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ABSTRACT

We propose an approach to binaural speech segregation in rever-
beration based on pitch and azimuth cues. These cues are inte-
grated within a statistical tracking framework to estimate up to two
concurrent pitch frequencies and three concurrent azimuth angles.
The tracking framework implicitly estimates binary time-frequency
masks by solving a data association problem, thereby performing
speech segregation. Experimental results show that the proposed ap-
proach compares favorably to existing two-microphone systems in
spite of less prior information. The benefit of the proposed approach
is most pronounced in conditions with substantial reverberation or
for closely spaced sources.

Index Terms— Computational auditory scene analysis, speech
segregation, binaural localization, multipitch tracking

1. INTRODUCTION

Speech segregation is a challenging problem that has received con-
siderable attention due to its potential application in hearing prosthe-
ses, robust speech recognition or audio information retrieval. When
multiple microphones are available, the most ubiquitous approach
to signal enhancement is beamforming, which filters and sums the
received signals in order to create a spatially-dependent attenuation
pattern [1]. Alternatively, blind source separation methods have been
developed to segregate a known number of sources (see [2–4] as
recent examples). While such methods have been widely utilized,
there are shortcomings. Segregation performance degrades in re-
verberant environments and the assumption that sources are suffi-
ciently well separated in space is not always met. Depending on
the approach, there may also be constraints imposed on the number
of sources, whether the number of sources or source positions can
change across time, the bandwidth that can be effectively segregated
(due to spatial aliasing), or the amount of interference attenuation
that is possible.

In previous work we have developed a method that addresses
some of these limitations by integrating monaural and binaural cues
[5]. Building on recent advances in monaural computational audi-
tory scene analysis (CASA) [6], this system performs segregation
on the basis of both pitch and azimuth and we have demonstrated
that this approach can improve localization of concurrent speech
sources and segregation of voiced speech relative to exclusively bin-
aural systems [5]. Related work has explored joint pitch and time
delay estimation for a single source [7] and segregation based jointly
on monaural and binaural cues [8–10].

This research was supported by an AFOSR grant (FA9550-08-1-0155)
and a grant from the Oticon Foundation.

In the current study we propose a binaural system for segrega-
tion of an unknown and time-varying number of sources. We in-
corporate an existing multipitch tracking system [11] such that lo-
calization and segregation are influenced by pitch cues. Whereas in
our previous systems we assume a known number of sources [5],
the framework proposed here estimates the number of active sources
across time, the azimuth of each actives source, groups pitch and az-
imuth estimates, and generates a binary time-frequency (T-F) mask
for each source. These problems are handled jointly using a novel
hidden Markov model (HMM) framework.

In the following section we provide an overview of the proposed
system. We describe the monaural and binaural features used in Sec-
tion 3. In Section 4 we present the components of the HMM tracking
and segregation framework. We perform an evaluation and compar-
ison to existing two-microphone algorithms in Section 5 and con-
clude with a discussion in Section 6.

2. OVERVIEW

To perform segregation we seek to estimate the ideal binary mask
(IBM), which has been proposed as a main goal of CASA [6]. The
proposed approach to IBM estimation integrates pitch and azimuth
evidence, tracked across time using an HMM. Segregation is per-
formed within the tracking framework by solving a data association
problem, which we accomplish with a set of trained multi-layer per-
ceptrons (MLPs). By finding the optimal path through the multi-
source pitch and azimuth states of the HMM, we estimate the pitch
and azimuth of up to three sources and simultaneously generate a
T-F mask for each source.

The cardinality of the HMM state space is prohibitively large,
and thus it is necessary to constrain the number of states considered
by the model in each frame. In this study we choose to do so be ig-
noring any HMM states that are inconsistent with the pitch estimates
generated by a recent multipitch tracker [11]. Since there are numer-
ous alternative ways in which one could constrain the state space
of the HMM, we present the framework in its most general form
in Section 4, but describe how the current instantiation incorporates
estimates from the multipitch tracker in Section 4.4.

3. FEATURE EXTRACTION

We assume a binaural input signal sampled at a rate of 44.1 kHz.
The binaural signal is analyzed using a bank of 64 gammatone filters
with center frequencies from 80 to 5000 Hz spaced on the equiva-
lent rectangular bandwidth scale. Each bandpass filtered signal is
divided into 20 ms time frames with a frame shift of 10 ms to create
a cochleagram [6] of time-frequency (T-F) units. We denote a T-F
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unit as uE
c,m, where m and c index time frames and filter channels,

respectively, and E ∈ {L,R} indicates the left or right ear signal.

To generate pitch-related features we first compute the correl-
ogram and envelope correlogram [6] for both the left and right
signals after downsampling to 16 kHz. The correlogram, de-
noted AE(c,m, γ), is a normalized running auto-correlation per-
formed in individual frequency channels for each time frame
and is thus a three-dimensional function of frequency channel
(c), time frame (m) and lag time (γ). The envelope correlo-
gram, denoted ĀE(c,m, γ), is the same, but envelope extrac-
tion is performed prior to computation of the auto-correlation.
We use a low-pass filter with 500 Hz cutoff frequency and a
Kaiser window to extract signal envelopes. The four-dimensional
pitch feature for each T-F unit and lag time is then: χc,m(γ) =
{AL(c,m, γ), AR(c,m, γ), ĀL(c,m, γ), ĀR(c,m, γ)}.

The binaural features calculated are the interaural time differ-
ence (ITD) and the interaural level difference (ILD). We calcu-
late ITD, denoted τc,m, as the maximum peak in a running cross-
correlation between T-F units uL

c,m and uR
c,m, where we consider

time lags between −1 and 1 ms. ILD, denoted λc,m, corresponds
to the energy ratio in dB between uL

c,m and uR
c,m. Both values are

calculated as described in [5].

4. TRACKING AND SEGREGATION

We assume a discrete grid of possible pitch and azimuth states. We
consider pitch lags from 32 to 200 samples (16 kHz sample rate),
which correspond to frequencies between 80 and 500 Hz. As sources
may also be unvoiced, the pitch state space for a single source is γk ∈
{∅, 32, ..., 200}. We consider azimuths in steps of 5◦ from −90◦

to 90◦ and allow sources to be inactive such that the azimuth state
space for a single source is θ ∈ {∅,−90◦,−85◦, ..., 90◦}. Each
multisource state contains three azimuth and pitch states, denoted
S = {θ1, θ2, θ3, γ1, γ2, γ3}.

The HMM framework is used to model the posterior probability
of a multisource state given all observed monaural and binaural data,

p(Sm|T1:m,Λ1:m, X1:m), (1)

where we use Tm and Λm to denote the full set of ITD and ILD
features for frame m, respectively, and use Xm to denote the full
set of 4-dimensional pitch features for frame m. The subscript 1:m

denotes a collection of features from frame 1 through frame m.

In order to calculate the posterior, we must compute the obser-
vation likelihood, denoted p(Tm,Λm, Xm|Sm), and the state tran-
sition probabilities, denoted p(Sm|Sm−1). Further, we perform data
association between T-F units and individual sources to facilitate
computation of the likelihood and generation of T-F masks. These
three components are described in the following subsections.

4.1. Observation likelihood

To construct the multisource observation likelihood we first assume
conditional independence between pitch and azimuth features such
that,

p(Tm,Λm, Xm|Sm) = (p(Tm,Λm|Sm)p(Xm|Sm))ξ(Sm) , (2)

where ξ(S) is used to adjust the likelihoods based on the number
of active sources contained in the multisource state. Multisource
states with more sources will produce higher likelihoods due to
an increased flexibility in the data association described in Section

Table 1. Single source state transition probabilities. Rows 1, 2 and

3 list transitions out of voiced, unvoiced and inactive states, respec-

tively. Columns 1, 2 and 3 list transitions into voiced, unvoiced and

inactive states, respectively.

p(θ, γ|·) p(θ, ∅|·) p(∅, ∅|·)
p(·|θ′, γ′) P∼dPvvg(γ|γ′)f(θ|θ′) P∼dPvuf(θ|θ′) Pd

p(·|θ′, ∅) P∼dPuvp(γ)f(θ|θ′) P∼dPuuf(θ|θ′) Pd

p(·|∅, ∅) PbPvp(γ)p(θ) PbP∼vp(θ) P∼b

4.3. We set ξ(S) to minimize any systematic bias towards over-
estimating of the number of sources. Based on a validation set, we
set ξ(S) to 1, 1, 1.05 and 1.08 for the cases with 0, 1, 2 and 3 active
sources contained in S, respectively.

In keeping with the assumption made in the formulation of the
IBM, we assume that each frequency channel is dominated by a sin-
gle source and associate T-F units with one of the underlying sources
in each hypothesized multisource state. This allows us to decompose
frame-based observation likelihoods conditioned on the properties of
multiple sources into channel-based likelihoods conditioned on the
properties of a single source, which are easier to model. We de-
scribe the data association method used in Section 4.3, but for now,
let yc(Sm) ∈ {1, 2, 3} denote an assignment of channel c to one of
the three sources contained in Sm. We then calculate the azimuth
and pitch likelihoods using,

p(Tm,Λm|Sm) =
∏

c

pc(τc,m, λc,m|θyc(Sm)), (3)

p(Xm|Sm) =
∏

c

pc(χc,m(γyc(Sm))|γyc(Sm)). (4)

Note that only voiced sources are allowed to contribute to the
pitch likelihood in Equation (4). When all sources are inactive, we
set p(Tm,Λm|Sm) and p(Xm|Sm) to 0.03 based on a validation set.
The channel-based likelihood functions, pc(τ, λ|θ) and pc(χ(γ)|γ),
are modeled using multi-layer perceptrons (MLPs). The MLP output
can be interpreted as a posterior probability, and assuming a uniform
prior over source states, is proportional to the likelihood. The data
and procedures used to train MLPs are described in Section 5.2.

4.2. State transition probabilities

We define the multisource state transition probabilities assuming in-
dependence between sources, or,

p(Sm|Sm−1) =
∏

k

p(θm,k, γm,k|θm−1,k, γm−1,k). (5)

We list individual state transition probabilities in Table 1 where
Pb and Pd are birth and death probabilities, respectively, f(θ|θ′) de-
notes the azimuth transition probability, g(γ|γ′) denotes the pitch
transition probability, Pv is the prior probability of a source be-
ing voiced, and Pvv and Puu are the voiced-voiced and unvoiced-
unvoiced transition probabilities, respectively. Pb, Pd, f(θ|θ′) and
p(θ) are related to source activity, source motion and listener move-
ments, whereas Pv , Pvv , Puu, g(γ|γ′) and p(γ) capture general
properties of speech. In the current study we do not consider source
movement and thus set f(θ|θ′) = 1 if θ = θ′ and f(θ|θ′) = 0
otherwise, and p(θ) = 1

|θ|−1
. Based on a small validation set we set

Pb = 0.01 and Pd = 0.03. Based on a small set of clean utterances
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from the TIMIT corpus [12], we set Pv = 0.71, Pvv = 0.97, Puu =
0.91. Following [11] we use a Laplacian distribution with mean 0.4
and standard deviation 2.4 for g(γ|γ′), and set p(γ) = 1

|γ|−1
. Fi-

nally, P∼b = 1−Pb, P∼d = 1−Pd, P∼v = 1−Pv , Pvu = 1−Pvv

and Puv = 1− Puu.

4.3. Data association

The data association stage has two main functions. First, by assign-
ing T-F units to a single source for each multisource state, identifying
a path through the multisource states across time allows us to gen-
erate a binary T-F mask for each source. Second, as state above, it
allows us to utilize single-source models in the observation likeli-
hoods (see Equations (3) and (4)). One of the simplest approaches to
data association for multitarget tracking is to assign measurements
based on the posterior probability that a given source generated the
measurement. For a given multisource state hypothesis, Sm, we let
pc(k|τc,m, λc,m, χc,m(γk)) denote the posterior probability that a
source with azimuth θk and pitch γk generated the monaural and
binaural observations calculated from T-F units uL

c,m and uR
c,m. We

then perform data association according to,

yc(Sm) = argmax
k∈{1,2,3}

[pc(k|τc,m, λc,m, χc,m(γk))] . (6)

We train a set of multi-layer perceptrons (MLPs) to model
pc(k|τc,m, λc,m, χc,m(γk)). For unvoiced states (i.e. θ �= ∅ and
γ = ∅), the models ignore the correlogram features and consider
only ITD and ILD. For voiced states (i.e. θ �= ∅ and γ �= ∅), the
models consider both monaural and binaural features. The data and
procedures used to train these models are described in Section 5.2.

4.4. Implementation details

As stated in Section 2, we incorporate pitch estimates generated by
the system proposed in [11] to limit the multisource state space. This
system generates up to two pitch estimates per frame. Each esti-
mated pitch can be assigned to any of the three possible sources such
that each set of pitch estimates yields up to six pitch configurations.
We run the pitch tracker on both left and right signals such that the
total number of pitch configurations is constrained to be less than or
equal to twelve. Any multisource state that does not contain one of
the identified pitch configurations is then ignored by the model. To
further reduce complexity, we also incorporate beam search where
the beam width is set to 500 states.

We use the Viterbi algorithm to determine the optimal path
through the multisource state space. As discussed in Section
4.3, segregation is naturally performed within the tracking sys-
tem through the data association process. However, one still must
identify which (if any) of the active sources contained in the selected
multisource states correspond to the target source. Resolving this
problem is highly application dependant and proposing a robust
solution is beyond the scope of the current study. For the evaluation
presented here we associate azimuth and pitch estimates with the
target source when the azimuth estimate is within a predetermined
bound around the known target azimuth. This essentially gives the
system a predetermined “look direction” with an error tolerance.
In the tests below we set the error tolerance to be 10◦ around the
known target direction (except for the test cases below when sources
are only 5◦ apart, where we require azimuth estimates to match the
target azimuth).

5. EVALUATION

5.1. Binaural simulation

For both the training and evaluation databases, we generate binaural
mixtures that simulate pickup of multiple speech sources in a rever-
berant space. In all cases we use the ROOMSIM package [13] to
generate binaural impulse responses (BIRs). Monaural speech sig-
nals are drawn from the TIMIT database [12] and passed through a
BIR for a specified angle and room condition. Room size, micro-
phone position and microphone orientation are selected randomly
and the reflection coefficients of wall surfaces are set to be equal
and to be the same across frequency. The dependent parameters for
each mixture are then: number of sources, source azimuths, source
distances and room reverberation time (T60).

5.2. Model training

To train the MLPs described in Sections 4.1 and 4.3, we generate a
set of 25 mixtures for each of the azimuths considered by the system.
The number of interfering talkers, interference azimuths, source dis-
tances and mixture T60 are selected randomly. For each training
mixture we extract features as described in Section 3. We also cal-
culate the IBM as proposed in [14] and generate the ground truth
pitch by running the pitch estimation method proposed in [15] on
the clean target signal.

The pitch-based MLPs, used in Equation (4), are trained on
the 4-dimensional correlogram features corresponding to the ground
truth pitch period of the target source, where the IBM is used to pro-
vide the ground truth classification label for each T-F unit. We pool
data across all azimuths and train a single MLP for each frequency
channel. The azimuth-based MLPs, used in Equation (3), are trained
on the ITD and ILD data, where again the IBM provides the classi-
fication label for each T-F unit. In this case we train a separate MLP
for each frequency channel and azimuth. Finally, one set of MLPs
for unvoiced speech and one set of MLPs for voiced speech are used
for data association, described in Section 4.3. MLPs for unvoiced
speech are the same as those used for the binaural likelihood. MLPs
for voiced speech are trained on the ITD, ILD and 4-dimensional
correlogram features corresponding to the ground truth pitch period
and again the IBM is used to provide the classification label.

For simplicity each MLP has the same network topology consist-
ing of a hidden layer with 30 nodes, and sigmoid transfer functions
for both hidden and output nodes. Training is accomplished using a
generalized Levenberg-Marquardt backpropagation algorithm.

5.3. Experimental design

We generate 25 binaural mixtures for 12 different evaluation condi-
tions. In all cases a target source is randomly selected from TIMIT
and placed at 0◦ azimuth. We generate a set of two-talker mixtures
where the interference source is placed at 5◦, 15◦, 30◦ or 45◦, and
where T60 is set to either 0.4 s or 0.6 s. We generate a set of three-
talker mixtures where interfering sources flank the target source at a
distance of 15◦ or 30◦, and where T60 is set to either 0.4 s or 0.6 s.
All sources are placed 2 m from the microphone array. Sources are
set to have equal power prior to spatialization.

We measure segregation performance in terms of change in
signal-to-noise ratio (ΔSNR) relative to the mixture signal, where
SNR is averaged across left and right signals. We compare to three
existing two-channel methods. The first is an idealized minimum
variance distortionless beamformer (MVDR) [1]. In our implemen-
tation we calculate covariance matrices from the clean target and
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Table 2. Avg. ΔSNR (in dB) for all systems and test conditions.

Two talkers Three talkers

T60 = 0.4 s 5◦ 15◦ 30◦ 45◦ 15◦ 30◦

IBM 9.5 9.6 10 11.3 8.3 8.4

Ideal MVDR 3.5 4.8 7.0 7.6 3.8 4.5

Duong et al. 2.9 4.0 3.9 4.0 3.2 3.7

MESSL 1.7 6.1 9.0 9.9 4.9 6.5

Proposed 5.7 8.3 9.3 10.4 6.5 7.4

T60 = 0.6 s 5◦ 15◦ 30◦ 45◦ 15◦ 30◦

IBM 8.7 8.8 9.6 9.9 8.3 8.3

Ideal MVDR 3.2 4.2 4.9 5.3 3.5 4.0

Duong et al. 2.7 3.6 3.4 3.5 3.3 3.6

MESSL 2.8 5.7 7.0 7.9 5.0 6.2

Proposed 4.9 7.1 7.8 8.5 6.1 6.8

residual signals, and thus this method represents the upper bound
performance obtainable by a MVDR. We process 16 kHz mixture
signals (downsampled from 44.1 kHz) through a 256 channel linear
filterbank with a decimation factor of 64 samples. We also compare
our method to recent segregation methods presented in [3, 4]. These
methods assume the number of sources are known a priori and that
sources are spatially stationary.

5.4. Results

In Table 2 we show the average ΔSNR for the proposed and compar-
ison systems for each of the 12 evaluation conditions. We also show
the ΔSNR achieved by the IBM as a point of reference. As one
would expect, the ideal MVDR is able to achieve much larger SNR
gains for mixtures with two talkers that are well separated in space
because it is able to create a deeper null in the interference direction.
As reverberation increases, sources are spaced more closely or the
number of talkers is increased, the beamformer is less effective. The
Duong et al. system is an iterative implementation of the multichan-
nel Wiener filter [4]. This approach has the potential to yield larger
SNR gains due to the combination of a beamformer and post-filter,
but the system does not perform well on our evaluation set because it
is unable to effectively resolve the across-frequency permutation am-
biguity with such a large distance between microphones (roughly 18
cm). The MESSL system, proposed in [3], clearly outperforms the
other comparison methods and is capable of achieving large gains
in SNR when sources are well separated in space. This is notable
particularly because MESSL requires very little prior training and is
still capable of handling substantial spatial aliasing.

We can see that the proposed system outperforms the compari-
son methods in all conditions. The improvement is largest in cases
where sources are not spaced sufficiently far apart given the rever-
beration time and thus considering pitch and azimuth together allows
one to more robustly detect, localize and therefore segregate sources.
The benefit of the pitch information is most pronounced in lower
frequency channels where, because wavelengths are larger than the
microphone distance, spatial information is a weak grouping cue.

6. CONCLUDING REMARKS

The evaluation results show that the proposed system is capable of
improving speech segregation relative to existing binaural systems.

Improvement is due to jointly considering pitch and azimuth for seg-
regation. As one might expect, improvements are largest in condi-
tions with long reverberation times or with closely spaced sources.

The improvement of the proposed system relative to the compar-
ison methods of [3,4] is particularly notable given that these methods
both assume the number of sources is known, while sources are de-
tected by the proposed method. Further, while [3, 4] assume sources
are spatially stationary, it is possible to extend the proposed method
to deal with moving sources by including a motion model.
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