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ABSTRACT 

 

Approaches to binaural and stereo speech segregation have 

often assumed that localization information can be used as a 

primary cue to achieve segregation of a target signal. 

Results produced by these systems degrade significantly in 

the presence of room reverberation. In this work, we present 

an alternative framework to achieve localization of groups 

of time-frequency units. We show that grouping across time 

and frequency allows the use of localization as an important 

cue for sequential grouping of time-frequency objects. We 

analyze the level of time-frequency grouping needed to 

achieve accurate object localization and show preliminary 

binaural segregation results using the proposed framework. 

Results indicate that both localization and segregation 

performance can be improved by grouping across time and 

frequency.   

 

Index Terms — Binaural sound localization, speech 

segregation, reverberation, computational auditory scene 

analysis. 

 

1. INTRODUCTION 

 

Humans frequently encounter situations in which they must 

attend to an individual’s speech in the presence of 

competing sound sources and room reverberation. Those 

with normal hearing are able to segregate a desired signal 

from the background noise and discern vital information 

regarding its content and location. Computational auditory 

scene analysis attempts to recreate this phenomenon in 

machines using known principles of human perception [16]. 

A system that can reliably isolate the content of an 

individual source signal embedded in competing signals 

would be of tremendous use in hearing prostheses and other 

speech processing applications.  

Much attention has been paid to the use of localization 

cues in multi-channel audio recordings. Beamforming 

attempts to improve SNR of a source using directional 

information [3, 8]. Other approaches perform a time-

frequency decomposition of the mixture signals and use 

between channel level and time delay differences in each 

time-frequency (T-F) unit to estimate an output signal that 

originates from a particular direction [8, 12, 14, 18]. These 

systems use localization information as a primary cue to 

achieve source segregation, and show rapid performance 

degradation as reverberation is added to the recordings. 

Darwin has suggested that it is unlikely that the 

auditory system uses spatial information as a primary means 

of attending to individual sources, as individual localization 

cues are highly unreliable in reverberant environments [6]. 

He argues that much of the psychophysical evidence 

supports an alternative framework in which sound source 

localization may be a product of source segregation, rather 

than a primary cue used to achieve it. In this account, 

monaural cues (e.g. harmonicity, common onsets, common 

amplitude and frequency modulation) are used by the 

auditory system to form auditory objects, or groups of T-F 

units. The auditory system can then localize these objects to 

create auditory space and as one major mechanism for 

sequentially grouping objects into a single auditory stream.   

In this work, we explore a computational framework for 

binaural speech segregation in reverberant environments. 

The proposed ideas represent a significant departure from 

the way source location has been utilized within a binaural 

segregation system. We argue that using monaural cues to 

perform initial T-F grouping will allow for more robust 

localization of these T-F groups, enabling a system to use 

the spatial information regarding the T-F groups as a means 

for sequential organization.  

We first provide background details in Section 2. 

Section 3 outlines the methods used for localization of T-F 

groups and discusses the levels of T-F grouping explored in 

this study. Section 4 presents localization performance and 

binaural segregation results at different levels of T-F 

grouping. We conclude with a discussion of our preliminary 

findings and outline directions of future research. 

 

2. BACKGROUND  

 

In this study we use the ROOMSIM package [5] to generate 

impulse responses that simulate binaural input at human 

2205978-1-4244-2354-5/09/$25.00 ©2009 IEEE ICASSP 2009



ears. We generate a library of left and right ear impulse 

responses for direct sound azimuth angles between 0° and 

90° (spaced by 5°) and reverberation times between 0 and 

1.6 seconds. In all tests we use monaural speech signals 

drawn from the TIMIT database, pass the signals through a 

left and right impulse response for a desired azimuth angle 

and room reverberation time, and sum the resulting signals 

in the case of multi-source mixtures.   

We pass the mixture signals through a gammatone filter 

bank with center frequencies spaced according to the ERB 

scale [12]. Each auditory filter is then processed using a 

model of neural transduction as described in [2]. 

The two primary cues used in localization of sound 

sources in the free field are interaural time difference (ITD) 

and interaural level difference (ILD) [1]. ITD is calculated 

as the time delay that produces a maximum in the 

normalized running cross-correlation between the left and 

right mixture signals. ILD corresponds to the energy ratio in 

dB between the two signals at each time instance. We 

calculate ITD and ILD for each sample and frequency 

channel as described in [8].   

3. LOCALIZATION OF TIME-FREQUENCY 

GROUPS 

As discussed in the introduction, reverberation hinders the 

direct use of ITD and ILD as a primary means of source 

segregation. Our proposed computational framework uses 

localization cues in a fundamentally different way. This 

framework requires that groups of T-F units be formed 

using monaural cues in the mixture signals. Once formed, 

individual localization cues may be pooled over the entire 

region, providing more accurate localization judgments. 

3.1. Time-frequency grouping 

Time-frequency grouping refers to the process of joining T-

F units together that are thought to primarily contain energy 

from a single source. Grouping is performed in order to pool 

data across time and/or frequency, allowing for more 

reliable labeling (target/interference) decisions. Numerous 

authors have examined methods of time-frequency grouping 

using monaurally available cues in both anechoic and 

reverberant environments [4, 9, 10]. Since it is outside the 

scope of this study to propose mechanisms for monaural 

grouping of T-F units, we assume groupings of T-F units 

can be formed using cues unrelated to localization. For all of 

the simulations discussed below, we make use of the ideal 

binary mask (IBM) [15] as a mechanism for grouping T-F 

units generated by the same source signal. The IBM is a 

binary labeling of a mixture’s time-frequency 

decomposition where pre-mixing signals are used to 

measure whether each T-F unit is target dominant (labeled 

1) or interference dominant (labeled 0). 

In the development of a system with the proposed 

framework, some fundamental questions arise. First, should  

 

 
 

 
 

Fig. 1. Illustration of the formation of T-F objects. (top left) 

Cochleagram of target signal. (top right) Cochleagram of 

interference signal. (bottom left) Ideal binary mask for 

target signal where 1 is white and 0 is black.  (bottom right) 

Simultaneous streams created with IBM and manual 

labeling of syllable boundaries.  

 

grouping be performed across both time and frequency? 

How much grouping is necessary if one hopes to accurately 

localize the objects formed? How should one pool the 

individual within-object cues to form a reliable judgment of 

source location? 

To analyze these questions we perform object 

localization at several time-frequency grouping levels. As a 

baseline for comparison, we estimate a source signal’s 

azimuth in each individual T-F unit. Second, we group T-F 

units across time into T-segments [9], or contiguous regions 

of time dominated by one source signal. Third, we group 

units dominated by one source across time and frequency 

into contiguous T-F segments. Finally, we create 

simultaneous streams, or (not necessarily contiguous) 

groups of T-F units dominated by the same syllable in a 

given speaker’s utterance. In all experiments presented here, 

we make use of the IBM and manually labeled syllable 

boundaries to form the T-F groups described. Figure 1 

shows the time-frequency decomposition of two utterances, 

the IBM formed from a 0 dB mixture pair and the 

simultaneous stream T-F groups.  

The different grouping levels correspond to different 

amounts of assumed monaural grouping. At the T-F unit 

level, monaural cues are not utilized at all and localization is 

responsible for all T-F grouping. At the simultaneous stream 

level, it is assumed that monaural cues are able to perform 

substantial simultaneous grouping and localization provides 

primarily sequential grouping information. 

 

3.2. Azimuth estimation methods 

 

At each level of grouping, we perform localization using 

three different methods. All methods involve calibration 

where we pass white noise through the anechoic impulse  
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Fig. 2. Average azimuth estimation error at four T-F 

grouping levels: T-F unit, T-Segment, Segment and 

Simultaneous Stream. 

 

responses of angles 0° through 90°, and measure the 

resulting ITDs and ILDs in all frequency channels. Using 

the measured data, we calculate two functions. First, we use 

Kernel density estimation [13] to calculate a likelihood 

function, pc(xc| ) for each angle , and frequency channel c. 

Here, xc denotes an ITD-ILD pair for the specified 

frequency channel. Each density function is most responsive 

to the ITD-ILD pair that would be measured from a single 

source at a given angle in anechoic conditions, and decays 

away from that ITD-ILD pair. From the joint ITD-ILD 

densities, we create a univariate likelihood function for ITD 

only by marginalizing the ILD dimension.  We denote this 

by pc( c| ), where c is an ITD value measured in frequency 

channel c. Using these calibration schemes, the three 

azimuth estimation methods explored are as follows: 

 

Method 1: 

  

) 
 = argmax pc xc |( )  

Method 2: 

  

) 
 = argmax pc c |( )  

Method 3: Method 2 below 1500 Hz, and Method 1 at or 

above 1500 Hz 

 

The 1500 Hz cutoff is used in Method 3 because it is 

roughly the frequency at which phase difference information 

between left and right signals cannot be uniquely decoded 

into interaural time difference. 

To estimate an angle for an entire T-F group, we take 

the sum of the log-likelihood values produced by each 

measured ITD or ITD-ILD pair and classify the entire T-F 

group as the angle that produces the maximum value. This 

approach inherently assumes that ITD and ILD 

measurements are independent when conditioned on a 

source’s azimuth angle.   

 

3.3. Localization results 

 

We use the methods described above to estimate the 

azimuth angle of the source that was dominant in each T-F 

unit, T-segment, segment or simultaneous stream. Figure 2 

shows the average localization error for the best performing 

localization method (Method 3) at each of the grouping 

levels. We can see that each stage of T-F grouping allows 

for more accurate localization judgments at all reverberation 

times. A decrease of 13° is seen between T-F unit 

localization and simultaneous stream localization in the 

most reverberant conditions. In all cases, Method 3 

localization performed best, suggesting that ILD is not as 

reliable for lower frequency channels.  This finding is 

consistent with human sound localization [1]. 

  

4. SEQUENTIAL ORGANIZATION USING 

LOCALIZATION 

 

As an illustration of sequential organization and 

segregation performance, we label the T-F groups of an 

example mixture using pooled localization data. We assume 

source positions are known and label each T-F group as 

target or interference using the likelihood functions 

generated for Method 3. We generate a label for T-F group i 

using, 

 

argmax
k

log pc (xc (n) | k( ) + log pc ( c (n) | k( )
i
low

i
high

 

 

 
 

 

 

 
 
   (1) 

 

where {c,n} i  denotes a set of frequency channels, c, 

and time samples, n, for T-F group, i, and k {0,1}  

indexes the target (1) and interference (0) sources. Since we 

are using Method 3, we break i into a set that contains high 

frequency channels and a set that contains low frequency 

channels. Many other labeling approaches are possible and 

will be explored in subsequent work. 

Figure 3 shows the output SNR of the segregated target 

signal at all four levels of T-F grouping, as well as the 

output SNR using the IBM. Note that the largest T-F group 

level, simultaneous streams, achieves the worst performance 

in reverberant conditions. This suggests that pooling all of 

the data within the entire stream does not necessarily create 

better decisions when many of the individual ITD and ILD 

measurements are unreliable. It is also important to note that 

at this level of grouping, a single wrong decision 

substantially degrades SNR performance. 

 

4.1. Cue Selection 

 

The results in the above example suggest that simple 

pooling of data throughout the T-F groups is not sufficient 

for good segregation performance.  Others have proposed 

cue selection mechanisms for localization of single or 

multiple source signals over entire utterances [7, 17].   

Faller and Merimaa propose that interaural coherence 

(IC), the value of the ITD peak in the normalized cross-

correlation function is a good indicator of ITD and ILD 

reliability. In our proposed framework, selecting only those 

ITD-ILD samples in which the IC value is high (close to 1) 

may improve the labeling of large T-F groups. 
 

2207



 
 

Fig. 3. SNR output for four T-F grouping levels and IBM. 
 

 
 

Fig. 4. SNR output for T-F unit level, simultaneous stream 

level including interaural coherence and IBM. 

 

In Figure 4, we now show the segregation results of 

simultaneous streams grouping where within each T-F 

group, we select the most coherent samples such that the 

remaining signal power in the T-F group is 25% of the 

power in the whole group.  In this case, IC disregards cues 

that were impairing labeling decisions, and segregation 

performance improves in highly reverberant conditions. 

 

5. DISCUSSION 

 

We have presented a new computational framework for 

binaural segregation of speech in reverberant environments. 

This approach follows findings in psychophysical 

experiments suggesting that source localization is a product 

of monaural grouping rather than a primary cue used to 

achieve segregation. We illustrate that if monaural cues can 

be used to form T-F objects, the resulting objects can be 

accurately localized and these judgments can be used as a 

means of sequentially grouping objects into a cohesive 

auditory stream. We have shown that simple pooling of all 

ITD and ILD data within T-F produces more accurate 

localization, but that with large T-F groups, single wrong 

decisions result in poor SNR performance. The 

incorporation of cue selection based on interaural coherence 

improved segregation results, but one aspect of future work 

will be to develop a more reliable selection mechanism. 

Numerous challenges remain in the creation of a full-

fledged system that operates within the proposed 

framework. Although researchers have made progress on 

monaural grouping of T-F units in reverberant environments 

[4, 11], this remains a challenging problem that was not 

addressed in this study.  
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