
CROSS-DOMAIN DIFFUSION BASED SPEECH ENHANCEMENT FOR VERY NOISY SPEECH

Heming Wang1 and DeLiang Wang1,2

1Department of Computer Science and Engineering, The Ohio State University, USA
2Center for Cognitive and Brain Sciences, The Ohio State University, USA

wang.11401@osu.edu, dwang@cse.ohio-state.edu

ABSTRACT

Deep learning based speech enhancement has achieved remarkable
success, but challenges remain in low signal-to-noise ratio (SNR)
nonstationary noise scenarios. In this study, we propose to incor-
porate diffusion-based learning into an enhancement model and
improve robustness in extremely noisy conditions. Specifically, a
frequency-domain diffusion-based generative module is employed,
and it accepts the enhanced signal obtained from a time-domain
supervised enhancement module as an auxiliary input to learn to
recover clean speech spectrograms. Experimental results on the
TIMIT dataset demonstrate the advantage of this approach and show
better enhancement performance over other strong baselines in both
-5 and -10 dB SNR noisy conditions.

Index Terms— speech enhancement, diffusion model, genera-
tive model, low signal-to-noise ratio

1. INTRODUCTION

Speech signals in the real world are usually corrupted by background
noise, which degrades speech quality and intelligibility. Speech en-
hancement aims to suppress noise interference in such environments.
Conventional approaches to tackle this problem include signal pro-
cessing methods, like spectral subtraction [1], and computational au-
ditory scene analysis [2]. In recent years, major advances have been
made in speech enhancement thanks to the introduction of deep neu-
ral networks (DNNs). Early DNN studies use spectral magnitude
features as training targets, and train DNNs to predict the ideal bi-
nary mask [3], ideal ratio mask [4], and target magnitude spectrum
[5, 6]. Recent research addresses additionally phase enhancement
and attempts to recover clean speech in either the complex domain
[7] or the time domain [8]. It is well established that DNN-based su-
pervised enhancement performs well in less noisy conditions. How-
ever, it remains challenging to recover clean speech in very low
signal-to-noise ratios (SNRs) conditions, where enhancement mod-
els suffer from a significant performance drop.

In this paper, we address this challenge by proposing a joint
learning framework that performs cross-domain speech enhance-
ment. In order to improve robustness for extremely noisy speech,
we propose to enhance speech in a coarse-to-fine manner. Noisy
speech is first enhanced by supervised learning, and we then mask
the time-frequency (T-F) units in the complex spectrogram that are
highly noisy and have poor estimation. Afterwards we use a dif-
fusion model to regenerate the masked regions. Specifically, we
first adopt a time-domain network to provide the coarsely enhanced
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speech as auxiliary information, and then mask the enhanced speech
and feed it to a complex-domain diffusion-based generative model.

A related study by Hao et al. [9] proposed mask and inpainting
(M&I), a two-stage method that specifically masks the noisy part of
a degraded speech spectrogram, and uses an inpainting network to
reconstruct the magnitude spectrogram. Different from this method,
our proposed method performs end-to-end cross-domain enhance-
ment, and addresses both magnitude and phase estimation. Further-
more, we combine generative learning and enhancement learning
and gradually refine noisy speech, whereas M&I only performs mag-
nitude inpainting on the masked noisy spectrogram. Lastly, we in-
troduce a more powerful generation module that demonstrates better
performance than the adversarial network used in M&I.

We employ a denoising diffusion probabilistic model (DDPMs)
[10, 11, 12, 13], which was originally introduced for audio and im-
age generation and demonstrated to be effective for generating high-
quality samples. Diffusion-based generative models for audio gener-
ation have received considerable attention recently [14, 15, 16]. The
core idea of DDPM is to use a DNN to approximate a diffusion pro-
cess and progressively generate samples from a normal distribution.
Its theoretical details are described in Section 2.

2. BACKGROUND

Fig. 1(a) illustrates the overall process of DDPM. It contains two
processes: forward diffusion and reverse diffusion. During forward
diffusion, it gradually converts the given data into a normal distribu-
tion and then learns the reverse diffusion process to generate data in
the target domain from a whitened Gaussian noise. The forward dif-
fusion process is defined as the fixed Markov chain from the target
data x0 to the latent variable xT (a normal distribution) in T time
steps, formulated as,

q(x1, ..., xT |x0) =
∏

q(xt|xt−1). (1)

At each time step t ∈ [0, T ], a small Gaussian noise is added to xt−1

to obtain xt, i.e. q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), and the

process is parameterized by the noise schedule βt. The reverse diffu-
sion process is also a Markov chain starts from an isotropic Gaussian
xT , and a model that is parameterized by θ is employed to learn the
added Gaussian noise ϵ, defined as,

pθ(x0|x1, ..., xT ) =
∏

pθ(xt−1|xt), (2)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t), σθ(xt, t)
2I). (3)

In the transition probability pθ(xt−1|xt), µθ(xt, t) and σθ(xt, t)
are the model estimated mean and variance of xt−1. The goal of
pθ(xt−1|xt) is to eliminate the added Gaussian noise during theIC
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(a) Diffusion Process (b) Architecture

Fig. 1. (a). Diffusion process (b). The overall architecture of the proposed method.

diffusion process. Ho et al. [10] proposed to train the model by
maximizing its variational low bound, and they show that it can be
approximated by certain re-parameterization. They reported that op-
timizing the approximated objective function leads to high genera-
tion quality. With αt = 1 − βt, and ᾱt =

∏t
s=1 αs, the diffusion

training can defined as minimizing the following objective,

Et,x0,ϵ[||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t||22]. (4)

By optimizing Eq. 4, we can derive

µθ(xt, t) =
1√
αt

(xt −
βt√
1− ᾱt

ϵθ(xt, t)), (5)

σθ(xt, t) =

√
1− ᾱt−1

1− ᾱt
βt, (6)

and then progressively generate x0 from xT .

3. METHOD

We perform speech enhancement in extremely noisy conditions.
Specifically, we focus on monaural speech enhancement where we
have a noisy mixture y collected from a single microphone, which
consists of background noise n and clean speech s. The proposed
model f is used to generate an estimate ŝ to recover the target clean
speech s. It accepts as input the noisy speech and a mask M . The
mask M indicates the T-F units that contain effective speech infor-
mation and guides the model to regenerate the rest of the T-F units
that are dominated by noises. During training, the mask is manually
generated to improve the generalization capability of the diffusion
model. Details about the mask generation are further described in
Section 3.3. With the parameters of the model denoted as θ, the
training process can be formulated as,

sehc, ϵθ = f(θ, y, sᾱ,M), (7)

where sehc and ϵθ are the output of the enhancement module and
the diffusion module in f . For the diffusion training, as suggested
by Chen et al. [17], we use a continuous noise level ᾱ to gener-
ate the noise level embedding, which is sampled within adjacent
discrete noise levels

√
ᾱt−1 and

√
ᾱt. The diffused signal sᾱ =√

ᾱs+
√
1− ᾱϵ is employed as input of the diffusion module. Dur-

ing inference, we first use the reverse diffusion process to derive
sdiff , and convert outputs from both modules to the complex do-
main by applying short-time Fourier transforms (STFTs). The final

estimation is calculated by combining the two outputs with the mask
M , i.e.,

Ŝ = SehcM + Sdiff (1−M), (8)

where Ŝ, Sehc and Sdiff are the corresponding STFTs of ŝ, sehc

and sdiff . The estimated clean speech ŝ is obtained by converting Ŝ
back to the time domain using inverse STFT (iSTFT).

3.1. Proposed Architecture

As illustrated in Fig. 1(b), our network consists of two modules. The
first module is a time-domain enhancement module that performs su-
pervised learning and provides auxiliary information for the second
module. The second module is a diffusion-based generative module
that operates in the complex domain and is fed with a diffused noisy
speech. It also accepts the masked enhanced speech, a mask, and
a noise level embedding as additional input, and learns to estimate
added noise of the diffused signal.

3.1.1. Enhancement Module

We adopt the dual-path attention recurrent network (DPARN) [8] by
Pandey and Wang as the enhancement module, which is an improved
version of the popular dual-path recurrent neural network. In a dual-
path network, the time series of the given utterances is divided into
overlapping chunks, and then sequentially processed by intra-chunk
and inter-chunk RNNs. This technique considerably reduces the se-
quence length for each RNN computation and improves the train-
ing efficiency. It also allows a relatively small frame shift for time-
domain speech processing, which leads to a significant performance
improvement. DPARN further incorporates inter-chunk and intra-
chunk attention to improve the enhancement performance. Note that
in order to reduce the computational burden, we adopt residual con-
nections instead of dense connections between RNN modules and
only use two DPARN blocks.

3.1.2. Diffusion Module

The diffusion module accepts four inputs, the diffused signal sᾱ,
the enhanced speech sehc obtained from the enhancement module,
a mask M , and the noise level embedding Eᾱ. The noise level em-
bedding is generated using the sinusoidal positional embedding [18]
followed by two linear layers. We concatenate Sᾱ with Sehc along
the channel dimension before feeding to the diffusion module. We
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(a) Diffusion Module (b) Residual Block

Fig. 2. Diagrams showing the design of the diffusion module. (a). The overall architecture of CRN. (b). The Residual Block that is used for
incorporating conditioner information.

implement the diffusion module by adopting a convolutional recur-
rent neural network (CRN) that is based on [19]. CRN is a complex-
domain encoder-decoder based architecture, and we employ a recur-
rent neural network bottleneck to model the temporal dependencies,
which also allows us to process input of variable lengths. The tech-
nical details are depicted in Figure 2(a). The encoder of CRN is a
convolutional downsampler that reduces the feature dimension along
the frequency axis, and the decoder has a symmetric design that per-
forms upsampling with transposed convolutions. The output of en-
coders is concatenated to the corresponding layers of the decoder
for better reconstruction performance. To save computational cost
and memory, we use grouped bidirectional long short-term memory
(BLSTM) [20] as the bottleneck. Finally, the output of the CNN
decoder passes through a linear layer to produce real and imaginary
estimates. The modification we introduce to the CRN is to replace
each convolution operation with a residual block that accepts noise
level embedding and mask as local conditioners. The design of the
residual block is based on [21], and we illustrate the detailed design
in Fig. 2(b). It consists of two residual layers, an attention layer,
and upsampling/downsampling operation. The noise level embed-
ding Eᾱ passes through a linear layer and is then added as a bias
term after the convolution layer, and the upsampled/downsampled
mask is incorporated by multiplying the input of each residual layer
after a pointwise convolution.

During inference, to accelerate the inference speed for the diffu-
sion process, we use 8 iterations with a linear noise schedule adopted
from [22]. In addition, instead of starting with the Gaussian white
noise, we start the reverse diffusion process with the output of the
enhancement module sehc. This approach is also referred to as the
shallow diffusion mechanism proposed in [23]. Converting noisy en-
hanced speech is much easier compared with converting pure white
noise into clean speech, which lightens the burden of the diffusion
module and can also accelerate inference. We find in experiments it
provides better enhancement objective scores.

3.2. Loss Function

We perform joint training to optimize the two modules simultane-
ously. The diffusion loss follows the objective proposed in [22],
where a logarithm L1 loss is computed over the estimated noise ϵθ

and the real added noise ϵ in the time domain, i.e.,

Ldiff = Eᾱ,Sᾱ,Sehc,ϵ[log ||ϵ− ϵθ(Sᾱ, S
ehc,M,

√
ᾱ))||], (9)

where Sᾱ is the STFT of the diffused noisy signal sᾱ, and
√
ᾱ indi-

cates the continuous noise level. Using logarithm L1 norm stabilizes
the training as it provides a smooth scaling for different time steps.

The enhancement module aims to restore the clean speech, and
we use a complex-domain loss Lehc [24], which addresses the im-
portance of the magnitude estimation and has shown superior en-
hancement performance.

Lehc =
1

TF

T∑
t=1

F∑
f=1

[||Sehc(t, f)| − |S(t, f)||+

(|Sehc
r (t, f)− Sr(t, f)|+ |Sehc

i (t, f)− Si(t, f)|)]. (10)

T and F denote the total number of time frames and frequency bins,
which are indexed by t and f , respectively. Sehc and S are the short-
time Fourier transform of sehc and s. Subscripts r and i denote the
real and imaginary parts of the complex vectors, respectively, and | · |
measures the magnitude. For computing Lehc, we divide waveforms
into segments with a frame size of 512 samples with a frame shift of
128 samples and then multiply these frames with a Hanning window.
The STFT vectors Sehc and S are calculated on windowed frames to
define related terms in the complex domain. The complete objective
is defined as,

L = λLehc + Ldiff . (11)
We use the coefficient λ to balance the training progress of two mod-
ules. In this paper, we set λ = 0.1 based on the performance evalu-
ated on the validation set.

3.3. Mask Generation

To improve the generation capability of the diffusion module, we
employ a random mask generation strategy during the training
process, which has been demonstrated to improve the robustness
against unknown masks in [25]. During training, we uniformly sam-
ple masks from rectangles of arbitrary aspect ratios (box masks) or
polygonal chains dilated by a high random width (irregular masks),
or masks that only keeps T-F units that contain dominant speech
information (segmentation masks). The mask generation algorithm
is modified based on the open-sourced repository1. Inspired by

1https://github.com/saic-mdal/lama
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Table 1. Enhancement performance of baselines and the proposed method on the TIMIT dataset at different SNRs.
Factory Babble

-10 dB -5 dB -10 dB -5 dB

Model SISNR STOI PESQ SISNR STOI PESQ SISNR STOI PESQ SISNR STOI PESQ

Noisy Mixture -9.980 0.439 1.107 -4.980 0.539 1.276 -9.989 0.428 1.080 -4.992 0.532 1.360
M&I -2.602 0.538 1.492 2.602 0.676 1.907 -6.497 0.442 1.178 -0.099 0.626 1.654
GCRN 0.440 0.576 1.440 5.571 0.751 1.940 -4.299 0.435 1.004 3.646 0.670 1.641
DCCRN 0.364 0.566 1.421 5.863 0.751 2.013 -3.802 0.437 1.010 3.339 0.668 1.645
DPARN 2.120 0.578 1.543 7.580 0.767 2.090 -2.696 0.446 1.259 5.328 0.708 1.699
Proposed 2.504 0.611 1.648 7.909 0.789 2.204 -2.486 0.465 1.297 5.415 0.716 1.845

M&I, a binary spectral magnitude mask (BSMM) with a thresh-
old of τ = 0.15 is employed as our segmentation mask, which is
computed over noisy and clean T-F units,

BSMM(t, f) =

{
1 if |S(t,f)|

|Y (t,f)| ≥ τ,

0 otherwise,
(12)

where Y is the STFT of noisy input y. During inference, the es-
timated BSMM is utilized to remove T-F units dominated by back-
ground noise, and the mask is predicted by a CRN-Mask network
proposed in [26]. The mask prediction network is pretrained on the
same dataset with a mean-squared error loss using noisy speech mix-
tures as input.

4. EVALUATION AND ANALYSIS
4.1. Experimental Setup

We conduct experiments on the TIMIT dataset [27], which is a cor-
pus containing utterances from 630 speakers with a 16 kHz sam-
pling rate. We select 4620 utterances as the training dataset, and
1153 utterances as the validation set. The core test subset that con-
tains 192 utterances from 24 speakers is used for evaluation. We use
10,000 noises from a sound effect library2 to simulate noisy mix-
tures, which have a total duration of around 126 hours. To gener-
ate training mixtures, we randomly cut a segment from the training
noises, and then mix it with a randomly picked clean utterance at an
SNR level that is uniformly sampled from [-5, 5] dB. During test-
ing, we mix the testing utterances with factory and babble noises
extracted from NOISEX-92 [28] at two different SNR levels, -10 dB
and -5 dB.

During training, we apply mean-variance normalization (MVN)
to each noisy utterance and scale the corresponding clean utterances
accordingly. A window length of 32 ms with 25% overlap between
adjacent frames is used in calculating STFTs, which correspond to
257-dimensional complex spectrograms. An Adam optimizer [29]
is employed, and we use a batch size of 32 utterances and an ini-
tial learning rate of 1e-3 to train the model for 100 epochs. The
learning rate is scheduled to be halved if the validation loss has not
improved for three consecutive epochs. A gradient clipping with a
maximum value of 3.0 is applied to stabilize training. We randomly
cut a 4-second segment for each training utterance, and pad shorter
utterances with zeros within each batch to guarantee they are of the
same size.

4.2. Evaluation Results
We compare the proposed method with four other advanced speech
enhancement baselines using the same experimental settings de-
scribed in Section 4.1. The M&I in the table indicates the two-stage
enhancement approach that performs masking and inpainting [9] on

2available at https://www.soundideas.com

the noisy magnitude spectrogram, which has been described in Sec-
tion 1. The second baseline is the gated convolution recurrent net-
work (GCRN) [19], which is a complex-domain enhancement net-
work based on the CRN architecture. The major difference is that the
original convolution operation is replaced with gated convolution,
and two decoders are employed separately to predict real and imag-
inary parts. For a fair comparison, we use the bidirectional LSTM
(BLSTM) in the bottleneck part. Deep Complex Convolutional Re-
current network (DCCRN) [7] is adopted as the second baseline. We
choose the DCCRN-E configuration with a BLSTM in this compari-
son. Lastly the non-causal version of DPARN [8] is employed as the
fourth baseline. We use three metrics to evaluate the enhancement
performance, scale-invariant SNR (SISNR), short-time objective in-
telligibility (STOI) [30] and perceptual evaluation of speech quality
(PESQ) [31]. For all the metrics, high values indicate better en-
hancement performance. We provide enhanced speech signals and
spectrograms at https://whmrtm.github.io/CDDSE demo.html.

Experimental results are displayed in Table 1, and it demon-
strates that our proposed approach achieves better objective scores,
especially in low-SNR conditions. Other strong enhancement base-
lines, although already demonstrated their effectiveness in suppress-
ing noises, suffer from severe performance degradation at -10 dB
SNR. For instance, for babble noise, GCRN and DCCRN barely im-
prove PESQ over the noisy mixture. Although M&I does not reveal
superior enhancement performance as it only addresses magnitude
estimation, it shows noise robustness to some extent. At -10 dB
noises, we observe better PESQ scores compared with GCRN and
DCCRN. This phenomenon validates our assumption that regener-
ating noisy regions in the spectrograms could be beneficial. The
proposed model achieves better enhancement results for both SNR
conditions. Specifically, compared with the enhancement baseline
of DPARN, at -10 dB factory noise, STOI is improved by 3.3%, and
PESQ by 0.105, which demonstrates the benefit brought by the dif-
fusion module. Also, compared with the related study M&I, STOI is
improved by 7.3%, and PESQ by 0.156.

5. CONCLUSION
We have proposed a novel architecture for low-SNR speech enhance-
ment. Specifically, we have designed a joint framework to combine
enhancement learning and generative learning. First, we employ a
time-domain DPARN to enhance noisy speech. Then in the complex
domain, we perform diffusion-based spectrogram inpainting for T-F
units that are dominated by background noise. Experimental results
on the TIMIT dataset have demonstrated the effectiveness of this ap-
proach, yielding a significant improvement over the supervised en-
hancement baselines, especially in very low SNR conditions. In fu-
ture work, we plan to conduct training on larger corpora and extend
to general audio restoration.
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