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ABSTRACT

Traditional speech separation systems enhance the magni-
tude response of noisy speech. Recent studies, however,
have shown that perceptual speech quality is significantly im-
proved when magnitude and phase are both enhanced. These
studies, however, have not determined if phase enhancement
is beneficial in environments that contain reverberation as
well as noise. In this paper, we present an approach that
jointly enhances the magnitude and phase of reverberant and
noisy speech. We use a deep neural network to estimate the
real and imaginary components of the complex ideal ratio
mask (cIRM), which results in clean and anechoic speech
when applied to a reverberant-noisy mixture. Our results
show that phase is important for dereverberation, and that
complex ratio masking outperforms related methods.

Index Terms— Deep neural networks, speech separation,
speech quality, complex ideal ratio mask, dereverberation

1. INTRODUCTION

Reverberation adversely affects perceptual speech quality
and intelligibility, because sound reflections smear speech
structure across time and frequency. This presents challenges
for many applications, such as, automatic speech recognition
(ASR) [1], speaker identification [2], and hearing aid design.
Reverberation is also debilitating for individuals with hearing
impairments [3, 4].

Many techniques have been proposed for speech derever-
beration. In [5], Weninger et al. perform dereverberation with
a deep bi-directional Long Short-Term Memory (LSTM) re-
current neural network. They use this network to estimate
the log mel-spectral magnitudes of clean speech from the log
mel-spectral magnitudes of reverberant speech. Han er al
learn a spectral mapping to clean spectral magnitudes, using
a deep neural network (DNN) [6]. Other spectral-magnitude
based approaches employ inverse filtering [7] or non-negative
matrix factorization (NMF) [8].

The above approaches address the magnitude response of
reverberant speech. A study by Paliwal ef al., however, shows
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that the phase response is important for improving the percep-
tual quality of noisy speech [9]. Different phase enhancement
approaches are discussed in [10, 11, 12]. Phase enhancement
only addresses the phase response, so separate enhancement
of the magnitude response is needed. Our recent approach es-
timates the complex ideal ratio mask (cIRM), which jointly
enhances the magnitude and phase of noisy speech [13]. It
has been shown to perform very well in various noisy environ-
ments, and it substantially outperforms related methods. The
benefit of complex ratio masking is that anechoic speech re-
sults when the ideal mask is applied. Complex ratio masking,
however, has not be investigated in environments that contain
reverberation.

Although many approaches have been proposed for dere-
verberation, their performance is limited since they cannot
fully reconstruct anechoic speech. Additionally, reverbera-
tion and noise are both present in real-world environments,
which compounds an already challenging situation. In fact,
it has been shown that the speech intelligibility for normal
hearing and hearing impaired listeners is worsened under this
condition [14, 15].

In this paper, we propose to use the cIRM for speech dere-
verberation and denoising. Features are extracted from rever-
berant and noisy speech, where these features are supplied to
a DNN for cIRM estimation. More specifically, the DNN is
trained to jointly estimate the real and imaginary components
of the cIRM. The definition of the cIRM is modified to deal
with reverberant and noisy spectra. The desired output is the
anechoic speech spectra.

The rest of this paper is organized as follows. Section 2
discusses the relation to prior work. A detailed description
of our approach is given in Section 3. The experiments and
results are given in Section 4. Finally, a conclusion is given
in Section 5.

2. RELATION TO PRIOR WORK
The work presented here focuses on speech dereverbera-

tion and denoising in the complex domain. Previous studies
on this topic perform dereverberation and denoising in the
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spectral-magnitude domain [5, 6]. Although complex do-
main dereverberation is presented in [16, 17], their approach
is unsupervised and does not handle background noise. It
also is an utterance based approach that repeatedly processes
the entire test signal. Our approach on the other hand, only
requires small time segments.

3. ALGORITHM DESCRIPTION

Our algorithm uses a deep neural network to spectrally map
features extracted from reverberant and noisy speech to the
cIRM. This section begins by describing the cIRM. We then
describe the feature extraction process and give details about
the DNN.

3.1. Complex Ideal Ratio Mask (cIRM)

The complex ideal ratio mask is generated from reverberant
(and noisy) speech and the direct (anechoic) speech signal.
It is defined so that the product of the cIRM and reverberant
observation results in direct speech. This occurs in the time-
frequency (T-F) domain, so T-F representations for the rever-
berant observation and direct speech are needed. Given the
short-time Fourier transform (STFT) of reverberant speech,
Y (t, f), and the cIRM, M (¢, f), direct speech, D(t, f), is
computed as follows:

D(t, f) = M(t, f) * Y (¢, f) (M

where ¢ and f index time and frequency, respectively. Since
the STFT is complex, ‘*’ indicates complex multiplication.
From Eq. (1), it is clear that the cIRM is computed by divid-
ing the STFT of direct speech, with the STFT of reverberant
speech:
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The exact calculation at each T-F unit is shown after expand-
ing Y (¢, f) and D(¢, f) into their complex representations,
where subscripts r and ¢ indicate the real and imaginary com-
ponents, respectively.

The cIRM can also be written in polar form, as shown
below:
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where ¢q4 and ¢, are the phases of the direct speech and re-
verberant observation, respectively. This equation shows that
the cIRM is based on the magnitude and phase, indicating that
magnitude and phase are both enhanced when it is applied.
The real and imaginary components of the cIRM, M, and
M;, may have large values in the range (—oo, c0). This may
be problematic for supervised learning with deep neural net-
works. To alleviate this problem, we compress the compo-
nents of the cIRM using the following hyperbolic tangent.

, 1 — o= C-Ma(t,f)
Mt 5) = Qe @

where x € {r, i}, denoting the real or imaginary component.
M is the compressed cIRM. After compression, the complex
components are within [—Q, Q]. C controls the steepness of
the hyperbolic tangent.

3.2. Feature Extraction

A complementary feature set is computed from the reverber-
ant (and noisy) signal [18]. This set includes amplitude mod-
ulation spectrogram (AMS), relative spectral transform and
perceptual linear prediction (RASTA-PLP), mel-frequency
cepstral coefficients (MFCC), as well as their deltas. Gam-
matone filterbank energies and their deltas are also appended
to the feature vector. The features are computed for each time
frame of the signal. A variant of this feature set has been
shown to be effective for speech separation [19], and they
work well for cIRM estimation in noisy speech [13].

We use temporal dynamics to capture the correlations be-
tween adjacent frames of the feature set, F'. Specifically, we
join adjacent frames into a single feature vector. The aug-
mented feature vector, ﬁ‘, centered at the ¢t time frame is as
follows:

F(t) = Ft+plt 6

[F(t—p),...,F(t),...

where p denotes the number of adjacent frames to include
on each side. The augmented feature set is then normal-
ized to have zero mean and unit variance. After normaliza-
tion, auto-regressive moving average (ARMA) filtering is per-
formed [20].

3.3. cIRM Estimation

We use a deep neural network to estimate the cIRM. The DNN
is trained to spectrally map the reverberant (and noisy) fea-
tures to the cIRM. Figure 1 shows the network structure of
the DNN.

The DNN is trained to map a single frame of the aug-
mented feature vector to a single frame of the cIRM (real and
imaginary). This is accomplished with a four layer DNN,
where each of the hidden layers has 1024 units. Rectified
linear activation functions are used in the hidden layer. Two
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cIRM: Real cIRM: Imaginary

Reverberant Features

Fig. 1. (Color Online). DNN network structure for cIRM
estimation.

separate sub-output layers are used for the real and imagi-
nary components of the cIRM, respectively. Linear activation
functions are used in the output layer. The DNN is trained
using the standard back propagation algorithm with mean-
square error cost function
1 . ) s /
W Z Z[(Mr(ta f)er(ta f))2+(M1 (ta f)fMl (ta f))z]
tof
s Ny (6)

where M,.(t, ) and M, (t, f) are the estimated real and imag-
inary components that are generated by the DNN. [V is the
number of time frames for the input.

The DNN estimates compressed values for the real and
imaginary components of the cIRM (see Eq. 4). During test-
ing, these values are uncompressed using the following:

Q— M,

Mz:_ilog( ~

o ) (N
where M,, is an estimate of the uncompressed component (i.e.
M, or M;). The uncompressed estimates are then used to
extract an estimate of the direct or anechoic speech.

4. EXPERIMENTS

Three different experiments are conducted to evaluate the
performance of our proposed approach. For each exper-
iment, our proposed approach is compared to ideal ratio
mask (IRM) estimation (denoted as RM) [19], phase sensi-
tive mask (PSM) estimation [21], and direct estimation of
spectral magnitudes (DSM) [6]. The IRM is a magnitude
domain approach, whereas PSM incorporates magnitude and

phase information. The PSM is equivalent to the real com-
ponent of the cIRM. DNNs are trained to estimate these
targets, where the basic DNN configuration (features and
network structure) match that described in Sections 3.2 and
3.3. Only the DNN for DSM uses different input features
(i.e. log spectral-magnitudes), since we found that this works
best. We also compare to weighted error prediction (WPE),
which also operates in the complex domain [16, 17]. Note
that PSM estimation has not been previously evaluated for
dereverberation.

The STFTs for each approach are computed by divding
a signal into 32ms time frames with 75% overlap between
adjacent frames. The fast Fourier transform (FFT) is then
computed within each time frame using a 512-point FFT. The
sampling rate for all test signals is 16 kHz. For feature aug-
mentation, it is empirically determined that p be set to 2. Sim-
ilarly, we set ) to 1 and C' to 0.5 for cIRM compression.

The perceptual evaluation of speech quality (PESQ) [22]
and the frequency-weighted segmental signal-to-noise ratio
(SNRf,,) [23] are used to evaluate performance.

4.1. Experiment 1: One room and one speaker

We first evaluate dereverberation performance using simu-
lated room impulse responses (RIRs), where the simulated
RIRs are generated using the imaging method [24]. RIRs are
generated by placing a target speaker and microphone in ran-
dom positions throughout a simulated room of size 9 x 8 x
7m. The distance between the speaker and microphone is
fixed at Im. Eleven RIRs are generated at Tggs (the time
taken for a direct sound to attenuate by 60 dB) of 0.3, 0.6,
and 0.9 seconds, resulting in 33 RIRs. During training, 30 of
the RIRs (10 for each Tgg) are convolved with 500 utterances
from the IEEE corpus [25]. These utterances are spoken by a
single male speaker. During testing, 100 different utterances
are convolved with the remaining 3 RIRs, resulting in 300 test
signals.

The average PESQ and SNRy,, results at each Tgy are
shown in Table 1, where the best performing systems are
shown in bold. In terms of PESQ, at each Tgy cRM clearly
outperforms DSM and RM, whereas its performance is iden-
tical to PSM. At Tgps of 0.6 and 0.9s, cRM noticeably outper-
forms WPE. In terms of SNR¢,,, cRM outperforms all other
approaches, except for RM at 0.3 and 0.6.

Table 1. Average PESQ and SNR,, scores for experiment 1.

PESQ SNRf+,
03 06 09| 03 0.6 0.9
Mixture | 3.67 2.82 2.53|15.75 10.63 8.71
DSM |3.57 3.15 2.88|13.23 11.43 10.19
RM [3.85 322 290]|16.64 1285 11.02
cRM |391 3.33 3.00|16.54 12.70 11.07
PSM |3.90 3.33 3.00 | 1580 12.21 10.70
WPE |391 3.10 2.70|15.74 12.43 10.15
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Table 2. Average PESQ and SNR f,,, scores for experiment 2.
PESQ SNR ¢+,

03 06 09| 03 0.6 0.9

Mixture | 3.54 2.30 2.60 | 18.16 8.31 8.94
DSM |3.33 239 257|11.24 7.70 8.49
RM 373 262 2.89|17.54 990 9.98
cRM |3.86 2.78 3.02|17.63 10.35 10.07
PSM |3.86 2.75 3.01|17.73 10.32 9.99
WPE |3.85 247 2.86|1835 9.03 9.66

Table 3. Average PESQ and SNR,, scores for experiment 3.
PESQ SNR;,,
SSN Factory | SSN  Factory

Mixture | 1.93  1.69 |3.45 3.16
DSM |[219 2.08 |7.29 6.05

RM 225 226 |562 6.38
cRM |247 239 |7.15 6.04
PSM |238 233 641 6.21
WPE (193 171 |349 335

4.2. Experiment 2: Three rooms and many speakers

In this section, dereverberation performance is evaluated
using utterances from many speakers and multiple rooms.
Specifically, simulated RIRs are generated in three different
rooms. The first room has dimensions of 9 x 8 x 7m, the
second room has dimensions of 6 x 6 X 10m, and the third
room’s dimensions are 8 x 10 x 4m. Our DNN in this case is
trained from RIRs generated in the first two rooms. Fifteen
RIRs are generated in each of these rooms using Tgos of 0.3,
0.6, and 0.9 seconds (5 per Tg). This results in 30 RIRs that
are used for training. These RIRs are convolved with 500
utterances from 50 different speakers (i.e. 10 utterances per
speaker) using the TIMIT corpus [26]. Of the 50 speakers,
35 are male and 15 are female. During testing, three unseen
RIRs are generated, one from each room (rooms 1, 2, and 3).
The RIR from room 1 has a Tgg of 0.3, the RIR from room
2 has a Tgg of 0.9, and the RIR from room 3 has a Tgg of
0.6. These three RIRs are convolved with 100 utterances that
are generated from 10 different speakers (10 utterances per
speaker), where 7 male and 3 female speakers are used. Thus,
this experiment tests on unseen RIRs, rooms, and speakers.

Table 2 shows the results for this experiment. The PESQ
performance is very much similar to the PESQ results from
Section 4.1, where cRM and PSM perform best. In terms of
SNR ¢, cRM performs best at Tggs of 0.6 and 0.9.

4.3. Experiment 3: One room, one speaker, and noise

This last experiment evaluates dereverberation and denois-
ing performance. A set of simulated RIRs are generated for
speech and noise, where the position of the speech and noise

are randomly placed on a 1m radius from a microphone in a
single room. This room has the same dimensions as in Experi-
ment 1. Eleven pairs of RIRs are generated at Tggs of 0.3, 0.6,
and 0.9s, resulting in 33 RIR pairs. Of these pairs, 30 (10 per
Tep) are used during training, while the other 3 (1 per Tg) are
used during testing. The same 500 training and 100 testing ut-
terances used in Experiment 1 are also used here. For noises,
speech-shaped noise (SSN) and factory noise are used. These
noises are approximately 4 minutes in length, where random
cuts from the first half of the signal are used for training and
random cuts from the later half of each signal are used dur-
ing testing. The utterances and random cuts of noise are each
convolved with the corresponding RIR from the pair of 30 for
training, and the remaining 3 for testing. The SNR is set to
0 dB, where SNR is the ratio of energy between reverberant
speech and reverberant noise.

The dereverberation and denoising results are shown in
Table 3, where the average PESQ and SNRy,, scores are
shown for each noise type. Our proposed approach, cRM,
outperforms all other approaches, in terms of PESQ, for both
noises.

5. CONCLUSIONS

We have proposed a deep learning approach for speech dere-
verberation and denoising. This approach enhances the mag-
nitude and phase of reverberant-noisy speech by operating in
the complex domain. This enables the complex ratio mask to
fully reconstruct anechoic speech. A deep neural network es-
timates the real and imaginary components of the cIRM. Our
results show that cIRM estimation consistently outperforms
directly estimating spectral magnitudes (i.e. DSM) and ratio
masking in the magnitude domain (i.e. RM). When simulta-
neously performing dereverberation and denoising, complex
ratio masking also outperforms WPE and PSM approaches.
It is also worth noting that the cIRM is capable of producing
maximum PESQ and SNRy,, scores. The challenge of esti-
mating the imaginary component of the cIRM, which is less
structured, likely causes PSM estimation to perform similarly,
suggesting room for further improvement.
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