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ABSTRACT

In this work we describe methods for using the directionality of
sound energy as a criterion to estimate single- and multichannel lin-
ear filters for suppression of diffuse noise and reverberation in a hear-
ing aid application. We compare conservative strategies where direc-
tion of arrival is unknown, and more aggressive strategies where the
proposed methods can be used to derive a fast acting post-filter for
the output of a beamformer. We show that in situations where a target
of interest is near to the listener while interfering sources are more
distant, simple features that capture the directionality of sound en-
ergy can be used to attenuate significant undesired signal energy and
can be more effective than a strategy based on noise-floor tracking.

Index Terms— Directional sound, multichannel speech en-
hancement, hearing aids

1. INTRODUCTION

In complex acoustic environments, individuals with hearing impair-
ment may struggle to isolate speech content of interest due to inter-
fering sounds, background noise and reverberation. Speech segrega-
tion algorithms seek to improve the intelligibility of a desired speech
source by attenuating undesired signal energy [1]. A design choice
in any segregation algorithm is identifying a measurable and physi-
cally meaningful cue to help distinguish between signal energy that
should be retained and energy that should be attenuated.

In multichannel speech enhancement, direction of arrival (DOA)
is a powerful cue by which to segregate a desired signal. If the ap-
proximate DOA of the target signal is predetermined, procedures for
estimation of optimal real-valued [2] or complex [3] spatial filters
can be derived. In the absence of a predetermined DOA, tracking of
the spatial and spectral statistics of the target and noise sources can
be used to derive spatial filters [4]. However, using DOA may have
undesirable implications in dynamic environments when the relative
position of sound sources can change quickly (i.e. due to source or
head movements), or when a novel source of interest appears from
an unknown direction.

In this work we explore using inter-microphone features, inde-
pendent of DOA, to estimate the directionality of sound energy and
use this as a cue to estimate a real-valued gain function for noise
suppression. We characterize directionality by the level of the domi-
nant direct path component of any source relative to all other energy
contained in a mixture. We use a supervised learning approach to
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build an estimator of the directionality of sound and treat this as
an approximation of the input signal-to-noise ratio (SNR). We also
consider the case in which the DOA is assumed known and derive
a post-filter based on cues that measure the degree to which sound
energy is consistent with the given DOA.

The proposed techniques are related to existing methods that cal-
culate a noise suppression gain based on measures of signal coher-
ence [5, 6]. However, in this study we consider additional inter-
microphone features to characterize directionality and use a super-
vised learning method to combine multiple types of features as well
as features measured across multiple microphone pairs.

In the experiments performed we assume two behind-the-ear
(BTE) hearing aids, each with two omni-directional microphones.
We also assume ideal binaural exchange of the front microphone
signal from each hearing aid. We present results using measured
room-impulse responses (RIRs) recorded with two BTE hearing aids
mounted on a head and torso simulator (HATS) in a reverberant
room.

In the following section, we introduce the signal model that will
be used throughout the paper and briefly introduce two well-known
optimal linear filters for enhancement. In Section 3, we introduce
the proposed directionality analysis and the method used to approx-
imate the input SNR. In Section 4, we analyze the capacity of a
directionality-based strategy to drive the enhancement methods. We
conclude with a discussion of our results in Section 5.

2. BACKGROUND AND DEFINITIONS

2.1. Signal model

For a mixture of N point sources in a natural environment, we can
model the signal received at microphone m in an individual fre-
quency band as,

Ym = Hd
m,nSn︸ ︷︷ ︸
Xm,n

+Hr
m,nSn +

∑
l�=n

Hm,lSl︸ ︷︷ ︸
Vm,n

, (1)

where Sn denotes source signal n,Hm,n = Hd
m,n + Hr

m,n denotes
the transfer function from source n to microphonem, andHd

m,n and
Hr

m,n denote the direct and reflected components of Hm,n, respec-
tively. We letXm,n denote the target signal received by microphone
m and Vm,n denote the interference signal received by microphone
m. We then let Xn = [X1,n, ..., XM,n]T , Vn = [V1,n, ...VM,n]T ,
and Y = [Y1, ...YM ]T , whereM is the number of microphones.

We denote the target, interference and mixture covariances as
Φxx = E[XnXH

n ], Φvv = E[VnVH
n ], and Φyy = E[YYH ], respec-

tively, where H denotes conjugate transpose. Note that for clarity,
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we have dropped the explicit reference to source n and will continue
to do so when possible.

We denote the total power of the target and interference signals
received at the microphones as φxx and φvv, respectively. The in-
put SNR is then SNR = φxx

φvv
. We assume Φxx = φxxggH , where

g and φxx are calculated as the principal eigenvalue and eigenvec-
tor, respectively, of Φxx. In theory, g is a normalized version of
[Hd

1,n, ..., Hd
M,n]T . We also let Γvv = 1

φvv
Φvv denote the interfer-

ence coherence matrix, where φvv = tr (Φvv).

2.2. Enhancement methods

One enhancement approach is to build a single filter and apply it to
both front microphones of the hearing aids. The single filter strategy
has the advantage of preserving binaural cues for any sources that
are not severely attenuated [2] and can be considered a more con-
servative enhancement approach. In this case we use a parametrized
single-channel Wiener filter where the real-valued filter coefficient
at microphone m is,

Wm =
SNR

SNR+ β
, (2)

where β controls the overall level of attenuation by the filter.
The parametrized multichannel Wiener filter (PMWF) [7] is a

well-known multichannel strategy that can improve noise attenua-
tion, but requires the estimation of spatial statistics for the target and
interference signals and will distort the binaural cues of interfering
sources (although cue preserving implementations have been pro-
posed [8]). In this case, the multichannel linear filter coefficients
can be expressed as the combination of a minimum variance distor-
tionless beamformer (MVDR) and a post-filter,

Wm =

(
SNR

SNR+ β
(
gHΓ−1

vv g
)−1

)
︸ ︷︷ ︸

post−filter

Γ−1
vv ggHum

gHΓ−1
vv g︸ ︷︷ ︸

MV DR

, (3)

where um is a vector encoding the reference microphone m (e.g.
u1 = [1, 0, 0, 0]T ) and β is a parameter to control level of attenua-
tion by the post-filter.

3. SNR ESTIMATION

In this section we describe a procedure for estimating the input SNR
using features that seek to capture the level of directionality of sound
energy. The estimation procedure can be used with either Equation
(2) or (3). After time-frequency (T-F) analysis using a complex lin-
ear filterbank, we calculate the mixture covariance within each fre-
quency band using,

Φyy [k] = αΦyy[k − 1] + (1 − α)Y[k]Y[k]H , (4)

where α ∈ [0, 1] controls the recursive averaging and k indexes
time frames. Features are calculated from the mixture covariance in
individual T-F units, although for convenience, we omit the time and
frequency indices from our notation below.

3.1. Features to characterize directionality

A measure of the diffuseness of a sound field as calculated from a
microphone pair is described in [9]. With access to two BTE hear-
ing aids, due to the placement of the microphones and the effect of

the head, diffuseness can only be measured along the front/back axis.
Nevertheless, for certain DOAs using this feature may help to char-
acterize the directionality of sound energy. We measure diffuseness
using the microphone pairs at each hearing aid using Equation (2.43)
in [9]. We denote these features as ψl and ψr for the left and right
hearing aid, respectively.

Another well-known feature is the signal coherence [5, 6]. Di-
rectional sound energy will result in high coherence because two
microphone signals will be similar (up to some scaling and phase
shift), whereas diffuse energy will be less predictable between mi-
crophones. We calculate coherence between microphones m0 and
m1 from the mixture covariance, Φyy, using Equation (5). We mea-
sure binaural coherence from the two front microphones, denoted cb,
and also measure coherence locally at each hearing aid, denoted cl
and cr , respectively.

c =
|Φyy(m0, m1)|√

Φyy(m0, m0)
√

Φyy(m1, m1)
. (5)

We also observe that directional sound should be more likely to
produce coordinated inter-microphone phase and level differences.
With this in mind we measure the phase difference between micro-
phonesm0 andm1 using Equation (6) and the level difference using
Equation (7). We measure the binaural phase difference from the
front microphone pair, denoted τb, the binaural level difference, de-
noted λb, as well as the phase difference at each hearing aid, denoted
τl and τr, respectively.

τ = � Φyy(m0, m1) (6)

λ = 10 log10

(
Φyy(m0, m0)

Φyy(m1, m1)

)
(7)

Finally, in the case where the spatial statistics of the target and
interference are known (i.e. we have g and Γvv for Equation (3)),
we consider a set of features to capture the similarity between an
observed cue and the cues predicted by the known statistics. We
calculate the inter-microphone phase and level differences from the
look vector using Equations (6) and (7), where we replace Φyy with
ggH . We denote these values as τx

b , τx
l , τx

r , λx
f . Similarly, we

calculate phase and level differences from the interference coherence
matrix by replacing Φyy in Equations (6) and (7) with Γvv . We
denote these values as τv

b , τ v
l , τ v

r , λv
f .

We then calculate 8 similarity values between each cue pair:
s(τb, τ

x
b ), s(τb, τ

v
b ), s(τl, τ

x
l ), s(τl, τ

v
l ), s(τr, τ

x
r ), s(τr, τ

v
r ),

s(λb, λ
x
b ), and s(λb, λ

v
b ). We use a Gaussian weight to capture

similarity, s(a, b) = exp(−(a − b)2/2σ2). We calculate the
normalization factor, σ2, as the sample variance of the difference
between the cues (e.g. σ2 = Var(τb − τx

b )) using a set of train-
ing data (described in the following subsection). We calculate σ2

separately for each of the 8 pairs.

3.2. Estimation method

The feature sets described above are used as predictors for the rel-
ative level of directional sound energy. We then treat this as an ap-
proximation of the input SNR. This approximation should be rea-
sonable in cases where the source of interest has a strong direct path
component while interfering sound is primarily due to diffuse and
reverberant energy.

In this study, we use a multi-layer perceptron (MLP) as a generic
function approximation tool because, with the exception of coher-
ence, there is no straightforward relationship between feature values
and the relative level of the target signal. We use a feed-forward
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network in which all inputs (the selected set of feature values) are
connected to a set of hidden nodes with tangential sigmoid transfer
functions. The networks contain a single output node with a log-
sigmoid transfer function. For simplicity, we use 4 hidden nodes for
each feature provided to this system (i.e. a set of 4 features will be
trained with 16 hidden nodes). Network training is performed using
a gradient descent backpropagation algorithm.

We train the systems using a set of multi-talker babble mixtures
different from those used in testing, but where mixtures were gener-
ated similarly to the test set described in Section 4.1. In each case
there is a dominant target source and a set of interfering talkers. The
number of interferers was randomly selected to be 3, 5, 10 or 15.
Azimuth angles of all sources were randomly selected.

For the feature sets with unknown DOA, we consider the SNR of
the dominant source for each T-F unit as the ideal measure of direc-
tionality. In other words, we measure the SNR (using φxx and φvv)
from the perspective of each of the sources contained in the mixture
and calculate SNRdom = maxn(SNRn). We then train the MLPs us-
ing SNRdom

SNRdom+1
in order to have a bounded target value between 0 and

1. The output of the MLP, denoted R̂, can then be transformed to
an SNR estimate using, ŜNR = R̂

R̂−1
. As stated above, the assump-

tion is that in the case where a single, near-field source corrupted
by a number of distant and reverberant interfering sources, SNRdom
will be a good approximation of SNRn. For the case when the DOA
of the target source is known, training is more straightforward and
we use SNRn rather than SNRdom. In all cases, a separate MLP is
trained for each frequency channel.

We train function estimators using five feature sets: “coh”:
{cb, cl, cr}, “diff”: {ψl, ψr}, “imd”: {τb, τl, τr, λb}, “dir”: {τb, τl,
τr, λb, cb, cl, cr, ψl, ψr}, “dirdoa”: {s(τb, τ

x
b ), s(τb, τ

v
b ), s(τl, τ

x
l ),

s(τl, τ
v
l ), s(τr, τ

x
r ), s(τr, τ

v
r ), s(λb, λ

x
b ), s(λb, λ

v
b)}

4. EXPERIMENTAL RESULTS

In this section we describe two experiments to measure the noise
reduction capacity, using either Equation (2) or (3), of the differ-
ent feature sets. For the post-filter case, we show results assuming
known and fixed spatial configuration of the target and noise signals,
where the average spatial statistics of the target and noise signals,
g and Γvv , are calculated from the mixture with ideal specification
of noise-only frames. We generate the beamformer output assuming
exchange of only the front microphone signal, so for the left hearing
aid, we use the two local microphone signals and the front micro-
phone of the right aid. Similarly for the right hearing aid.

4.1. Setup and Test Database

We generate a database of 20 mixtures for 5 target azimuths (0◦,
45◦, 90◦, 135◦ and 180◦) and 3 input SNR conditions (0, 3 and 6
dB), where we use individual speech utterances for both target and
interfering signals. Speech signals were recorded monaurally in a
dry environment and consist of both male and female talkers.

We create a mixture by convolving a speech utterance with a RIR
recorded in a reverberant room with two BTE hearing aids placed on
a HATS. The room dimensions are 10.4 × 12.1 × 4.1 m and the
HATS was placed 5 m from the left-most wall and 4.8 m from the
rear-most wall. RIRs were measured at 8 angles (0◦, 45◦, 90◦,...,
315◦) at distances of 1 m and either 4 or 4.5 m (depending on the
distance available in the measurement setup). The reverberation time
(T60) of the room is 741 ms, as calculated using the method in [10]
from the left-front microphone measurement made at 0◦ and 1 m.

Table 1. ΔSIW-SNR (in dB) for 5 single filter and 3 post-filter meth-
ods, averaged over 60 mixtures (20 for each of 3 SNR conditions)
and both left and right ear signals.

Single Filter Post-filter
coh diff imd dir ste dirdoa ste lte

0◦ 4.7 4.2 4.2 4.9 4.4 3.0 1.7 1.4
45◦ 5.0 5.1 5.0 5.4 4.0 2.8 1.2 1.3
90◦ 5.1 3.2 4.4 5.1 4.1 3.1 1.6 1.6
135◦ 4.8 3.6 4.6 4.9 3.9 3.1 1.4 1.3
180◦ 4.9 3.4 3.7 4.6 4.2 3.3 1.8 1.3

Avg. 4.9 3.9 4.4 5.0 4.1 3.1 1.6 1.4

Each test mixture consists of 1 target talker placed at a selected
azimuth and at a distance of 1 m. A multi-talker babble is created
for the interference where azimuths are selected randomly (from the
8 possibilities) at either 4 or 4.5 m. In all cases we consider the
direct path signal of the predetermined target source as the desired
signal, and we treat the noise signal as the mixture after the desired
signal has been removed. We take the first 20 ms of each RIR to be
the direct-path component. The mixture SNR is set by balancing the
level of the target signal relative to the noise signal, averaged over
the two front microphones.

In all testing scenarios, signals are sampled at 20 kHz and passed
through a linear filterbank with 128 frequency channels. The filter-
bank output is decimated by a factor of 64 (hop size of ∼ 3 ms)
and a 256-sample Hamming window is used. We use a 20 ms time
constant to set α in Equation (4).

4.2. Enhancement results

We first measure the performance of 5 alternative methods that use
a single filter (Equation (2)). We measure performance using the
change in speech-intelligibility weighted SNR (ΔSIW-SNR) rela-
tive to the unprocessed signals [11]. To compare to the directional
methods, we use a system that estimates SNR by noise floor track-
ing, using the method proposed in [12]. We denote this system as
“ste” for short-term energy. We calculate the SNR in this case as
SNR =

φyy

φvv
− 1, where φyy is the low-pass filtered mixture energy,

calculated with a time constant of 20 ms, and we set any negative
SNR values to 0. The noise floor tracker uses a 500 ms time con-
stant.

On the left side of Table 1, we show ΔSIW-SNR using the 5
alternatives to derive a single filter. Results are averaged over 120
signals (2 for each of 20 mixtures in 3 input SNR conditions) and
shown for 5 azimuth angles, 0◦, 45◦, 90◦, 135◦ and 180◦ . The
final row of the table shows results averaged over azimuth. For each
system, β was selected to maximizeΔSIW-SNR.

We can see that in general, directionality provides an improve-
ment over the noise tracking approach. The feature set that includes
all directional cues achieved the best performance in all but 1 condi-
tion and achieved between 0.4 and 1.4 dB higher ΔSIW-SNR than
the “ste” system. The key difference between the directionality and
the noise floor tracking strategies is replacing the assumption of
spectral stationarity of the noise signal with the assumption that the
noise signal is (approximately) diffuse. This leads to a significant
difference in the character of the noise suppression achieved by the
different systems.

Among the directional cues, coherence proved the most pow-
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Fig. 1. Percentage of target attenuation versus noise attenuation as
the parameter β is varied for 3 post-filter methods.

erful and as the target sound was moved closer to the side of the
head, the coherence system improved. Further investigation showed
that this is due to improved estimates on the ipsilateral side, relative
to contralateral or binaural coherence. We found the combination
of all 3 coherence estimates to perform better than binaural coher-
ence or bilateral coherence measurements alone, which have been
previously used for noise suppression [5, 6]. The diffuseness cues
are reliable (again on the ipsilateral side) when the influence of the
head shadow is minimized and when the signal is not arriving from
a direction perpendicular to the array.

For a strategy that includes a spatial filter (i.e. using Equation
(3)), we compare the post-filter generated using the “dirdoa” system
to post-filters generated using the “ste” system and a common ap-
proach of using the long-term input SNR estimate captured by Φxx

and Φvv [4]. We denote this approach as “lte” for long-term energy
estimate. As stated above, Φxx and Φvv are calculated with ideal
knowledge of noise-only frames, so both the beamformer and the
long-term “lte” post-filter can be considered ideal.

We show the ΔSIW-SNR achieved by the 3 alternative post-
filters in the rightmost columns of Table 1. Results are measured
with reference to the output of the MVDR beamformer and again,
results are shown with the optimal β for each system. We can see that
the directional post-filter is able to achieve an average improvement
of about 1.5 dB relative to the energy-based alternatives. This is
due to achieving a high-quality estimate of the input SNR that varies
quickly over time, as opposed to an estimate the averages over a
large amount of data (as in the “lte” approach).

Figure 1 shows the percentage of target attenuation versus the
percentage of noise attenuation as β is varied. Percentages are the
amount of additional attenuation due to the post-filter. In this plot
we can see that, although not apparent in the ΔSIW-SNR numbers,
the “ste” system is able to achieve more noise attenuation for a fixed
amount of target attenuation relative to the “lte” system. This sug-
gests that, despite the common use of the “lte” approach, basing the
post-filter on locally derived SNR estimates rather than long-term
statistics can be advantageous. The “dirdoa” system further improves
the amount of noise reduction that is possible for a fixed amount of
target attenuation by incorporating awareness of the beam pattern.

5. CONCLUDING REMARKS

In this work we have proposed multichannel speech enhancement
methods based on directionality. We have shown that in a conserva-
tive processing design, where one may want to avoid a spatial filter,

estimating the directionality of sound energy independent of DOA
can be a reliable indicator of the relative level of near-field sources
in a reverberant space. This suggests that the proposed method, even
in the absence of a spatial filter, can be used to attenuate diffuse noise
and reverberation and enhance sources that are close to the listener.

In a design where a spatial filter can be robustly used to attenuate
noise energy, our results indicate that using directionality to drive an
accurate local estimate of the input SNR can be used to construct
a better post-filter than simply using the long-term statistics in the
PMWF formulation, as is commonly done.

Future work should consider non-linear smoothing and gain
functions that are common in single-channel methods to improve
SNR estimates. Alternative techniques to construct a post-filter with
known DOA should also be considered (e.g. [2]). The use of an
MLP was motivated by a desire to analyze the capacity of different
directional cues to detect directional energy, and the generalization
capacity of the proposed methods requires investigation.
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