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ABSTRACT

This paper proposes a novel cascade architecture to address
the monaural speech enhancement problem. We leverage
three different domains of speech representation, namely
spectral magnitude, waveform, and complex spectrogram,
to progressively suppress the background noise within noisy
speech. Our proposed neural cascade architecture consists of
three modules, and each operates on the original noisy input
and the output of the previous module in a distinct speech
representation. During training, the network simultaneously
optimizes all modules with a triple-domain loss. Experiments
on the WSJO SI-84 corpus demonstrate that our proposed
approach achieves superior enhancement results, and sub-
stantially outperforms previous baselines in terms of both
speech quality and intelligibility.

Index Terms— speech enhancement, spectral magni-
tude, time domain, complex domain, cross-domain speech
enhancement

1. INTRODUCTION

Background noise is an unavoidable interference in real-
world speech communication, and is harmful for speech
processing tasks like automatic speech recognition. The
goal of speech enhancement is to remove background noise
and recover the clean speech signal, in order to improve the
speech quality and intelligibility of noisy speech. Conven-
tional methods include traditional enhancement techniques
like spectral subtraction [1] and computational auditory scene
analysis [2]. Since the introduction of deep learning, dramatic
progress has been made in this field [3].

Early deep neural network (DNN) based studies use spec-
tral magnitude features as training targets. Those include the
ideal binary mask [4], ideal ratio mask (IRM) [5], and tar-
get magnitude spectrum [6]. Recent studies address phase
enhancement [7], as speech phase proves to be important for
speech quality. To address phase estimation, one popular di-
rection is to estimate the real and imaginary parts of the com-
plex spectrogram of clean speech [8, 9, 10]. The other popular
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approach is to estimate the clean speech waveform in the time
domain [11, 12, 13].

Although these approaches are effective for noise sup-
pression, they are single-stage models that utilize only one
speech representation. Recent studies investigate combin-
ing different speech representations for improved speech
enhancement. Some attempt to incorporate a different rep-
resentation domain into the loss function. For example,
Pandey and Wang [12] train a time-domain DNN, but op-
timize the network in the frequency domain by performing
short-time Fourier transform (STFT) on the predicted sig-
nals and clean signals. Bahmaninezhad et al. [14] feed an
DNN with frequency-domain features. During training, a
scale-invariant signal-to-noise ratio (SNR) based loss is cal-
culated by converting predicted complex vectors to the time
domain with inverse STFT (iSTFT). Others attempt to en-
hance speech in multiple stages and each stage operates in
one signal domain. Tzinis et al. [15] propose a two-step
architecture for source separation. Instead of directly separat-
ing the sources, they first learn a latent speech representation,
and then perform speech separation in the learned latent em-
bedding space. Lin et al. [16] stack temporal convolutional
modules to progressively enhance speech magnitude in mul-
tiple stages. Each module (except the first module) takes as
input the noisy magnitude and the predicted output from the
last module. Li et al. [17] introduce a two-stage network
where the first stage only estimates the magnitude, and then
the second stage performs complex spectral mapping us-
ing the predicted magnitude spectrum and the original noisy
spectrum. Zhang et al. [18] propose a two-stage framework
that incorporates multiple training targets. In the first stage,
they perform joint training using two branches to predict the
complex spectrum and IRM, respectively. In the next stage,
they use the enhanced magnitude obtained from the first stage
to predict the prior SNR.

In this paper, we propose a novel neural cascade archi-
tecture (NCA) that combines the strengths of cross-domain
speech representations. NCA consists of three modules that
operate on the spectral magnitude, waveform and complex
spectrogram, respectively. Each module operates on the out-
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Fig. 1. Diagram of the cascade architecture. The input Y is the complex spectrogram of the noisy input. Three outputs are
produced by the network, which are the mask, the time and the complex predictions.

put of the previous module and the original noisy input. We
optimize all modules simultaneously with a triple-domain
loss. Different from other studies that incorporate one or two
domains of speech representation, our network incorporates
three training targets in DNN-based speech enhancement. In
addition, our approach is trained in an end-to-end fashion,
which saves training effort, whereas other multi-stage models
typically employ complicated training strategies such as pre-
training and fine-tuning. Experimental results show that our
model achieves significantly better enhancement performance
compared to previous strong baselines.

2. NEURAL CASCADE ARCHITECTURE

As illustrated Fig. 1, NCA is composed of three modules,
CRN-Mask, UNet-Time and CRN-Complex. As the names
suggest, the three modules employ the popular design of re-
cent enhancement studies, which is elaborated in Section. 2.1.
CRN-Mask is fed with magnitude features and predicts the
IRM [4]. The next module UNet-Time accepts two time-
domain inputs, in which one is converted from the masked
spectrogram from the previous module by taking the iSTFT,
and the other is the original noisy waveform. Such design
mitigates the estimation error and distortion brought by the
previous module. Similarly, the last module CRN-Complex
takes in as input the noisy complex spectrogram and the out-
put of UNet-Time. Given a noisy speech mixture y that is
composed of background noise n and clean speech s, with
the parameters of each module denoted as 6, our pipeline can
be formulated as,

t, f) = fmask(omasky |Y(t, f)D © Y(t, f)

2(k) = frime(Otime, y(k), 31(k))

tvf) = fcomplez(ecompleazay(taf)MSA’Q(t)f))a (1)
where the subscript number 1, 2, 3 corresponds to each mod-

ule, k indicates a time sample, and ® indicates the element-
wise multiplication. The capital letters .S, Y are the STFTs of

Si(
Sa(

s and y, and ¢ and f index the time step and frequency bin,
respectively. We regard S5 as our final enhancement result.

2.1. Module Design

Fig. 2 depicts the detailed design of modules within NCA.
Both the mask and complex modules are based on the con-
volutional recurrent network (CRN) architecture [9]. CRN
is composed of an encoder, a recurrent neural network based
bottleneck, and a decoder. We employ a pointwise convo-
Iution for skip connections and a two-layer grouped LSTM
as our bottleneck. For CRN-Mask, we append a linear layer
with a sigmoidal activation function after the regular CRN
to produce the mask prediction. For CRN-Complex, we re-
place each CNN layer with a densely connected (DC) block
[19]. The DC block consists of 5 convolutional layers with
a growth rate of 8, and within the block all layers are di-
rectly connected. Moreover, we split the CRN output into
two halves and each is followed by a linear layer to predict
real and imaginary parts separately. We employ the encoder-
decoder structure of the standard UNet [20] for the time mod-
ule. UNet-Time performs frame-level speech enhancement
and is fed with speech segments.

2.2, Triple-domain Loss

We propose a novel triple-domain loss as the training ob-
jective. As described in the previous sections, we ob-
tain a IRM estimation RM, and time domain estimate §
and a complex spectrum prediction S from all modules.
IRM is calculated based on the energy of speech S and
noise N in the time-frequency (T-F) domain, defined as

IRM(t, f) = WJM L,nqsk measures the mean
absolute error of the mask estimation and the ground truth
IRM.

1
Lmask = ﬁ ; ‘RM(ta f) - IRM(ta f)|7 (2)
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where T and F' are the total number of time steps and fre-
quency bins. Ly;m,. employs the phase-constrained magni-
tude loss proposed in [13], as experiments demonstrate that
it effectively imposes a phase constraint and leads to a good
magnitude estimate.

1 o
Liime = 7 ;[(Is(t’f)l — |5, H)D+

Lcompies measures the difference of complex representations
as well as the magnitude difference, as it has been addressed
in previous literature [21, 22] that a good magnitude esti-
mation considerably boosts the enhancement performance in
complex spectral mapping,

1
Lcomplex = TZ ||S t f | (tvf)H—’_
t=1 f=1

(180 (8, £) = Se(t, )] + 1S3t ) = Si(t, D). @)

Here the subscripts r and 7 represent the real and imaginary
parts of T-F representations, respectively.

The triple-domain loss is defined upon these three loss
functions,

Ltriple = AleaSkZ + )\2Ltime + Lcomplez~ (5)

We assign A\; = 5.0 and Ay = 1.0 to balance different value
ranges of the three loss terms.

3. EXPERIMENT

3.1. Training dataset

We conduct experiments on the WSJO SI-84 dataset [23],
which contains English utterances uttered by 42 male and 41
female speakers. Of the 7138 utterances within the dataset,
we select 5428 utterances from 77 speakers to generate the
training set. Noise files in the DNS Challenge' are utilized,
and we randomly pick 20000 noise files of a total duration
of 55 hours to construct the training noise. During training
data generation, for each clean utterance, we randomly cut a
segment from the training noise that is the same length and
then mix them at a SNR uniformly sampled from -5, -4, -3,
-2, -1, and 0 dB. Repeating that procedure, we create 50000
mixtures as the training set. Using 150 clean utterances se-
lected outside the training scope, we follow a similar process
to create the validation set of 4000 mixtures. For evaluation,
we choose 6 untrained speakers, each having 25 utterances.
Four challenging noises are utilized, which are babble (de-
noted as babblel), factory1 from NOISEX92 [24], and babble
(denoted as babble2) and cafeteria from an Auditec CD?. The
testing mixtures are generated by mixing with these noises at
three different SNR levels -5, 0 and 5 dB.

Uhttps://github.com/microsoft/DNS-Challenge
2available at http://www.auditec.com
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Fig. 2. Illustration of the modules of the NCA. From top to
bottom: (a). The complex module CRN-Complex, (b). The
time-module UNet-Time. CRN-Mask and CRN-Complex are
similar, so we just display the diagram of the complex module
for brevity.

3.2. Experimental Settings

All the utterances in the experiment are sampled at 16 kHz.
We select the Hamming window with a window length of 320
samples and a window shift of 160 samples during STFT op-
eration. During training, we use the Adam optimizer to per-
form stochastic gradient descent optimization. The training
epoch is set to be 50, and we use a batch size of 8 utterances
with an initial learning rate of 0.001. The enhancement per-
formance is measured by two metrics, perceptual evaluation
of speech quality [25] and extended short-term objective in-
eligibility (ESTOI) [26]. PESQ evaluates the speech quality
and has a value ranges from -0.5 to 4.5. ESTOI evaluates
speech intelligibility with a value within O and 1 and can be
interpreted as the percentage of correctness. For both metrics,
higher values suggest better enhancement performance.

3.3. Experimental Results
We compare our proposed NCA with four strong speech
enhancement baselines in both causal and non-causal set-
tings. Those include complex-domain approaches, gated
CRN (GCRN) [27] and deep complex CRN [10] (DCCRN).
Moreover, we compare with the time-domain baseline au-
toencoder CNN (AECNN) [12], and the two-stage baseline
Complex spectral mapping based Two-Stage Network (CT-
SNet) [17].

First, we present in Table 1 and 2 the evaluation results
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Table 1. Evaluations and Comparisons of Different Enhancement Models in terms of ESTOI(%)

SNR -5dB 0dB 5dB
Causal | Babblel Factory Babble2 Cafeteria | Average | Babblel Factory Babble2 Cafeteria | Average | Babblel Factory Babble2 Cafeteria | Average
Unprocessed - 2640 2675 25.62 2425 | 25776 | 39.47 4094 38.81 37.92 | 39.29 | 54.05 56.77 53.80 5344 | 5454
GCRN 4 5T.10 5256 5140 4840 | 50.87 | 68.72 69.17 69.87 67.05 | 68.71 | 8045 80.68 8I1.74 79.45 | 80.58
AECNN v 57.88 59.72 48.87  47.81 53.57 | 71.87 7221 66.02 6497 | 68.77 | 79.62 79.71 79.12  78.18 | 79.16
DCCRN v 5472 5541 5478 5239 | 5433 | 71.71 7159 72.68 70.38 | 71.59 | 82.66 8259 83.89 81.94 | 82.77
CTSNet v 60.06 61.05 60.21 5643 | 59.44 | 7586 75.10 7474 7403 | 7493 | 84.54 83.89 86.44 8448 | 84.84
NCA 4 6396 6341 6576 60.40 | 63.38 | 7883 77.75 80.56 76.89 | 78.51 | 86.50 85.82 87.73 8537 | 86.36
BGCRN X 56.83 58.79 5734 5471 56.92 | 73.52 7379 75.00 7231 73.66 | 83.66 83.64 B84.64 82.72 | 83.67
BDCCRN X 5746 58.79 5826 5578 | 57.57 | 74776 7425 75.65 73.13 | 7445 | 8450 84.11 8556  83.54 | 84.43
NC-CTSNet X 63.01 6342 63.09 6024 | 62.44 | 7891 7751 7991 7694 | 7832 | 86.19 8570 87.47 8548 | 86.21
NC-NCA X 69.06 6829 70.61 6526 | 68.31 | 81.71 80.55 83.54 80.00 | 8145 | 88.10 87.32 89.23 87.15 | 87.95
Table 2. Evaluations and Comparisons of Different Enhancement Models in terms of PESQ
SNR -5dB 0dB 5dB
Causal | Babblel Factory Babble2 Cafeteria | Average | Babblel Factory Babble2 Cafeteria | Average | Babblel Factory Babble2 Cafeteria | Average
Unprocessed - 1.54 1.44 1.55 1.46 1.50 1.83 1.75 1.82 1.77 1.79 2.15 2.10 2.11 2.13 2.12
GCRN v 1.71 1.95 1.73 1.75 1.79 2.37 2.56 243 243 245 2.94 3.03 2.98 293 2.97
AECNN v 2.10 2.31 1.82 1.95 2.05 2.68 2.36 2.54 2.43 2.50 2.90 2.92 2.89 291 291
DCCRN 4 1.98 2.08 1.93 1.98 1.99 2.49 2.52 2.52 2.49 2.51 292 2.89 297 291 2.92
CTSNet v 2.12 2.29 2.13 2.11 2.16 2.74 2.78 2.67 2.78 2.74 3.21 3.18 322 3.17 3.20
NCA v 2.15 2.35 2.22 2.20 2.23 2.81 2.88 291 2.83 2.86 3.27 3.26 3.34 3.23 3.28
BGCRN X 2.08 2.31 2.06 2.10 2.14 2.31 2.75 2.82 274 2.66 3.20 323 3.19 3.18 3.20
BDCCRN X 2.05 2.23 2.06 2.11 2.11 2.65 2.68 2.67 2.62 2.66 3.05 3.02 3.08 3.01 3.04
NC-CTSNet X 2.19 2.39 2.20 223 2.25 2.90 291 2.93 2.85 2.90 3.32 3.29 3.33 3.27 3.30
NC-NCA X 243 2.54 2.49 2.40 2.47 3.05 3.05 3.13 3.02 3.06 343 3.40 347 3.40 3.43

Table 3. Effects of Different Optimization Strategies at -5 dB

SNR.
Model ESTOI(%) | PESQ | Training time
End-to-end optimization 63.38 2.23 1.0x
Multi-stage sequential training 60.81 2.11 1.9x
Multi-stage joint training 63.09 2.23 2.1x
Only optimizing Lcomples 58.56 2.09 1.0x

of causal networks on the WSJO SI-84 corpus. As shown in
the table, our proposed network performs the best under all
conditions. In addition, the multi-stage approaches CTSNet
and NCA considerably outperform single-stage paradigms
GCRN, DCCRN and AECNN in terms of both PESQ and
ESTOI. Moreover, the proposed NCA consistently outper-
forms the strongest baseline CTSNet. For example, at -5 dB
SNR, the ESTOI is improved by 3.94%, and PESQ by 0.07
on average.

We also convert the causal models to their non-causal
versions (denoted as BDCCRN, BGCRN, NC-CSTNet and
NC-NCA), and present their results in the tables. In baseline
models, all causal convolutions are replaced with non-causal
convolutions and we replace LSTM layers with bidirec-
tional LSTMs. The conversion for non-causal AECNN is
not straightforward, so we do not include it in the tables.
Non-causal networks show a significant performance im-
provement compared to their causal counterparts, as they
utilize future information. The performance advantage of
NC-NCA is maintained, and the gap with the best baseline
model NC-CTSNet is even larger. For instance, the PESQ
is improved by 0.22 and ESTOI is improved by 5.87% on
average at -5 dB SNR.

We further analyze the effect of various optimization
strategies for the NCA in Table 3. We use the result of
causal NCA under -5 dB as the baseline and compare the
enhancement performance under the same settings with other

optimization strategies. First, we sequentially train the three
modules within the NCA. CRN-Mask is trained first, and
then with the first module frozen, we train UNet-Time with
the output of the first module and the noisy input. Finally,
the first two modules are frozen, and we train CRN-Complex
using the original input and the prediction obtained from
UNet-Time. We also investigate the joint training approach,
which is similar to the sequential training except we do not
freeze any modules. Instead, for the second and last step, we
jointly train the current module with the previous module(s),
and set a smaller learning rate for the previous module(s).
Finally, we explore training the NCA with only the complex
1088 Lcomplez measured at the last module. As shown in the
table, the end-to-end training strategy has the overall best
performance. Multi-stage joint training also produces excel-
lent performance, but it is not preferable as it requires around
twice the training time and a more sophisticated training
strategy. Only optimizing L;ompie,; dramatically degrades
the enhancement performance, suggesting that it is crucial to
impose optimization constraints on all modules. Otherwise,
the first two modules could not produce outputs beneficial for
the following module(s).

4. CONCLUSION

We have proposed a novel neural cascade architecture to
leverage the strengths of three different speech representa-
tions, which are, magnitude, waveform and complex spectro-
gram. Our model is trained end-to-end with a triple-domain
loss. Experiments have demonstrated the superiority of our
design, and we achieve significantly better enhancement re-
sults compared with other advanced baselines. Future work
includes a faster and lighter model design for real-time mobile
applications. In addition, we plan to investigate cross-domain
features to further improve generalization.
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