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ABSTRACT
Localization of simultaneous sound sources in natural environments
with only two microphones is a challenging problem. Reverbera-
tion degrades performance of localization based exclusively on di-
rectional cues. We present an approach that integrates monaural and
binaural analysis to improve localization of multiple speech sources
in noisy and reverberant environments. Our approach incorporates
pitch-based monaural processing to perform simultaneous organi-
zation of voiced speech. We propose a probabilistic framework to
jointly perform localization and sequential organization using bin-
aural cues. We evaluate our system on multi-source speech mix-
tures in the presence of reverberation and diffuse noise and compare
it to two localization approaches that do not incorporate monaural
cues. Results indicate that our system can accurately localize multi-
ple sources in very challenging conditions.

Index Terms— Binaural sound localization, sequential organi-
zation, monaural grouping, computational auditory scene analysis

1. INTRODUCTION

Localization of one or more sound sources is fundamental to audi-
tory perception and signal processing strategies that seek to enhance
a source signal by spatial filtering. Numerous approaches have relied
on the cross-correlation framework [1, 2], but there are well known
limitations to these approaches in reverberant environments.

Inspired by human sound localization, systems have been de-
veloped that seek to localize sources with only two microphones
[3]. The approach proposed in [4], termed the “stencil” filter, per-
forms coincidence detection between left and right mixtures sig-
nals in individual frequency channels. Source azimuths are esti-
mated by integrating coincidence cues along azimuth-dependent pri-
mary traces, due to the interaural time difference (ITD) for that az-
imuth, and secondary traces, due to spatial aliasing present at fre-
quencies where the wavelengths of the signal are shorter than the
distance between microphones. The method proposed in [5] com-
putes a “skeleton” cross-correlogram of the mixture signal, a running
cross-correlation computed in individual frequency bands in which
cross-correlation peaks are replaced by Gaussian functions with nar-
rower width. The time-lag dimension is warped to azimuth using a
learned set of monotonic functions. Like the stencil filter, cues are
integrated across time and frequency into an azimuth response func-
tion where peaks can be selected as the underlying source angles.
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These systems are representative of approaches to binaural lo-
calization, which rely exclusively on directional cues. Performance
of these approaches degrades substantially in reverberant and noisy
conditions. To combat the effect of reverberation on localization
performance, the system proposed in [6] explicitly models ITD vari-
ability due to convolutive noise as a mixture of Gaussians within
an expectation-maximization framework to cluster time-frequency
(T-F) units with similar ITD cues. In [7, 8], monaural grouping is
suggested as a mechanism to increase robustness to reverberation.
Christensen et al. use pitch as a cue for the generation of contiguous
T-F regions, or segments. Cross-correlation cues are then integrated
over each segment to estimate the azimuth of the dominant source in
each time frame [7]. Our prior work analyzes the impact of monau-
ral grouping on localization and segregation of speech in reverberant
environments [8], showing the benefit of monaural grouping for lo-
calizing reverberant sources.

In this work we propose a probabilistic approach to binaural
localization of multiple sound sources that integrates monaural and
binaural analysis. Our proposed system achieves across frequency
grouping, or simultaneous organization, of voiced speech using
pitch-based monaural cues. This allows locally extracted, unreliable
binaural cues to be integrated within time-frequency regions called
simultaneous streams. Localization and sequential organization, or
grouping across time, of simultaneous streams are achieved jointly
within a maximum likelihood framework. In contrast to [7], our
approach utilizes both ITD and interaural level difference (ILD)
cues and integrates cues across disparate regions of time through
sequential organization.

In Section 2, we describe our approach to simultaneous organi-
zation, the methods used for generation of localization cues, and a
mechanism for weighting binaural cues based on their expected re-
liability. We present a maximum likelihood approach to localization
and sequential organization in Section 3. We evaluate our proposed
framework in terms of multiple sound source localization in rever-
berant and noisy conditions in Section 4 and provide concluding re-
marks in Section 5.

2. BACKGROUND

2.1. Simultaneous organization

Simultaneous organization in computational auditory scene analy-
sis (CASA) forms simultaneous streams, each of which may contain
disconnected T-F segments across a continuous time interval. We
use the tandem algorithm [9, 10] to generate simultaneous streams
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Fig. 1. (Color online) Example of simultaneous organization using
the tandem algorithm. Simultaneous streams corresponding to dif-
ferent pitch contours are shown with different colors.

for the summation of the left and right ear mixtures. The tandem
algorithm iteratively estimates a set of pitch contours and associ-
ated simultaneous streams. In a first pass, T-F segments that contain
voiced speech are identified using cross-channel correlation of cor-
relogram responses. Up to two pitch points per time frame are es-
timated by finding peaks in the summary correlogram created from
only the selected, voiced T-F segments. For each pitch point found,
T-F units that are consistent with that pitch are identified using a set
of trained multi-layer perceptrons (one for each frequency channel).
Pitch points and associated sets of T-F units are linked across time
to form pitch contours and simultaneous streams using a continuity
criterion that measures pitch deviation and spectral overlap. Pitch
contours and simultaneous streams are then iteratively refined until
convergence.

We focus on mixtures in reverberant environments, and find that
in this case the continuity criterion used in the tandem algorithm for
connecting pitch points and simultaneous streams across time is too
liberal. We find that performance improves if we break pitch con-
tours and simultaneous streams when the pitch deviation between
time frames is large. Specifically, let τ1 and τ2 be pitch periods from
the same contour in neighboring time frames. If | log2(τ1/τ2)| >
0.08, the contour and associated simultaneous streams are broken
into two contours and two simultaneous streams. The value of 0.08
was selected on the basis of informal analysis, and was not specif-
ically tuned for optimal performance on the data set discussed in
Section 4.

An example set of simultaneous streams is shown in Figure 1
for a mixture of two talkers in a reverberant environment with 0.4
sec. reverberation time (T60). There are a total of 27 simultaneous
streams shown, where each color corresponds to a separate simulta-
neous stream. One can see that simultaneous streams may contain
multiple segments across frequency but are continuous in time.

2.2. Localization cues

For each T-F unit, we calculate the ITD as the time delay that pro-
duces the maximum peak in the cross-correlogram, and ILD as the
energy ratio in dB between the left and right signals. We denote the
ITD and ILD of T-F unit uc,m as τc,m and λc,m, respectively, where
c and m index frequency channel and time frame, respectively. To
translate from ITD-ILD cues to azimuth-dependent cues, we train
a joint ITD-ILD likelihood function, Pc(τc,m, λc,m|φ), for each of
37 azimuth angles, indexed by φ, and 128 frequency channels with
center frequencies from 50 to 8000 Hz. The likelihood functions are
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Fig. 2. Examples of ITD-ILD likelihood functions for azimuth 25◦

at frequencies of 400 and 2500 Hz. Each example shows the log-
likelihood as a surface with projected contour plots that show cross
sections of the function at equally spaced intervals.

trained on ITDs and ILDs generated from single-source speech in
various simulated room environments using kernel density estima-
tion [11]. Our approach is adapted from the one proposed in [5].

The likelihood distributions capture the frequency dependent
pattern of ITDs and ILDs for a specific azimuth and the multi-
peak ambiguities due to spatial aliasing at higher frequencies. The
distributions also capture common deviations from the free-field
cues due to reverberation. We show two distributions in Figure 2
for azimuth 25◦. Note that, in addition to the above points, the
azimuth-dependent distributions capture the complementary nature
of localization cues [12] in that ITD provides more discrimination
between angles at lower frequencies (note the large ILD variation
in the 400 Hz example) and ILD provides more discrimination be-
tween angles at higher frequencies (note the large ITD variation in
the 2500 Hz example).

2.3. Cue weighting

In reverberant recordings, many T-F units will contain cues that dif-
fer significantly from free-field cues. Including a weighting func-
tion or cue selection mechanism that indicates when an azimuth cue
should be trusted can improve localization performance [13, 7]. Mo-
tivated by the precedence effect [14], we incorporate a simple cue
weighting mechanism that identifies strong onsets in the mixture sig-
nal. We generate a real-valued weight, wc,m, that measures the en-
ergy ratio between unit uc,m and uc,m−1.

We have found better performance by keeping only those
weights above a specified threshold. The difficulty with a fixed
threshold however, is that one may end up with a simultaneous
stream with no unit above the threshold. To avoid this we set a
threshold for each simultaneous stream so that the T-F units exceed-
ing the threshold retain 25% of the signal energy in the simultaneous
stream.

3. LOCALIZATION AND SEQUENTIAL ORGANIZATION

Once simultaneous streams have been formed and azimuth-dependent
cues have been generated, we localize the underlying source signals
and perform sequential organization. We take a probabilistic ap-
proach similar to the one presented for model-based sequential
organization in [15].

Let N be the number of sources in the mixture, and I be the
number of simultaneous streams formed using monaural analysis.
Denote the set of all possible azimuths as Φ and the set of simulta-
neous streams as S = {s1, s2, ..., sI}. Let Y be the set of all NI
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sequential organizations, or labelings, of the set S and y be a spe-
cific organization. We seek to maximize the joint probability of a set
of angles and a sequential organization given the observed data, D.
This can be expressed as,

φ̂0, . . . , φ̂N−1, ŷ = arg max
φ0,...,φN−1∈Φ,y∈Y

P (φ0, . . . , φN−1, y|D).

(1)
For simplicity, assume that N = 2 and denote the two angles as

φ0 and φ1 for target and interference signals, respectively. Assum-
ing that all angles and sequential organizations are equally likely we
have,

φ̂0, φ̂1, ŷ = arg max
φ0,φ1∈Φ,y∈Y

P (D|φ0, φ1, y). (2)

Now, let S0 be the set of simultaneous streams labeled as target
and S1 be the set of simultaneous streams labeled as interference by
the sequential organization y. Using ITD and ILD as the observed
data, and assuming independence between simultaneous streams and
T-F units of the same simultaneous stream, we can express Equation
(2) as,

φ̂0, φ̂1, ŷ = arg max
φ0,φ1∈Φ,y∈Y

(
∏

si∈S0

∏

uc,m∈si

Pc(τc,m, λc,m|φ0)·
∏

sj∈S1

∏

uc,m∈sj

Pc(τc,m, λc,m|φ1)). (3)

Due to the assumption of independence between simultaneous
streams, the above equation can be expressed as two separate equa-
tions using,

φ̂0, φ̂1 =

arg max
φ0,φ1∈Φ

(
I∑

i=1

max
k∈{0,1}

(
∑

uc,m∈si

wc,m log(Pc(τc,m, λc,m|φk)))),

(4)

ŷi = arg max
k∈{0,1}

(
∑

uc,m∈si

wc,m log(Pc(τc,m, λc,m|φk))). (5)

In Equations (4) and (5) we have also incorporated the cue
weighting parameter, wc,m. For the case with N > 2, use
k ∈ {0, . . . , N − 1} rather than k ∈ {0, 1} in both (4) and (5).
The complexity of the search space is I |Φ|N , which is reasonable
when the number of sources of interest is relatively small and the
size of the azimuth space is moderate. In our experiments in Section
4, |Φ| = 37 and N ≤ 3.

4. EVALUATION

4.1. Database

We use the ROOMSIM package [16] to generate impulse responses
that simulate binaural input at human ears. We generate a training
and a testing library of binaural impulse responses for direct sound
azimuth angles between −90◦ and 90◦ spaced by 5◦, and 5 rever-
beration conditions: T60 = 0, 0.2, 0.4, 0.6, 0.8 seconds. Numer-
ous room sizes, microphone positions, and source distances from the
microphones are represented in both training and testing impulse re-
sponse libraries. The ITD-ILD likelihood distributions are trained
using impulse responses drawn from the training library. For all
testing mixtures we select utterances from the TIMIT database at

Table 1. Average azimuth error (in ◦) in reverberant conditions
Two talkers

T60 (sec.) 0 0.2 0.4 0.6 0.8

Skeleton CC 0.31 2.18 12.62 19.1 23.6

Stencil 0.36 1.9 3.21 4.69 5.53

Proposed 0.63 0.86 1.26 2.54 3.91

Three talkers

T60 (sec.) 0 0.2 0.4 0.6 0.8

Skeleton CC 1.3 8.29 20.11 24.09 25.98

Stencil 1.82 4.69 8.7 11.48 13.68

Proposed 0.63 0.87 2.41 4.48 7.01

random and use impulse responses from the testing library. Mix-
ture lengths are set using the first randomly selected speech source,
where all subsequent speech sources are either truncated or concate-
nated with themselves to match the first source’s length.

Localization performance is evaluated on two and three-talker
mixtures in all 5 T60 times. Performance is also shown for one,
two and three-talker mixtures in the 0.4 sec. T60 condition with dif-
fuse noise added. Diffuse noise is generated by passing white noise
through a speech-shaped filter, where the left and right white noise
signals are uncorrelated. For each testing condition, 200 mixtures
are generated. For all mixtures, each speech source is set so that the
summation of the left and right signals has equal energy. In the cases
where diffuse noise is added, the level of the noise is set to achieve a
specific SNR, using the summation of left and right signals, relative
to one of the speech signals. For the one-talker mixtures with diffuse
noise, the SNR reflects the level of the speech signal as compared to
the noise. In the two and three-talker mixtures with diffuse noise, the
SNR reflects the level of an individual speech source as compared to
the other speech source(s) plus noise. Since each speech source is
mixed to have equal energy, SNR is the same for each speech source
taken individually. In the tests with diffuse noise, note that in the
two-talker conditions, 0 dB SNR is the condition in which no diffuse
noise is added, and in the three-talker conditions, -3 dB SNR is the
condition in which no diffuse noise is added.

4.2. Localization performance

We compare the proposed system to the stencil filter approach pro-
posed in [4] and the skeleton cross-correlogram approach proposed
in [5]. For comparison on the database described, some alterations
to the stencil filter method were necessary to account for the (some-
what) frequency-dependent nature of ITDs as detected by a binaural
system and the discrete azimuth space. Further, because angles are
assumed constant over the length of the mixture, azimuth responses
from the stencil filter were integrated over all time frames for added
accuracy and the N most prominent peaks were selected as the un-
derlying source angles.

The average azimuth error (in ◦) is shown for all three methods
as a function of T60 for two and three-talker mixtures in Table 1. We
denote the skeleton cross-correlogram method as ‘Skeleton CC’, and
the stencil filter method as ‘Stencil’. We can see that the proposed
approach estimates source angles within 5◦, on average, in all but
the three-talker case in 0.8 sec. T60. In moderate reverberation (0.2
- 0.6 sec. T60), the probability that the error was less than or equal
to 5◦ is over 0.97 for the two-talker mixtures and nearly 0.95 for the
three-talker mixtures using the proposed approach. Our approach is
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Table 2. Average azimuth error (in ◦) in diffuse noise, 0.4 sec. T60

One talker

SNR (dB) 6 0 -3 -6

Skeleton CC 11.98 19.8 25.83 30.85

Stencil 0.4 2.65 4.75 8.68

Proposed 0.95 2.43 4.38 7.9

Two talkers

SNR (dB) 0 -1.5 -3 -6

Skeleton CC 12.63 18.59 21.51 26.26

Stencil 3.21 6.71 8.64 15.36

Proposed 1.26 2.88 4.14 11.28

Three talkers

SNR (dB) -3 -4 -5 -6

Skeleton CC 20.11 20.72 22.95 24.57

Stencil 8.7 11.38 14.52 14.81

Proposed 2.41 4.71 6.68 9.82

more accurate than the existing approaches in all but the two-talker,
anechoic case, where all three methods achieve less than 1◦ average
azimuth error. On average, the proposed method improves localiza-
tion accuracy relative to the stencil filter approach by nearly 40% on
the two-talker mixtures and over 60% on the three-talker mixtures.

We show the localization performance on one, two and three-
talker mixtures in diffuse noise and 0.4 sec. T60 in Table 2. On av-
erage, the proposed method improves localization accuracy relative
to the stencil filter approach by 42% on the two-talker mixtures in
diffuse noise and 52% on the three-talker mixtures in diffuse noise.
The performance between the two approaches is comparable on the
one-talker mixtures. The localization error averaged less then 5◦ in
all conditions in which the SNR for the speech sources was higher
than -5 dB.

5. CONCLUDING REMARKS

We have presented a system for localization of multiple sound
sources in noisy and reverberant conditions. The proposed approach
utilizes monaural analysis to achieve simultaneous grouping, and
estimates source azimuths and sequential organization in a maxi-
mum likelihood framework. We have shown that the incorporation
of monaural grouping allows for robust localization in environments
with diffuse noise and considerable reverberation. The proposed
method outperforms two existing localization methods that exclu-
sively use binaural cues.

The primary advantage of the proposed system is that binaural
cues are not integrated over the entire mixture, as they are in the two
existing systems used for comparison. The combination of monaural
grouping and localization within the sequential organization frame-
work integrates binaural cues over a subset of the mixture in which
a single source is considered dominant. In this way, voiced speech
segregation and localization are jointly achieved.

The results are made even more encouraging by noting that
we do not utilize any unvoiced speech in the proposed framework.
While this may be advantageous in the diffuse noise case, our pro-
posed framework currently ignores much of the mixture. In general,
one could expect localization performance to improve through in-
clusion of unvoiced speech regions simply because of the larger

streams resulting from such inclusion.
Future work will need to allow for sources to change positions.

Although research on localization of moving sources has been little
[17], the assumption that sources remain stationary is a limitation of
the current approach. We plan to extend our probabilistic framework
to account for head movements and changes in source position.
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