, and Segregation
in Reverberant Environments Based on

Joint Pitch and Azimuth Cues
John Woodruff, Member, IEEE, and DeLiang Wang, Fellow, IEEE

Abstract—We propose an approach to binaural detection, lo-
calization and segregation of speech based on pitch and azimuth
cues. We formulate the problem as a search through a multisource
state space across time, where each multisource state encodes
the number of active sources, and the azimuth and pitch of each
active source. A set of multilayer perceptrons are trained to assign
time-frequency units to one of the active sources in each multi-
source state based jointly on observed pitch and azimuth cues.
We develop a novel hidden Markov model framework to estimate
the most probable path through the multisource state space. An
estimated state path encodes a solution to the detection, localiza-
tion, pitch estimation and simultaneous organization problems.
Segregation is then achieved with an azimuth-based sequential
organization stage. We demonstrate that the proposed framework
improves segregation relative to several two-microphone compar-
ison systems that are based solely on azimuth cues. Performance
gains are consistent across a variety of reverberant conditions.

Index Terms—Binaural speech segregation, computational audi-
tory scene analysis, multipitch tracking, sound localization, source
detection.

I. INTRODUCTION

B INAURAL segregation and localization are important
problems within computational auditory scene analysis

(CASA) [35] and signal processing due to both an interest in
simulating auditory perception and potential applications in
hearing prostheses, robust speech recognition, spatial sound
reproduction and mobile robotics. Approaches to binaural
segregation assume that sound sources are separated in space
and derive spatial filters to enhance the target source [3], [9],
thus localization is an important subproblem. The effectiveness
of spatial filtering is greatly affected by the number of micro-
phones, the acoustic environment and the spatial configuration
of sources. With only two microphones available in the bin-
aural case, performance of segregation based on spatial cues
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degrades substantially as the level of reverberation increases or
the separation between sources decreases [23].
In contrast, human listeners utilize both monaural and

binaural cues in the perceptual organization of an acoustic
scene [4]. It is not uncommon to encounter acoustic condi-
tions with substantial reverberation, far-field sources, diffuse
background noise or even co-located sources. While listeners
can still achieve segregation in such cases, existing compu-
tational methods fail or experience substantial performance
degradation. In order to achieve a more robust solution to the
binaural segregation problem, we believe that both monaural
and binaural cues should be utilized. Ideally, segregation based
on monaural processing could be achieved in the absence of
useful spatial cues, and the system could benefit from spatial
information when available. With this idea in mind, our prior
work demonstrates that both localization and segregation of
voiced speech can be improved by incorporating pitch cues
[38], [39]. We have shown that pitch cues can be substantially
more reliable than spatial cues for across-frequency grouping
(simultaneous organization), but that azimuth cues can be used
reliably for grouping across time (sequential organization).
These observations are consistent with aspects of auditory
grouping by human listeners (see [7] for a review).
In this work we propose a binaural system for joint localiza-

tion and segregation of an unknown and time-varying number
of sources. We develop a novel hidden Markov model (HMM)
framework to estimate the number of active sources across time,
compute azimuth for each active source per frame, determine
whether sources are voiced and extract pitches in voiced frames,
and generate binary time-frequency (T-F) masks for the ac-
tive sources. We focus on segregation of sources in fixed spa-
tial positions, however the framework is amenable to moving
sources. Whereas in our previous work we performed simulta-
neous organization using monaural cues and sequential organ-
ization using binaural cues in a two-stage process [38], [39],
pitch and azimuth cues are considered jointly for simultaneous
organization by the system proposed here. This approach re-
tains the benefit of pitch-based grouping, but allows for im-
proved performance when sources have similar pitches. Further,
by training models jointly on pitch and azimuth cues, the rela-
tive contribution of each type of cue is learned and the system
naturally deals with both voiced and unvoiced speech. This ap-
proach is motivated in part by the observation that for human
listeners, monaural cues are stronger than spatial cues for si-
multaneous organization, but spatial cues contribute when cir-
cumstances allow (see [7], [31] for reviews).
In the following section we discuss relevant literature on bin-

aural segregation and multichannel speech enhancement, and
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existing work that explores processing based on both monaural
and spatial cues. In Section III we describe the front-end pro-
cessing, define the computational goal of the proposed system,
describe the acoustic features used and provide an overview
of the proposed framework. We introduce each component of
the HMM framework in Section IV and describe details of
the implementation used to generate experimental results in
Section V. Finally, we outline the evaluation methodology and
results in Sections VI and VII, and conclude with a discussion
in Section VIII.

II. BACKGROUND

Most binaural CASA systems use interaural (between ear)
cues to perform localization-based grouping (see e.g., [9], [21],
[28]). While numerous differences exist between localization-
based grouping systems, they follow a common approach at a
high level. First, left and right mixture signals are transformed
into the T-F domain. Interaural cues are then extracted from
each pair of T-F units. Source locations are estimated by inte-
grating these cues across time and frequency. Once source loca-
tions are identified, predetermined models of interaural cues for
the estimated source locations are used to identify the mixture
T-F units that are consistent with the target location. Variants
of the localization-based grouping approach that avoid prior
training with a given microphone setup have also been proposed
(see e.g., [23], [26]).
While the goal of many binaural segregation systems is to

estimate a T-F mask, considerable effort has gone toward alter-
native enhancement techniques. The most ubiquitous approach
to array-based enhancement is beamforming, which filters and
sums the received signals in order to create a spatially-depen-
dent attenuation pattern [3]. In principle it is possible to derive
a so-called distortionless beamformer that achieves interference
attenuation without degradation in the direction of interest [10].
This is in contrast to the T-F masking approach, where distor-
tion of the target signal is unavoidable whenever attenuation is
applied to a T-F unit that contains some target energy. It is pos-
sible to further increase signal-to-noise ratio (SNR) by applying
a post-filter to the output of a beamformer [32]. The cascade
of a distortionless beamformer and a single-channel post-filter
has been shown to be mean-square error (MSE) optimal under
various assumptions regarding speech distributions [14], [33].
Commonly such spatial filters are adapted across time based on
target activity detection, however, optimization criteria based
on higher-order statistics can also be used when the number of
sources is known [5].
In spite of recent advances to more effectively deal with re-

verberation, underdetermined mixtures or a binaural setup, all
of these approaches are inherently limited by the requirement
that sound sources have sufficiently distinct spatial attributes.
This requirement is not always met in practice. To address this
limitation, some existing work also considers segregation based
on multiple acoustic cues. Several studies have considered joint
estimation of pitch and azimuth (or time delay) for one or more
sources (see [16], [19], [43] as recent examples). Segregation
of two talkers based on joint estimation of pitch and location
using a recurrent timing neural network was proposed in [41].
The system proposed in [40] derives separate target speech es-
timators based on both pitch and localization cues, where es-

timates are then combined based on confidence scores derived
from consistency of the pitch and azimuth estimates across time.
Tracking of the time delay and pitch of the dominant source is
handled implicitly by the system. In both [24] and [30], localiza-
tion cues are used to group the harmonics of different sources
across frequency, allowing for improved pitch estimation and
sequential grouping of pitch points. Related approaches that in-
corporate binaural cues and monaural spectral models have also
been proposed (see e.g., [22], [25], [37]). While many of these
multi-cue approaches are relevant, we are not aware of existing
methods that perform localization, pitch tracking and segrega-
tion of an unknown and time-varying number of sources.

III. OVERVIEW

A. Auditory Periphery

We assume a binaural input signal sampled at a rate of
44.1 kHz. The binaural signal is analyzed using a bank of
64 gammatone filters [27] with center frequencies from 80
to 5000 Hz spaced on the equivalent rectangular bandwidth
scale. While the passband of the filterbank does not extend
to the Nyquist frequency of 22.05 kHz, the high sample rate
used facilitates computation of interaural delays with good
resolution. Each bandpass filtered signal is divided into 20 ms
time frames with a frame shift of 10 ms to create a cochleagram
[35] of T-F units. A T-F unit is an elemental signal from one
frame, indexed by , and one filter channel, indexed by . We
use to denote the signal contained in each T-F unit, where

indicates the left or right ear signal.

B. Computational Goal

The goal of the proposed system is to segregate a desired
speech signal from a binaural mixture. To perform segregation
we seek to estimate the ideal binary mask (IBM) [34], which has
been shown to substantially improve speech intelligibility for
normal hearing and hearing-impaired listeners (see e.g., [36]).
Recently, the IBM definition has been extended to deal with
reverberant signals by including early reflections of the desired
signal as part of the target component [29].
More formally, we model each T-F unit as,

(1)

where contains both the direct-path and early reflections
of source received by microphone , denotes the com-
bination of late reflections from all sources and any additional
background noise, and is the number of sources. Given this
signal model, the so-called useful-to-detrimental ratio (UDR)
[2] for source in T-F unit can be defined as,

(2)

where denotes Euclidean norm, or, the energy of signal .
We then let
and define the IBM for source as,

if
otherwise

(3)
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where we set (local SNR criterion) to 0 dB and consider
the first 50 ms of the impulse response from source to micro-
phone as the “useful” speech components in order to derive

[29]. Note that we average the UDR from the left and
right signals so that each pair of T-F units, and , are
given the same assignment by .

C. Feature Extraction

From each T-F unit pair, and , we extract a set of
pitch- and azimuth-related features as observations within the
tracking framework described in Section IV. The pitch-related
features are based on the correlogram and envelope correlo-
gram [35]. The correlogram, denoted , is a normal-
ized running auto-correlation performed in individual frequency
channels for each time frame. The envelope correlogram, de-
noted , is the same, but envelope extraction is per-
formed prior to computation of the auto-correlation. Also note
that we decimate the left and right signals to 16 kHz before com-
putation of the correlograms. We then let

denote the set of four pitch-related features for channel , frame
and lag . We use to denote the full set of pitch features

for frame .
The binaural features calculated are the interaural time dif-

ference (ITD), denoted , and the interaural level difference
(ILD), denoted . We calculate ITD as the maximum peak in
a running cross-correlation between and , where we
consider time lags between and 1 ms. ILD corresponds to
the energy ratio in dB between and . Both values are
calculated as described in [38]. We use and to denote
the full set of ITD and ILD features, respectively, for frame .
Finally, we use to denote the entire set
of observed data for frame .

D. Overview of the Proposed Framework

We utilize both spatial and periodicity information to estimate
. To do so we track the pitch and azimuth of mul-

tiple concurrent sources across time. We formulate the tracking
problem such that we attempt to identify the most probable path
through a multisource state space, where a multisource state en-
codes the number of active sources, the azimuth of each active
source, and the voicing of each active source. By identifying a
path through the multisource state space, we then generate a so-
lution to the detection, localization and pitch estimation prob-
lems. Further, we incorporate a set of multilayer perceptrons
(MLPs) trained jointly on pitch and azimuth cues in order to as-
sign T-F units to one of the active sources in each multisource
state. Essentially, the MLPs generate frame-level T-F masks,
which are then stitched together across time when the multi-
source state path is determined. In this way, the system also
generates a solution to the simultaneous organization problem
(across-frequency grouping within a continuous time interval).
Finally, azimuth-based sequential organization is performed to
generate a T-F mask for each detected source.
As will be discussed in Section V-A, the cardinality of the full

multisource state space is prohibitively large. In order to make

computation feasible, we incorporate independent pitch and az-
imuth modules to identify a set of pitch and azimuth candidates
to be considered by the HMM in each frame. We first introduce
the main components of the HMM in Section IV, and then de-
scribe how the independent modules are used to generate can-
didate states in Section V-A.

IV. HIDDEN MARKOV MODEL FRAMEWORK

We seek to model the posterior probability of a multi-
source state in each time frame based on the observed features
described in Section III-C. A multisource state, denoted

, is a collection of individual
pitch and azimuth states for sources. We consider a discrete
grid of azimuths from to 90 and allow sources to be in-
active, where we let denote an inactive source. Similarly,
we consider a discrete set of pitch lags and allow sources to be
unvoiced, where we let denote an unvoiced source.
The posterior probability of a multisource state given the ob-

served data can be expressed as,

(4)

where subscript denotes a collection of features from frame
1 through frame . In the subsections below we discuss com-
putation of the observation likelihood, , and the state
predictor, . We first discuss a data association
stage where, in keeping with the assumption made by the IBM
that each T-F unit can be assigned to at most one source, T-F
units are assigned to an individual source for each hypothe-
sized multisource state. These assignments are the mechanism
by which T-F masks are generated and also facilitate computa-
tion of the observation likelihood.

A. T-F Unit Assignment

As stated above, for each possible multisource state in each
time frame, we assign T-F units to one of the active sources.
Once the state path is determined the T-F unit assignments asso-
ciated with the selected multisource states are used to construct
binary T-F masks. One of the principal advantages of the bi-
nary T-Fmasking approach to speech segregation is that it opens
up a class of supervised learning algorithms to perform classi-
fication. Recent methods have yielded promising results using
binaural features [28], pitch-based features [17] and amplitude
modulation features [20]. In keeping with this work, we incor-
porate a set of trained MLPs to assign T-F units to individual
sources based on the azimuth and pitch information contained
in a multisource state.
Specifically, let denote the hypothesis that source
, with azimuth and pitch , satisfies the criteria nec-
essary to be labeled 1 by the IBM (see (3)). We then let

denote the posterior probability of
given the monaural and binaural features, . For a

given multisource state, we perform data association according
to,

(5)

We train a set ofMLPs to model . The
models are frequency-, azimuth- and pitch-dependent. How-
ever, since the correlogram features, , are a function of
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pitch lag we do not train separate models for each possible pitch
(see [17]), but rather train twoMLPs for each frequency channel
and azimuth. Two models per channel and azimuth are neces-
sary to accommodate both voiced and unvoiced sources. When
a source is unvoiced (i.e., ) we let,

(6)

and when a source is voiced we let,

(7)

Here, denotes the output of a Binaural MLP (i.e., trained
on only ITD and ILD features) for frequency channel and
azimuth , and denotes the output of a Joint MLP (i.e.,
trained on joint monaural and binaural features) for frequency
channel and azimuth . Details regarding the training pro-
cedures, training data and MLP topology are described in
Section VI-C.

B. Observation Likelihood

The multisource observation likelihood captures the prob-
ability that the observed features were generated by a set of
sources with azimuth and pitch characteristics specified by the
multisource state . We first assume that binaural features and
pitch-related features are conditionally independent such that,

.
To calculate we further assume conditional

independence across frequency channels so that the T-F unit
assignment expressed by (5) allows for the decomposition of
frame-level likelihoods conditioned on the characteristics of
multiple sources into the product of unit-level likelihoods con-
ditioned on the characteristics of a single source. Accordingly,
we let,

(8)
where is used to adjust the likelihoods based on the
number of active sources contained in , and the term is used
to overcome the so-called probability overshoot phenomenon
[13]. Multisource states with more active sources will produce
systematically higher likelihoods due to increased flexibility
in the T-F unit assignment expressed by (5). The penalty term
serves to minimize any systematic bias towards overestimating
the number of sources. Probability overshoot results from the
fact that, due to the overlapping passbands of gammatone
channels, observations in individual channels are not entirely
independent.
For the multisource state with no active sources,

, we set .
Together, and control the detection sen-
sitivity of the system. Finally, we use the azimuth-dependent
GMMs proposed in [39] for . Note that while

depends on the full multisource state (i.e.,
azimuths, pitches and the azimuth-pitch correspondence) due
to the use of , the likelihood of a specific pair of ITD

TABLE I
SINGLE SOURCE STATE TRANSITION PROBABILITIES. ROWS 1, 2 AND 3
LIST TRANSITIONS OUT OF VOICED, UNVOICED AND INACTIVE STATES,
RESPECTIVELY. COLUMNS 1, 2 AND 3 LIST TRANSITIONS INTO VOICED,

UNVOICED AND INACTIVE STATES, RESPECTIVELY.

and ILD values, and , is assumed to be independent
of a source’s pitch.
We take a relatively simple approach to calculate .

As will be discussed further in Section V-A, we incorporate
individual pitch and azimuth modules to supply a small set of
candidate multisource states to the HMM. The likelihood of
pitch combinations, , where , is
computed within the pitch module. Since the joint dependence
on pitch and azimuth is already captured by ,
we simply let , which is described
in Section V-A. Essentially, captures the overall
salience of a given set of pitches, independent of how they are
paired with azimuths in , and then validates
both the salience of an azimuth set and the pitch-azimuth
correspondence specified by .

C. State Predictor

The state predictor captures the probability of a given multi-
source state given the posterior probabilities from the previous
frame and state transition probabilities. To estimate the optimal
path through the multisource state space using the Viterbi algo-
rithm, we approximate the predictor using,

(9)

and keep track of the prior state, , that maximizes the right-
hand side of (9) as the predecessor of , denoted . We
assume independence between source azimuths and pitches and
define the multisource state transition probabilities according to,

(10)

We list individual state transition probabilities in Table I
where and are birth and death probabilities, respectively,

denotes the azimuth transition probability,
the pitch transition probability, the prior probability of a
source being voiced, and and are the voiced-voiced
and unvoiced-unvoiced transition probabilities, respectively.
Also, we let , , ,

and . , , and
are highly situation dependant, as they are related to source
activity, source motion and listener movements. In contrast,
, , , and capture general properties of

speech and should be relatively consistent across conditions.
We describe how these parameters are set in Section V-C.
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V. IMPLEMENTATION

Summary of the HMM framework

Initialize ;

for to do
Compute , and ; Section III-C
Construct multisource candidates, ; Section V-A
foreach do
Compute ; Section IV-A
Compute ; Section IV-B
Compute and ; Section IV-C
Compute ;

end
end
Determine and perform simultaneous organization;

Perform sequential organization; Section V-B

In this section we describe several implementation choices
made for the experiments presented in Section VII. Two pri-
mary issues must be addressed in order to use the HMM frame-
work described in the previous section for segregation. First,
as noted in Section III, a full search through the HMM state
space is intractable. The cardinality of is ,
which is roughly 250 billion states for the number of sources
and the pitch-azimuth grid used in our experiments. Second, the
HMM performs simultaneous organization in that grouping is
performed across frequency over continuous time intervals. If
an active source becomes silent and then reappears at a later
time, the model is agnostic as to whether the two periods of ac-
tivity are due to the same source. To perform segregation it is
necessary to include a subsequent sequential organization stage
that links periods of source activity across disconnected time
intervals.
In the following subsections we propose methods to achieve

these two ends. To reduce the HMM search space we incorpo-
rate independent pitch and azimuth modules to identify a set
of pitch and azimuth candidates for each frame. We then pro-
pose a simple azimuth-based sequential organization stage. It
is important to keep in mind that effective solutions to these
problems depend on time and memory constraints, whether or
not an online solution is required, or assumptions regarding
source activity and source motion. The implementation choices
described in this section are suitable for the experiments con-
ducted, but could easily be replaced as needed for alternative ap-
plications.We provide a summary of the proposed HMM frame-
work above.

A. Pitch and Azimuth Modules

To make computation feasible we incorporate independent
pitch and azimuth modules to identify a set of pitch and az-
imuth candidates for each frame. We use the multipitch tracking
system proposed in [18] as the independent pitch module. We
let 1 denote the posterior probability of a multipitch

1Note that we use notation consistent with Section IV rather than the notation
used in [18].

state in frame , and let denote the multipitch like-
lihood. Note that the Jin-Wang multipitch tracking system ex-
plicitly deals with up to two simultaneous voiced sources. As a
result, the proposed framework, while it can localize and segre-
gate up to sources, will assign a pitch to at most two sources.
We discuss this limitation of the current implementation further
in Section VIII.
The azimuth module is a version of the full HMM that ignores

correlogram features, or essentially, assumes all sources are un-
voiced.We compute , where
is calculated according to (8) and T-F unit assignments are com-
puted using (5). In this case, posterior probabilities are mod-
eled with only the binaural MLPs (see (6)) since all sources
are assumed to be unvoiced. We again assume independence
between sources to calculate transition probabilities, and in-
dividual source azimuth transitions, , are com-
puted by marginalizing the transition probabilities expressed in
Table I2.
Once and are computed for

frame , we use them to identify a set of multipitch candidates,
, andmultiazimuth candidates, . A set ofmultisource can-

didates, , are then created by considering all valid combina-
tions3 of multipitch and multiazimuth candidates.

B. Segregation

While online tracking and segregation of moving sources are
possible with the proposed framework, we focus on offline seg-
regation of an unknown number of sources in fixed spatial po-
sitions in the experiments presented in Section VII. This fa-
cilitates comparison to existing blind source separation (BSS)
methods that assume a known number of spatially fixed sources
and utilize the full mixture to localize and separate each source
[8], [23].
We first determine the optimal path through the multisource

state space using the Viterbi algorithm. A state sequence, de-
noted where is the total number of frames, encodes
when individual sources become active and inactive, and en-
codes the azimuth, voicing characteristics and set of T-F units
associated with each source while it is active. When moving
across time through the identified state path, we begin a new
simultaneous stream4, pitch contour and azimuth contour from
the frame-level T-F mask, pitch estimate and azimuth estimate
associated with the new source in the multisource state. The
stream and associated contours are propagated across time until
the source becomes inactive.
Since we assume sources are in fixed spatial positions in this

study, azimuth is a powerful cue for sequential organization. As
such, subsequent to the formation of simultaneous streams we
label a stream as target dominant when its associated azimuth
is within a specified error tolerance around the known target
azimuth.

2 , , ,
3The number of pitches cannot exceed the number of active sources.
4A group of T-F units over a continuous time interval.
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C. Parameter Settings

Several parameters were introduced in the development of
the HMM framework presented in Section IV. We now list the
parameter settings chosen for the experiments performed and
provide the motivation for our choices.
In all of the experiments performed we set , meaning

that the system will handle up to three simultaneous sources. We
use a discrete grid of azimuths in steps of 5 from to 90
and a discrete grid of pitch lags from 32 to 200 samples (80 to
500 Hz at 16 kHz sample rate). The azimuth grid is dictated by
the methods used for binaural simulation, which are described
in Section VI-A. The pitch grid is motivated by the range of
common fundamental frequencies for speech signals. Consis-
tent with our pitch search range, we use a low-pass filter with
500 Hz cutoff frequency and a Kaiser window to extract signal
envelopes for correlogram computation (see Section III-C).
For computation of the observation likelihood in (8),

and are free parameters that control source detec-
tion sensitivity. is a free parameter that helps balance observa-
tion and transition probabilities. Each of these values was deter-
mined using a held out validation set. We set to 1, 1, 0.4,
and 0.25 for the cases with 0, 1, 2 and 3 active sources contained
in , respectively, set , and set .
Since we consider spatially fixed sources in the evaluation,

we set . We assume a uniform prior of
azimuth and set . Again based on the val-
idation set, we set and . Based on a set
of utterances from the TIMIT corpus [12], we set ,

, . Following [18], [42] we use a Lapla-
cian distribution with mean 0.4 and standard deviation 2.4 for

.
Finally, in order to construct the set of multisource candidate

states, , we choose a set of multipitch candidates, , and
multiazimuth candidates, , according to and

, respectively. In preliminary experiments
we find that the most common source of errors in multipitch
tracking is correctly identifying the true number of pitches
(this observation is consistent with the performance reported in
[18]). With this in mind, we select the three best 1-pitch and ten
best 2-pitch candidates based on and also allow
for the possibility of no voiced source in each frame. This yields
a total of 70 multipitch candidate states once we allow for the
possibility of pitch assignment to any of the three sources.
We select the top 150 multiazimuth candidates according to

. When combined to form , these settings
yield a total of 10,500 multisource candidate states in each
frame, a reduction of over 7 orders of magnitude relative to
the full multisource state space. In preliminary experiments we
found the system to be relatively insensitive to the number of
multipitch and multiazimuth candidates considered, and that
good tracking and segregation performance could be achieved
even with such a severe reduction in the search space.

VI. EVALUATION METHODOLOGY

A. Binaural Simulation

For both the training and evaluation databases, we generate
binaural mixtures that simulate pickup of multiple speech

sources in a reverberant space. Speech signals are drawn from
the TIMIT database [12] and passed through a binaural impulse
response (BIR) for a specified angle and room condition. We
use both simulated and measured BIRs. We simulate BIRs with
the ROOMSIM package [6]. We generate BIRs with equal
to 0.2, 0.4 and 0.6 s, where for each we create 15 room
environments where room size, microphone position and mi-
crophone orientation are selected randomly and the reflection
coefficients of wall surfaces are set to be equal and the same
across frequency. For each and environment we create
BIRs for source positions between and 90 , spaced by
5 , where the source is placed 2 m from the microphone array.
Anechoic HRTF measurements from a KEMAR mannequin
[11] are used in the simulation, so we refer to the simulated set
of BIRs as the KEMAR BIRs. The measured BIRs are described
in [15]. Impulse responses are measured using a head and
torso simulator (HATS) in five different environments. Four
environments are reverberant (rooms A, B, C and D), with dif-
ferent sizes, reflective characteristics and reverberation times.
Measurements are also made in an anechoic environment. In
all cases, BIRs are measured for azimuths between and
90 , spaced by 5 , at a distance of 1.5 m. We refer to this set as
the HATS BIRs.

B. Evaluation Database

To evaluate the proposed system we generate three sets of
mixtures that cover a variety of acoustic conditions. Since an
important component of the proposed system is estimating
the number of active speech sources across time, we interlace
monaural utterances from the same TIMIT speaker with periods
of silence to form an individual speech source. Specifically,
for each source we randomly choose an initial silence period
between 0.1 and 1 s, a speech duration between 1 and 2 s and a
gap duration between 0.1 and 1.5 s. Given these values a source
is created by first placing zeros in the signal for the initial
silence, then alternating between speech and silence periods
until a 3 s signal has been created. Random utterances (without
duplication) from the same speaker are used for all speech
periods of the same source, but TIMIT speakers are chosen
at random for each mixture. This process is carried out with
monaural TIMIT signals prior to spatialization and ensures that
each mixture contains a time-varying number of sources.
1) Set 1: For evaluation set 1 we simulate two speech sources

at four different angular separations. For all mixtures we use the
KEMAR BIRs with set to 0.4 s and place a target source at
0 . We place the interference source at 5 , 10 , 15 , or 30 . We
generate 25 mixtures for each condition. The spatialized sources
are set to have equal power when summated across left and
right signals. To simulate a small amount of diffuse background
noise, we filter uncorrelated speech-shaped noise through the
anechoic BIRs for each azimuth ( to 90 ) and sum them
together. We create the speech-shaped filter by averaging the
amplitude spectra of 200 speech utterances drawn from TIMIT
at random. We then add the diffuse noise to each mixture such
that the total speech-to-noise ratio is 24 dB.
2) Set 2: For evaluation set 2 we generate both two- and

three-talker mixtures where the azimuth of each source is se-
lected randomly such that sources are spaced by 10 or more.
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Fig. 1. Example IBMs (a), ground truth activity and azimuth (b), and ground truth pitch (c) for a mixture of two male talkers from evaluation set 2. Target mask and
associated pitch and azimuth estimates are shown in blue, interference in green. (a) Ideal binary masks. (b) Ground truth source activity and azimuth. (c) Ground
truth pitch.

We again use simulated BIRs in order to control . We gen-
erate 100 mixtures for the two- and three-talker cases with
equal to 0.2, 0.4 and 0.6 s. Source distance is set to 2 m for all
sources. Spatialized sources are set to have equal power and dif-
fuse noise is added to achieve a 24-dB speech-to-noise ratio.
3) Set 3: To evaluate the system using real impulse responses

we generate 50 two-talker mixtures for each room environment
contained in the HATSBIR set. Azimuths are selected randomly
such that sources are spaced by 10 or more. Again, spatialized
sources have equal power and diffuse noise is added to achieve
a 24-dB speech-to-noise ratio.

C. Model Training

The proposed system utilizes trained models in both the ob-
servation likelihood (see Section IV-B) and generation of T-F
masks (see Section IV-A). We use the GMMs described in [39]
to compute observation likelihoods. Two sets of GMMs are in-
corporated: one for evaluation sets 1 and 2 (KEMAR GMMs)
and one for evaluation set 3 (HATS GMMs).
For the MLPs used in T-F mask generation, we also train sep-

arate models for evaluation sets 1 and 2 (KEMAR MLPs) and
evaluation set 3 (HATS MLPs). To train the KEMAR MLPs
we generate 100 mixtures for each azimuth between and

where the number of interfering talkers (up to 4), interfer-
ence azimuths, source distances and mixture are selected
randomly. The room environments used for the training simu-
lations are different from those used in evaluation sets 1 and 2.
To train the HATSMLPs we generate 100 mixtures for each az-
imuth in each of the four reverberant room conditions (rooms A,
B, C andD; see Section VI-A). The number of interfering talkers
(up to 4) and interference azimuths are selected randomly for
each mixture. A separate set of models is trained for each room
condition (e.g., room A) on the data from the three alternative
rooms (e.g., rooms B, C and D) so that the impulse responses
used in an evaluation utterance have not been seen in training.
For each mixture we generate the observed binaural and

monaural features (see Section III-C), calculate the IBM ac-
cording to (3) and extract the ground truth pitch of the target
source from the premixed signals using the method proposed
in [1]. The IBM provides the desired classification label and
pitch information is used to select the appropriate correlogram
features and to distinguish between voiced and unvoiced target
frames. We train a binaural MLP for each frequency and az-
imuth using the ITD and ILD features. Using only voiced target

frames, we train a joint MLP for each frequency and azimuth
using ITD, ILD and correlogram features.
For simplicity eachMLP has the same network topology con-

sisting of a hidden layer with 20 nodes, and hyperbolic tangent
sigmoid transfer functions for both hidden and output nodes.
Training is accomplished using a generalized Levenberg-Mar-
quardt backpropagation algorithm.

VII. EVALUATION

A. Experiment 1: Comparison With Ground Truth Information

In this experiment we validate the fundamental assumption
that segregation based jointly on pitch and azimuth outperforms
segregation based on azimuth alone. To do so we compare the
quality of binary T-F masks generated using the MLPs that
consider both correlogram and binaural features versus the
MLPs that rely only on ITD and ILD. We measure performance
using the difference between the percentage of correctly labeled
target-dominant units (Hit) and the percentage of incorrectly
labeled interference-dominant units (FA), or Hit-FA, which
has been shown to correlate well with speech intelligibility
[20]. We show Hit-FA results assuming ground-truth pitch and
azimuth to establish the ceiling performance achievable by
the proposed mask estimation methods. We also show results
with estimated pitch and azimuth to analyze the amount of
degradation due to estimating the number of sources and the
corresponding pitches and azimuths across time.
We perform this set of experiments using evaluation set 1. For

each mixture we generate the IBM for each source according to
(3) and use the pitch tracking approach proposed in [1] on the
premixed signals to generate ground truth pitch for each source.
The IBM, ground truth pitch and known azimuth allow us to
generate ground truth frame-level labels for each source. We
consider a source to be active in a frame when at least one T-F
unit in the source’s IBM is labeled 1. Each active frame is la-
beled with the source’s known azimuth to generate ground truth
azimuth for each source. For each active frame, we label the
frame as either voiced or unvoiced depending onwhether a pitch
has been detected. The ground truth pitch for each source is then
associated with that source’s voiced frames.We show the IBMs,
ground truth source activity and azimuth, and ground truth pitch
points for an example mixture with two male talkers in Fig. 1.
In Table II we show the average Hit-FA for the proposed

system (“Estimated Azimuth+Pitch”) along with the system
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Fig. 2. Example estimated masks (a), source activity and azimuth (b), and pitch (c) for a mixture of two male talkers from evaluation set 2. Target mask and
associated pitch and azimuth estimates are shown in blue, interference in green. Estimates due to a spurious (falsely detected) source are shown in gray. (a)
Estimated binary masks. (b) Estimated source activity and azimuth. (c) Estimated pitch.

TABLE II
AVERAGE HIT-FA (%) ON EVALUATION SET 1 FOR THE PROPOSED AND THE
AZIMUTH-ONLY SYSTEM WITH GROUND-TRUTH (G.T.) AND ESTIMATED

PITCH/AZIMUTH. TARGET AT 0 FOR ALL MIXTURES.

that incorporates ground-truth azimuth and pitch (“G.T. Az-
imuth+Pitch”). We also show performance using azimuth cues
alone, based on ground truth (“G.T. Azimuth”) and estimated
(“Estimated Azimuth”) azimuth. The azimuth-only version is
achieved by the azimuth module described in Section V-A.
The ceiling performance achievable by the proposed MLPs is
shown in the first row. We see that the decrease in Hit-FA as the
interference source is placed more closely to the target source
is roughly 3%. Hit-FA is systematically lower for the ground
truth azimuth-only system (11.1% drop on average from row
1 to row 3), and the degradation between the 5 case and 30
case is roughly 10%. Consistent with the ground-truth case, the
proposed system based on both pitch and azimuth achieves a
systematic improvement relative to the azimuth-only system.
We see an improvement of up to 12.4% in the 5 case and
10.2% on average.
We show the output of the proposed system on an example

mixture from evaluation set 2 in Fig. 2. Comparing Fig. 1 to
Fig. 2 illustrates the high degree of accuracy in mask estimation
and pitch/azimuth estimation. The majority of errors in mask
estimation are due to falsely detected T-F units in regions dom-
inated by reverberation (and thus labeled 0 in the IBMs). Rever-
beration tends to smear the periodic speech components across
time and thus some T-F units in the reverberation tail are incor-
rectly assigned to the detected sources.

B. Experiment 2: Comparison to Existing Systems

In this experiment we compare the proposed approach to
three two-microphone systems from the literature. The first
is a fixed MVDR beamformer [3]. To ensure comparison to
a beamformer with good performance, we calculate 256-tap
filters using the clean target and residual signals. We decimate
the mixture to 16 kHz prior to filtering. We also compare our

method to the recent segregation methods presented in [8],
[23]. Both of these methods assume the number of sources is
known and that sources are in fixed spatial locations. Although
not required by the proposed approach, we provide these com-
parison methods with the number of speech signals contained
in each mixture. We note that the method proposed in [8] was
not explicitly designed to handle binaural mixtures, and thus
is sensitive to spatial aliasing caused by a large microphone
spacing. This approach is representative of a class of BSS
methods that handle underdetermined mixtures by performing
separation independently in each frequency band and then seek
to resolve the across-frequency permutation ambiguity. We
include these results to illustrate the difficulty the binaural case
poses to solving the permutation problem.
In Fig. 3, we show the change in SNR ( ) achieved by

the proposed and comparison systems on evaluation sets 1 and
2. Since the comparison systems do not estimate the IBM, we
use the premixed target signal as the reference in calculation of
SNR. Note that, in keeping with our definition of the IBM, we
include early reflections as a part of the target signal. In Fig. 3(a)
we see that the proposed approach achieves an improvement in
terms of relative to the comparison methods for all an-
gular separations between target and interference. The improve-
ment is largest for the 5 and 10 mixtures, where it exceeds
3 dB. In Fig. 3(b) and (c) we show achieved on evalu-
ation set 2 as a function of for two- and three-talker mix-
tures, respectively. The proposed system achieves the largest
SNR gains in nearly all cases.
As one would expect, the MVDR is able to achieve much

larger SNR gains for mixtures with two talkers, particularly
when there is little reverberation, because it is able to create
a single null in the interference direction. As reverberation
increases, sources are spaced more closely or the number of
talkers is increased, the beamformer is less effective. Using
longer filters could allow for improved interference rejection,
but in preliminary experiments we have also found an MVDR
estimated from the mixture signal based on target detection
is considerably less effective. However, since performance is
influenced by numerous factors such as the activity detection
method, the filter length and the amount of averaging used to
derive the beam pattern, we include only the MVDR results
based on premixed signals in this comparison.
The Duong et al. system is an iterative implementation of

the multichannel Wiener filter that combines a beamformer and
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Fig. 3. Avg. for the proposed algorithm and three comparison methods on evaluation sets 1 (a) and 2 (b,c).

TABLE III
AVG. (IN dB) FOR THE PROPOSED AND THREE COMPARISON SYSTEMS
USING MEASURED IMPULSE RESPONSES FROM FOUR ROOM CONDITIONS.

FOR EACH ROOM (IN s) IS LISTED IN PARENTHESIS.

post-filter. This system does not perform well on our evalua-
tion set due to the large distance between microphones. As men-
tioned above, it is important to note that the authors did not de-
sign the system for such a large microphone spacing and thus
our result should not be too surprising, but it does illustrate the
challenge in resolving the across-frequency permutation ambi-
guity for a binaural input.
The MESSL system outperforms the other comparison

methods and is capable of achieving large gains in SNR when
sources are well separated in space. This is notable particularly
because MESSL requires little prior training and is still capable
of handling spatial aliasing.
In Table III we show achieved by the proposed and

comparison systems on evaluation set 3, which uses measured
BIRs in four different room conditions. Consistent with the re-
sults when using simulated BIRs, the proposed system achieves
the best performance in all room conditions.

VIII. CONCLUDING REMARKS

The evaluation results show that the proposed integration of
pitch and azimuth cues achieves more robust segregation than
considering azimuth cues in isolation. Experiment 1 makes a
direct comparison between the binary masks estimated by the
system with and without pitch cues and shows a marked im-
provement in estimated masks through inclusion of pitch. Ex-
periment 2 shows that the proposed method outperforms three
existing two-microphone systems from the literature. Improve-
ment relative to the comparison methods of [8], [23] is notable
given that these methods assume that the number of sources is

known, while sources are detected by the proposedmethod. Fur-
ther, while [8], [23] assume that sources are fixed, the proposed
method is capable of processing mixtures with moving sound
sources by altering .
One shortcoming of the proposed approach is that only two

simultaneous pitches can be tracked. We extended the pitch
module to handle three concurrent pitches but found little per-
formance gain. Analysis revealed that computing observation
likelihoods as described in [18] did not allow for sufficient dis-
crimination between two- and three-pitch states; even with the
number of voiced sources given, tracking three pitches proved
difficult due to the small number of frequency channels domi-
nated by the weakest source.
Two additional issues should be addressed in future work.

First, due to the binaural simulation methods used, we consider
an azimuth grid with 5 resolution. Of course in practice, source
azimuths are not constrained to this grid and further testing is
needed to analyze performance for source azimuths that fall be-
tween the trained angles. Second, in spite of constraining the
search space of the HMM using separate pitch and azimuth
modules, computational complexity may be a concern for cer-
tain applications. Our current implementation of the HMM in
Matlab running on a Dell PowerEdge R710 takes roughly 90 s
per 1 s of audio, although no effort has been made to optimize
for speed. We are confident that this time could be reduced sub-
stantially with an improved implementation, however, a more
efficient algorithm for computing the multisource posterior den-
sity would likely be necessary in order to achieve real-time
processing.
Our long-term goal is the development of a robust binaural

system that benefits from but does not rely on spatial cues.While
the proposed HMM framework is a step toward that goal, the
system still fundamentally relies on azimuth to achieve sequen-
tial organization. An interesting direction for future work is thus
developing a similar integration of monaural and spatial cues for
sequential organization.
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