In R. Sun and C.L. Giles (Eds.): Sequence Learning, LNAI 1828, pp. 53-79,
2000. Springer-Verlag, Berlin Heidelberg.

Anticipation Model for Sequential Learning of
Complex Sequences*

DeLiang Wang

Department of Computer and Information Science
and Center for Cognitive Science
The Ohio State University

1 Introduction

One of the fundamental aspects of human intelligence is the ability to process
temporal information (Lashley, 1951). Learning and reproducing temporal se-
quences are closely associated with our ability to perceive and generate body
movements, speech and language, music, etc. A considerable body of neural net-
work literature is devoted to temporal pattern generation (see Wang, 2001, for
a recent review). These models generally treat a temporal pattern as a sequence
of discrete patterns, called a temporal sequence. Most of the models are based
on either multilayer perceptrons with backpropagation training or the Hopfield
model of associative recall. The basic idea for the former class of models is to
view a temporal sequence as a set of associations between consecutive com-
ponents, and learn these associations as input-output transformations (Jordan,
1986; Elman, 1990; Mozer, 1993). To deal with temporal dependencies beyond
consecutive components, part of the input layer is used to keep a trace of history,
behaving as short-term memory (STM). Similarly, for temporal recall based on
the Hopfield associative memory, a temporal sequence is viewed as associations
between consecutive components. These associations are stored in extended ver-
sions of the Hopfield model that includes some time delays (Sompolinsky &
Kanter, 1986; Buhmann & Schulten, 1987; Heskes & Gielen, 1992). To deal with
longer temporal dependencies, high-order networks have been proposed (Guyon
et al., 1988).

1.1 Learning complex sequences

One of the main problems with the above two classes of models lies in the
difficulty in retrieving complex temporal sequences, where the same part may
occur many times in the sequence. Though proposed remedies can alleviate the
problem to some degree, the problem is not completely resolved. In multilayer
perceptrons, a blended form of STM becomes increasingly ambiguous when tem-
poral dependencies increase (Bengio et al., 1994). The use of high-order units

* Thanks to X. Liu for his help in typesetting. The preparation of this chapter was
supported in part by an ONR YIP award and a grant from NUWC.

in the Hopfield model requires a huge number of connections to deal with long
range temporal dependencies, or the model yields ambiguities.

More recently, Bradski et al. (1994) proposed an STM model, which exhibits
both recency and primacy, where the former means that more recent items in
a sequence are better retained and the latter means that the beginning items
are less prone to forgetting. Both recency and primacy are characteristics of
human STM. In addition, their model creates new representations for repeated
occurrences of the same symbol, thus capable of encoding complex sequences to a
certain extent. Granger et al. (1994) proposed a biologically motivated model for
encoding temporal sequences. Their model uses a competitive learning rule that
eventually develops sequence detectors at the end of sequence presentation. Each
detector encodes a sequence whereby the beginning component has the highest
weight, and the subsequent components have successively lower weights. They
claim that the network has an unusually high capacity. However, it is unclear
how their network reads out the encoded sequences. Baram (1994) presented a
model for memorizing vector sequences using the Kanerva memory model (Kan-
erva, 1988). The basic idea is similar to those models that are based on the
Hopfield model. Baram’s model uses second-order synapses to store the tempo-
ral associations between consecutive vectors in a sequence, but the model deals
only with sequences that contain no repeating vectors. Rinkus (1995) proposed a
model of temporal associative memory, based on associations among random se-
quences. The associations are encoded using a method similar to the associative
memory of Willshaw et al. (1969). However, the model needs an additional oper-
ation that maps a sequence component in a semi-random vector and remembers
the mapping for later decoding.

Based on the idea of using STM for resolving ambiguities, Wang and Ar-
bib (1990) proposed a model for learning to recognize and generate complex
sequences . With an STM model, a complex sequence is acquired by a learning
rule that associates the activity distribution in STM with a context detector (for
a rigorous definition see Section 2). For sequence generation, each component of
a sequence is associated with a context detector that learns to associate with the
component. After successful training, a beginning part of the sequence forms an
adequate context for activating the next component, and the newly activated
component joins STM to form a context for activating the following component.
This process continues until the entire sequence is generated. A later version
(Wang & Arbib, 1993) deals with the issues of time warping and chunking of
subsequences. In particular, sequences in this version can be recognized in a hi-
erarchical way and without being affected by presentation speed. Hierarchical
recognition enables the system to recognize sequences whose temporal depen-
dencies are much longer than the STM capacity. In sequence generation, the
system is capable of maintaining relative timing among the components while
the overall rate can change.

Recently, L. Wang (1999) proposed to use multi-associative neural networks
for learning and retrieving spatiotemporal patterns. STM is coded by system-
atic delay lines. The basic idea is that, when dealing with complex sequences ,

one pattern is allowed to be associated with a set of subsequent patterns, and
disambiguation can be eliminated by intersecting multiple sets associated by the
previous pattern, the pattern prior to the previous pattern, and so on. It is easy
to see that a complex sequence can be unambiguously generated with a sufficient
number of systematic delay lines. Associations between spatial patterns are es-
tablished through single units in a competitive layer. A major drawback of the
multi-associative network model is that much of system architecture and many
network operations are algorithmically described, rather than arising from an au-
tonomous neural network (e.g., no discussion on how set intersection is neurally
implemented).

1.2 Sequential Learning Problem

A comprehensive model of temporal sequence learning must address the issue of
sequentially learning multiple sequences; that is, how are new sequences learned
after some sequences have been acquired? One way of learning multiple sequences
is to use simultanous training, where many sequences are learned at once. A
model that can learn one sequence can generally be extended to learn multiple
sequences with simultaneous training. A straightforward way is to concatenate
multiple sequences into a single long sequence. Given that each sequence has
a unique identifier, a model can learn all of the sequences if it can learn the
concatenated sequence. However, sequential learning of multiple sequences is an
entirely different matter. It is a more desirable form of training because it allows
the model to acquire new sequences without bringing back all the previously
used sequences - a form of incremental learning . Incremental learning not only
conforms well with human learning, but also is important for many applications
that do not keep all the training data and where learning is a long-term on-going
process.

It turns out that incremental learning is a particularly challenging problem
for neural networks. In multilayer perceptrons, it is well recognized that the net-
work exhibits so called catastrophic interference, whereby later training disrupts
the traces of previous training. It was pointed out by Grossberg (1987), and sys-
tematically revealed by McCloskey and Cohen (1989) and Ratcliff (1990). Many
subsequent studies attempt to address the problem, and most of proposed reme-
dies amount to reducing overlapping in hidden layer representations by some
form of orthogonalization, a technique used long ago for reducing cross-talks
in associative memories (see Kruschke, 1992, Sloman & Rumelhart, 1992, and
French, 1994). Most of these proposals are verified only by small scale simu-
lations, which, together with the lack of rigorous analysis, make it difficult to
judge to what extent the proposed methods work. It remains to be seen whether
a general remedy can be found for multilayer perceptions. Associative memories
are less susceptible to the problem, and appear to be able to incorporate more
patterns easily so long as the overall number of patterns does not exceed the
memory capacity. However, the Hopfield model has a major difficulty in dealing
with correlated patterns with overlapping components (Hertz et al., 1991). The
Hopfield model has been extended to deal with correlated patterns (Kantor &

Sompolinsky, 1987), and Diederich and Opper (1987) proposed a local learning
rule to acquire the necessary weights iteratively. The local learning rule used by
them is very similar to the perceptron learning rule. Thus, it appears that such
a scheme for dealing with correlated patterns would suffer from catastrophic
interference.

The major cause of catastrophic interference is the distributedness of repre-
sentations; the learning of new patterns needs to use and alter those weights
that participate in representing previously learned patterns. There is a tradeoff
between distributedness and interference. Models that use non-overlapping rep-
resentations, or local representations, do not exhibit the problem. For example,
the ART model (Carpenter & Grossberg, 1987) does not have the problem be-
cause each stored pattern uses a different weight vector and no overlapping is
allowed between any two weight vectors.

During sequential learning , humans show some degree of interference. Retroac-
tive interference has been well documented in psychology (Crooks & Stein, 1991),
which occurs when learning a later event interferes with the recall of earlier infor-
mation. In general, the similarity between the current event and memorized ones
is largely responsible for retroactive interference (Barnes & Underwood, 1959;
Chandler, 1993; Bower et al., 1994). Animals also exhibit retroactive interference
(Rodriguez et al., 1993). The existence of retroactive interference suggests that
events are not independently stored in the brain, and related events are some-
how intertwined in the memory. Although recall performance of the interfered
items decreases, it still is better than the chance level, and it is easier to relearn
these items than to learn them for the first time. This analysis suggests that a
memory model that stores every item independently cannot adequately model
human/animal memory. From the computational perspective, the models that
store different events in a shared way have a better storage efficiency than those
that do not. In summary, a desired memory model should exhibit some degree
of retroactive interference when learning similar events, but not catastrophic
interference.

In this chapter, we describe the anticipation model for temporal sequence
learning (Wang & Yuwono, 1995; Wang & Yuwono, 1996). Similar to Wang
and Arbib (1990), an STM model is used for maintaining a temporal context. In
learning a temporal sequence, the model actively anticipates the next component
based on STM. When the anticipation is correct, the model does nothing and
continues to learn the rest of the sequence. When the anticipation is incorrect,
namely a mismatch occurs, the model automatically expands the context for the
component. A one-shot (single step) normalized Hebbian learning rule is used
to learn contexts, and it exhibits the mechanism of temporal masking, where a
sequence masks its subsequences in winner-take-all competition. The anticipa-
tion model can learn to generate an arbitrary sequence by self-organization, thus
avoiding supervised teaching signals as required in Wang and Arbib. Further-
more, the model is examined in terms of its performance on sequential training
tasks. We show that the anticipation model is capable of incremental learning ,

and exhibits retroactive interference but not catastrophic interference. Extensive
simulations reveal that the amount of retraining is relatively independent of the
number of sequences stored in the model. Furthermore, a mechanism of chunk-
ing is described that creates chunks for recurring subsequences. This chunking
mechanism significantly improves training and retraining performance.

The remaining part of the chapter is organized as follows. In Section 2, the
anticipation model is fully defined. Section 3 introduces several rigorous results
of the anticipation model. In Section 4, we provide simulation results of the
model, in particular for learning many sequences incrementally. The simulation
results suggest that incremental learning in the anticipation model is capacity-
independent, or unaffected by the number of stored sequences. Section 5 de-
scribes the chunking mechanism and shows how chunking improves the learning
performance. Section 6 provides some general discussions about the anticipation
model. Finally, Section 7 concludes the chapter.

2 Anticipation Model

We follow the terminology introduced by Wang and Arbib (1990). Sequences are
defined over a symbol set I', which consists of all possible symbols, or spatial
(static) patterns. Sequence S of length N over I' is defined as p;-pa-...-pn, where
pi(1 < i < N) € I' is called a component of S. The sequence p;-pjt1-...-Pk,
where 1 < j < k < N, is a subsequence of S, and the sequence p;-p;+i-...-pn
where 1 < j < N, is a right subsequence of S. In general, in order to produce
a component by its predecessors in a sequence, a prior subsequence is needed.
For example, to produce the first “P” in the sequence M-I-S-S-1-S-S-I-P-P-I
requires the prior subsequence S-I-S-S-1. This is because I-S-S-1 is a recurring
subsequence. Hence, the context of p; is defined as the shortest prior subsequence
of p; that uniquely determines p; in S. The degree of p; is the length of its context.
The degree of S is the maximum degree of all of the components of S. Therefore,
a simple sequence, where each component is unique, is a degree 1 sequence and
a complex sequence, which contains recurring subsequences, is a sequence whose
degree is greater than 1.

2.1 Basic Network Description

We now describe the basic components of the anticipation model. Fig. 1 shows
the architecture of the network. The network consists of a layer of n input termi-
nals, each associated with a shift-register (SR) assembly, and a layer of m context
detectors, each associated with a modulator. Each SR assembly contains r units,
arranged so that the input signal stimulating an input terminal shifts to the next
unit every time step. SR assemblies serve as STM for input signals. Each detec-
tor receives input from all SR units, and there are lateral connections, including
self-excitation, within the detector layer that form winner-take-all architecture.
These connections and competitive dynamics lead to the detector that receives
the greatest ascending input from SR units to be the sole winner of the entire

detector layer. In addition to the ascending and lateral connections, each de-
tector also connects mutually with its corresponding modulator, which in turn
connects directly with input terminals.

[2) N
T~ i' e :\\ o~ [~ winner-take-al
- - _] - ‘ --4- interconnection

040 5 o‘o‘o b o\o\o - =2

shift-register <o feeees modul ator

T

- terminals -+

Fig. 1. Architecture of the anticipation model. Thin solid lines denote modifiable con-
nections, and thick or dash lines denote fixed connections. The connections between
terminals and modulators are bidirectional.

The model internally anticipates the next component and compares it with
the external input through the modulator layer. Each modulator unit receives
upward connections from every individual terminal. In addition, it receives a
downward connection from its respective detector. An active detector enables
its corresponding modulator in the next time step (assuming some delay). Once
enabled, the modulator performs one-shot learning that updates its connection
weights from the terminals. Since only one terminal corresponding to an input
component can be active at any time step, one-shot learning leads to one-to-
one connection from an active terminal to an enabled modulator. Basically, this
one-shot learning establishes the association between a context detector and the
next input component. If the active terminal and the enabled modulator do not
match next time when the detector is activated, the anticipated activation of
the modulator will be absent. This mismatch will be detected by the modulator,
which in turn will send a signal to its respective detector to expand the context
that the detector is supposed to recognize.

2.2 Model Description

The activity of detector ¢ at time ¢, E;(t), is defined as:

Ei(t) = 9(_ Wiing(Vir(2), As), 6:) (1)
ik
9(@,y) = {g gtﬁe?wg{se)

where W; ;i is the connection weight from the kth SR unit of assembly j to
detector i. Vj,(t) is the activity of this SR unit at time ¢. 6; is an adjustable
threshold for the detector, which is initialized to 0. ; may be increased when
detector i wins winner-take-all competition in the detector layer, to be discussed
later. A; is defined later in (5). The activity Vji (t) is given as follows,

o Li(t) if K =1 (head unit)
Vir(t) = {maX(O, Vjgk—1(t — 1) —6) otherwise ®)

where I;(t) is the binary activity of terminal j, that is, I;(¢) = 1 if the cor-
responding symbol of terminal j is being presented to the network at time ¢,
and I;(t) = 0 otherwise. Due to the nature of sequential input, at most one
terminal has its I equal to 1 at ¢t. § is a decay parameter. Eq. 3 provides an
implementation of the STM model described earlier, i.e., an input activity is
held for a short time but decays gradually in a shift-register assembly. If assem-
bly j is stimulated by an input at time ¢, namely I;(¢) = 1, according to (3)
the end unit of the assembly gets activated at time ¢ + r — 1, and its activity
Vir(t+r—1) = max(0,1-6(r—1)). Apparently, the input cannot be held longer
than r steps, the limit of STM capacity. Given r, in order for the input to be
held for r steps, the parameter must be chosen so that 1 — §(r — 1) > 0. That
is, 0 <1/(r—1).

As mentioned earlier, all the detector units in the detector layer form a
winner-take-all network. The detailed dynamics of winner-take-all can be found
in Grossberg (1976). In such a competitive network, the activity of each detector
evolves until the network reaches equilibrium, at which point the detector with
the highest initial activity becomes the only active unit. The network takes a
short time to reach equilibrium. This time period should be much shorter than
the duration of one sequence component. Therefore, we assume that each discrete
time step is longer than the time needed for the winner-take-all mechanism to
settle at an equilibrium.

The learning rule for each detector 7 is a Hebbian rule (Hebb, 1949) plus
normalization to keep the overall weight a constant (von der Malsburg, 1973;
Wang & Arbib, 1990), and it is denoted as a normalized Hebbian rule,

Wik (t + 1) = Wi (t) + a0i(t)g(Vin (t), Ai) (4a)

A~

Wik (t+1)
aC + ij Wi jk(t + 1)
where a is a gain parameter or learning rate. A large a makes training fast.
It is easy to see that very large o leads to approximate one-shot learning. As

Wi ik t+1) = (4b)

mentioned earlier, winner-take-all competition in the detector layer will activate
a single unit from the layer. To indicate the outcome while omitting the details
of competitive dynamics, let O;(t) equal 1 if detector i is the winner of the
competition, or 0 otherwise. Function g, as defined in (2), serves as a gate to
let in the influences of only those SR units whose activities are greater than or
equal to A;. A; is the sensitivity parameter of unit ¢. The lower the sensitivity
parameter the more SR units can be sensed by a winning detector, and thus more
connections of the detector can be modified according to (4a). Furthermore, the
sensitivity parameter A; is adaptive by itself:

1 if d,’ =0
Ai= {max(O, 1-4(d; — 1)) ifd; >0 (5)

where d;, indicating the degree of detector 4, is a non-negative integer, initialized
to 0. d is the decay parameter introduced in (3). According to (5), A; is equal
to 1 when d; = 0 or 1, and decreases until 0 as d; increases. Since value 1 is the
activity level of the corresponding head unit when some assembly is stimulated,
detector 7 will only sense one SR unit - a head unit - when d; = 0 or 1. When
d; increases, more SR units are sensed. Except when d; = 0, d; is equal to the
number of units that detector ¢ can sense when it becomes a winner. The constant
C in (4b) is positive, and its role will be described in Sect. 3. The connection
weight W; ;i is initialized to 1/[r(1+ C) + €], where € is a small random number
introduced to break symmety between the inputs of the detectors, which may
cause problems for competitive dynamics.

Let unit z be the winner of the competition in the detector layer. As a result
of the updated connection weights, the activity of unit z will change when the
same input is presented in the future. More specifically, F, is monotonically non-
decreasing as learning takes place. This observation will be further discussed in
the next section. The resulting, increased, activity in (1) is then used to update
the threshold of unit z. This is generally described as:

0:;(t+1)=0;(t) + O:;(Ef (t+ 1) — 6:(t)) (6)

where Ef(t + 1) is the activity of 7 based on the new weights, i.e. Ef(t + 1) =
2k Wigr(t + 1)g(Vir(t), Ai). Thus, 6; is adjusted to if unit 7 is the winner.
Otherwise, #; remains the same. Due to this adjustment, unit z increases its
threshold so that it will be triggered only by the same subsequence whose com-
ponents have been sensed during weight updates by (4a). The above threshold
can be relaxed (lowered) a little when handling sequences with certain distor-
tions. This way, subsequences very close to the training one can also activate the
detector.

A modulator receives both a top-down connection from its corresponding
detector and bottom-up connections from input terminals (Fig. 1). We assume
that the top down connection modulates the bottom-up connections by a mul-
tiplicative operation. Thus, the activity of modulator ¢ is defined as,

Mit) = 0t —1) 3" Ry Ly 0 (7)

where R;; is a binary weight of the connection from terminal j to modulator
i. All R;;’s are initialized to 0. We assume that the top-down signal takes one
step to reach its modulator. Because at most one terminal is active (I(¢) = 1) at
any time, M;(t) is also a binary value. If O;(t — 1) = 1 and M;(t) = 0 then the
modulator sends a feedback signal to its corresponding detector. Upon receiving
this feedback signal, the detector increases its degree, thus lowering its sensitivity
parameter A; (see Eq. 5). Quantitatively, d; is adjusted as follows:

(8)

4 = {di+0i(t—1) if M;(t) =0
T d; otherwise
The situation where O;(t — 1) = 1 and M;(t) = 0 is referred to as a mismatch.
A mismatch occurs when an anticipated component in the sequence does not
appear, to be explained shortly. Thus the degree of a context detector increases
when a mismatch occurs.
Finally, one-shot learning is performed on the bottom-up connection weights
of the modulator of the winning detector z,

sz = Ij (t) (9)

This one-shot learning sets the connection weights of modulator z to the current
activities of the input terminals. Since there is only one active terminal at time
t,i.e., the one representing the current input symbol, only one bottom-up weight
of the modulator is equal to one, and all the others are zero. This training results
in a one-to-one association between a modulator and a terminal.

We now explain under what condition a mismatch occurs, which leads to an
increment of the degree of the winning detector. According to (7), a mismatch
occurs when O;(t —1) =1 and 2?21 R;;I;(t) = 0. Since at any time, only one
bottom-up weight of modulator i equals 1 and only one input terminal (I;) is ac-
tive, mismatch occurs when the non zero weight and the terminal with non zero
input do not coincide. But one-shot learning of Eq. 9 establishes a non zero link
only between a modulator and the next input terminal. Therefore, a mismatch
occurs if the link between detector ¢ and an input terminal established last time
when detector ¢ was activated does not coincide with the active input terminal
this time (at time ¢). The bottom-up links of a modulator established between
the modulator (or the corresponding detector) and the next input component
are used for the modulator to anticipate the next component in sequence gen-
eration. Thus a mismatch corresponds to where the anticipated input symbol
does not match with the actual input during sequence training. Since R;;’s are
all initialized to 0, following (7) a mismatch is bound to occur the first time a
pair of consecutive components is presented, which then increases the degree of
the detector for the first component from 0 to 1. If the sequence to be learned is

10

a simple sequence, like A-B-C-D-E, it suffices to increase the degrees of all in-
volved detectors to 1. For complex sequences , though, the degree of the relevant
detectors need further increase until no mismatch occurs.

The training is repeated each time step. After all sequence components have
been presented, the entire cycle of training, referred to as a training sweep, is
repeated. The training phase is completed when there is no mismatch during
the last training sweep. In this case the network correctly anticipates the next
component for the entire sequence. The completion of the learning phase can be
detected in various ways. For example, a global unit can be introduced to sum
up all feedback from modulators to their respective context detectors during a
training sweep. In this case, an inactive global unit by the end of a sweep signals
the end of the training phase.

3 Analytical Results

In this section, we summarize several analytical results on the anticipation model.
These results are listed in the form of propositions without proofs, and the
interested reader is referred to Wang and Yuwono (1995; 1996) for detailed proofs
of these results.

Propositionl. The normalized Hebbian rule of (4) with the following choice
of parameter C
or(r—1) 0+2
1
6 [+ 1-46(r— 1)]

leads to a property called temporal masking: the detector of sequence S is pre-
ferred to the detectors of the right subsequences of S. In other words, when
sequence S occurs, the detector that recognizes S masks those detectors that
recognize the right subsequences of S. This property is called temporal masking,
following the term masking fields introduced by Cohen and Grossberg (Cohen
& Grossberg, 1987), which state that larger spatial patterns are preferred to
smaller ones when activating their corresponding detectors.

C> (10)

Inequality (10) tells us how to choose C based on the value of § in order
to ensure that the detector of a sequence masks the detectors of its left subse-
quences. The smaller is §, the smaller is the right-hand-side of (10), and thus
the smaller C' can be chosen to satisfy the inequality. As a degenerate case, if
d = 0, (10) becomes C' > 0, and this corresponds to exactly the condition of
forming masking fields in static pattern recognition (Cohen & Grossberg, 1987).
Therefore, (10) includes masking fields as a special case. In temporal processing,
¢ reflects forgetting in STM, and thus cannot be 0. On the other hand, § should
be smaller than 1/(r — 1) in order to fully utilize SR units for STM (see the
discussion in Sect. 2.2), thus the degree of the learnable sequences (see Eq. 3).

Proposition2. The following two conclusions result from the learning algo-
rithm: (a) At any time, a detector can be triggered by only a single sequence; (b)
Except for initial training, once a unit is activated by sequence S, it can only be

11

activated by S or a sequence that has S as a right subsequence. Because of (a),
one can say that a detector is tuned to the unique sequence which can trigger a
detector.

Proposition3. An anticipation model with m detectors, and » SR units for
each of n SR assemblies can learn to generate an arbitrary sequence S of length
< m and degree < r, where S is composed of symbols from I" with |I'| < n.

Once training is completed, the network can be used to generate the se-
quence it has been trained on. During sequence generation, the learned connec-
tions from input terminals to modulators are used reversely for producing input
components. Sequence generation is triggered by the presentation of the first
component, or a sequence identifier. This presentation will be able to trigger an
appropriate detector which then, through its modulator, leads to the activation
of the second component. In turn, the newly activated terminal adds to STM,
which then forms an appropriate context to generate another component in the
sequence. This process continues until the entire sequence is generated.

Aside from Proposition 3, learning is efficient - it generally takes just a few
training sweeps to acquire a sequence. This is because the anticipation model
employs the strategy of least commitment. The model views, as a default, the
sequence to be learned as a simple one, and expands the contexts of sequence
components only when necessary. Another feature of the model is that, depend-
ing on the nature of the sequence, the system can yield significant sharing among
context detectors: the same detector may be used for anticipating the same sym-
bol that occurs many times in a sequence. As a result, the system needs fewer
detectors to learn complex sequences than the model of Wang and Arbib (1990;
1993).

The above results are about learning a single sequence, whereby a sequence is
presented to the network one component at a time during training. When dealing
with multiple sequences, each sequence is assumed to be unique, because learn-
ing a sequence that has been acquired corresponds to recalling the sequence. We
assume that the first component of a sequence represents the unique identifier
of the sequence. To facilitate the following exposition, we define a sequential
learning procedure as the following. The training process proceeds in rounds. In
the first round, the first sequence is presented to the network in repeated sweeps
until the network has learned the sequence. The second round starts with the
presentation of the second sequence. Once the second sequence is acquired by
the network, the network is checked to see if it can generate the first sequence
correctly when presented with the identifier of the sequence. If the network can
generate the first sequence, the second round ends. Otherwise, the first sequence
is brought back for retraining. In this case, the first sequence is said to be in-
terfered by the acquisition of the second sequence. If the first sequence needs to
be retrained, the second sequence needs to be checked again after the retraining
of the first sequence is completed, since the latter lead to the interference of
the second sequence. The second round completes when both sequences can be
produced by the network. In the third round, the third sequence is presented to

12

the network repeatedly until it has been learned. The network is then checked to
see if it can generate the first two sequences; if yes, the third round is completed;
if not, retraining is conducted. In the latter case, retraining is always conducted
on the sequences that are interfered. The system sequentially checks and retrains
each sequence until every one of the three sequences can be generated by the
network - that ends the third round. Later sequences are sequentially trained
in the same manner. It is possible that a sequence that is not interfered when
acquiring the latest sequence gets interfered as a result of the retraining of some
other interfered sequences. Because of this, retraining is conducted in a sys-
tematic fashion as the following. All of the previous sequences plus the current
one are checked sequentially and retrained if interfered. This retraining process
is conducted repeatedly until no more interference occurs for every sequence
learned so far. Each such process is called a retraining cycle. Thus a round in
general consists of repeated retraining cycles.

If a system exhibits catastrophic interference, it cannot successfully complete
a sequential learning procedure with multiple sequences. The system instead will
show endless oscillations between learning and relearning different sequences. In
the case of two sequences, for example, the system can only acquire one sequence
- the latest one used in a sequential training procedure. Thus, the system will
be stuck in the second round.

Proposition4d. Given sufficient numbers of detectors and SR units for each
shift-register assembly, the anticipation model can learn to produce a finite num-
ber of sequences sequentially.

In Proposition 4, the number of units in each SR assembly, or the STM
capacity, must be sufficient to handle long temporal dependencies in the context
of multiple sequences. It should be clear that the complexity of a sequence may
increase when it is trained with other sequences. For example, X-A-B-C and Y-
A-B-D are both simple sequences when taken separately. But when the system
needs to memorize both sequences, A-B becomes a repeating sequence, and
as a result both become complex sequences . We define the degree of a set
of sequences as the maximum length of all the shortest prior sequences that
uniquely determine all the components of all the sequences in the set. Because
the first component of each sequence is its unique identifier, the definition of the
set degree does not depend on how this set of sequences is ordered. Moreover,
the degree of a set of sequences must be smaller than the length of the longest
sequence in the set. With this definition, it is sufficient to satisfy the condition
of Proposition 3 if the number of SR units in each assembly is greater than or
equal to the set degree.

The sequential learning procedure is not necessary for the validity of Propo-
sition 4. A more natural procedure of sequential training is postpone retraining
until interfered sequences need to be recalled in a specific application. This pro-
cedure is more consistent with the process of human learning. One often does
not notice memory interference until being tested in a psychological experiment
or daily life. This learning procedure blurs the difference between learning a new

13

sequence for the first time and relearning an interfered sequence. Proposition 4
essentially implies that more and more sequences will be acquired by the system
as the learning experience of the model extends. This is an important point. As
a result, the anticipation model can be viewed as an open learning system. No
rigid procedure for sequential training is needed for the system to increase its
long-term memory capacity. The model automatically increases the capacity by
just focusing on learning the current sequence. Also, the number of detectors
needed to satisfy Proposition 4 can be significantly smaller than the upper limit
of Ef:1(|S,-| —1) for k sequences. This is because detectors can be shared within
the same sequence as well as across different sequences. This will be further
discussed in the next section.

4 Simulation Results

To illustrate the model’s capability in learning an arbitrarily complex sequence,
we show the following computer simulation for learning input sequence <7TO -
BE - OR - NOT - TO - BE>. The simulated network has 24 detector units, 24
terminals, and 6 SR units for each shift-register assembly (144 SR units in total).
Figure 2 shows the activity trace of the network from a simulation run. We use
symbol ‘#’ as the end marker, and symbol ‘-’ as a distinct symbol separating
meaningful words. The network learned the sequence in 5 training sweeps. In
the last training sweep, the system correctly anticipates every component of the
sequence, as shown in the last column of the figure. After this training, the entire
sequence can be correctly generated by the presentation of its first component, T
in this case, and the activity trace will be the same as the last sweep of training.
The degree of the sequence is 6, used to set r.

i W L' n1 ! | I | ! !
E 1 [| | | | |
N | | 1 | | | |
ol N MWEN 'R RETN [l B | ‘ ‘
R | | | 1 | | | |
| i 1 | | | | |
|1 B NN O EEN 0N [| | \ |
| | | \ Ly
Training sweep t
] Actual] Anticipated Anticipated = Actual

Fig. 2. Training and generation of the sequence <TO-BE-OR-NOT-TO-BE>. The
activity traces of the input terminals are shown, where a black box represents an actual
terminal activity, a gray box represents an anticipated activity that does not match the
actual input, and a white box represents a match between an anticipated and an actual
input activity. The training phase takes 5 training sweeps. The generation process is
initiated by presenting the first component of the sequence, T. The parameter values
used are: @ = 0.2, § = 0.1, and C = 3.0.

14

Once one sequence is learned, a right subsequence of the sequence can be gen-
erated from a middle point of the sequence. In the above example, with symbol
R as the initial input the network will correctly generate the remaining part of
the sequence <-NOT - TO - BE>. Component R was chosen because it forms
the degree 1 context for its successor ‘-’. In general, it requires a subsequence
as an input to generate the remaining part of the sequence. A subsequence can
activate an detector which then produces a certain component. The component
can then join the subsequence to activate another detector, and so on, until the
remaining part is fully generated. This feature of the model conforms with the
experience that one can often continue a familiar song or a piece of music being
exposed to a part of it.

Proposition 4 guarantees that the anticipation model does not suffer from
catastrophic interference. Interference exists nonetheless in sequential training,
because committed detectors may be seized by later training or retraining to
make different anticipation. For example, assume that the system is sequen-
tially trained with two simple sequences, S,: C-A-T and Sy: E-A-R. After S, is
learned, the training with S, will lead to the following situation. The previously
established link from A to T will be replaced by a link from E-A to R. Thus, S,
is interfered and cannot be generated after Sy is acquired. The critical question
is what kind of interference is exhibited by the model, and how severely does it
affect learning performance? The extent of interference depends on the amount
of overlap between the sequence to be learned and the sequences already stored
in the memory. Clearly, if a new sequence has no component in common with
the stored sequences, the sequence can be trained as if nothing had been learned
by the model. In this sense, interference is caused by the similarity between
the sequence and the memory. This is consistent with psychological studies on
retroactive interference (see Sect. 1.2).

Knowing that the amount of interference, and thus retraining, depends on
the overlap of the sequences to be learned, we wanted to evaluate the system
by arbitrarily selecting a domain that contains a lot of overlaps among the se-
quences. The database of the sequences used consists of the titles of all sessions
that were held during the 1994 IEEE International Conference on Neural Net-
works (ICNN-94). This database has 97 sequences, as listed in Table 1. These
titles are listed without any change and in exactly the same order as they appear
in the final conference program, even retaining the obvious mistakes printed on
the program. Evident from the table, there are many overlapping subsequences
within the database. Thus, these sequences provide a good testbed for evaluating
sequential training and retroactive interference.

For training with this database, the chosen network has 131 input terminals -
34 for the symbol set (26 English letters plus “#”, “” (space), “.”, “&”, “?”, “-7,
“”, and “/”) and 97 for the identifiers of the 97 sequences. Each SR assembly
contains 40 units. Also, the network needs at least 1,088 detectors and 1,088
modulators. Hence, the network has a total of 7,567 units. The parameters of
the network are: @ = 0.2, § = 1/40 and C = 535. To measure the extent of
interference, we record the number of retraining sweeps required to eliminate

15

Table 1. Sequence Base for Sequential Training

no.|Sequence no.|Sequence

1 |[Social & philosophical implications of 50 |Image recognition
computational intelligence

2 |Neurocontrol research: real-world perspectives 51 |Medical applications

3 |Fuzzy neural systems 52 |Parallel architectures

4 |Advanced analog neural networks and applications|53 [Associative memory I

5 |Neural networks for control 54 |Pattern recognition IV

6 |Neural networks implementations 55 |Supervised learning III

7 |Hybrid systems I.D. 56 |Learning and memory IV

8 |Artificial life 57 |Intelligent control IV

9 |Learning and recognition for intelligent control 58 |Economic/Finance/Business

applications

10 |Artificially intelligent neural networks 59 |Machine vision I

11 |Hybrid systems II 60 |Machine vision

12 |Supervised learning X 61 |Architecture I

13 |Intelligent neural controllers: algorithms and 62 |Supervised learning V
applications

14 |Who makes the rules? 63 |Speech I

15 |Pulsed neural networks 64 |Robotics

16 |Fuzzy neural systems II 65 |Associative memory II

17 |Neural networks applications to estimation and 66 |Medical applications II
identification

18 |Adaptive resonance theory neural networks 67 |Modular/Digital implementations

19 |Analog neural chips and machines 68 |Pattern recognition VI

20 |Learning and memory I 69 |Robotics 11

21 |Pattern recognition I 70 |Unsupervised learning I

22 |Supervised learning I 71 |Optimization I

23 |Intelligent control 1 72 |Applications in image recognition

24 |Neurobiology 73 |Architecture III

25 |Cognitive science 74 |Optimization IT

26 |Image processing II1 75 |Supervised learning VII

27 |Neural network implementation IT 76 |Associative memory IV

28 |Applications of neural networks to power systems |77 |Robotics ITI

29 |Neural system hardware I 78 |Speech III

30 |Time series prediction and analysis 79 |Unsupervised learning II

31 |Probabilistic neural networks and radial basis 80 [Neurodynamics I
function networks

32 |Pattern recognition II 81 |Applications I

33 |Supervised learning I 82 |Applied industrial manufacturing

34 |Image processing I 83 |Applications II

35 |Learning and memory I 84 |Architecture IV

36 |Hybrid systems III 85 |Optimization III

37 |Artificially intelligent networks II 86 |Applications in image recognition 11

38 |Fast learning for neural networks 87 |Unsupervised learning III

39 |Industry application of neural networks 88 |[Supervised learning VIII

40 [Neural systems hardware II 89 |Neurodynamics II

41 |Image processing II 90 |Computational intelligence

42 |Nonlinear PCA neural networks 91 |Optimization using Hopfield networks

43 |Intelligent control III 92 |[Supervised learning IX

44 |Pattern recognition IIT 93 |Applications to communications

45 |Supervised learning III 94 |Applications III

46 |Applications in power 95 |Unsupervised learning IV

47 |Time series prediction and analysis IT 96 |Optimization IV

48 |Learning and memory III 97 |Applications

49 |Intelligent robotics

16

all interference for every round of sequential training. This number is a good
indicator of how much retraining is needed to store all of the sequences that
have been sequentially presented to the system. Also, we record the number of
intact uninterfered (intact) sequences right after the acquisition of the latest
sequence. Figure 3 shows the number of intact sequences and the number of
retraining sweeps plotted against training rounds.

,,,,,,,, number of intact sequences
—s— number of retraining sweeps

number of rounds

Fig. 3. The number of intact sequences and the number of retraining sweeps with
respect to training rounds during training with the Table 1 database.

Several conclusions can be drawn from this simulation result. The first and
the most important conclusion is that the number of retraining sweeps seems
independent of the size of the previous memory. The overall curve for retraining
sweeps remains flat, even though there is large variation across different train-
ing rounds. We view this result as particularly significant because it suggests
that, in the anticipation model, the amount of interference caused by learning
a new sequence does not increase with the number of previously memorized se-
quences. This conclusion not only conforms intuitively with human performance
of long-term learning, but also makes the model feasible to provide a reliable se-
quential memory that can be incrementally updated later on. Hence, new items
can be incorporated into the memory without being limited by those items al-
ready in the memory. We refer to this property of sequential learning/memory
as capacity-independent incremental learning/memory. The anticipation model
exhibits this property because a learned sequence leaves its traces across the
network, involving a set of distributed associations between subsequences and
context detectors (see Fig. 1). On the other hand, each context detector stores its
context locally. When a new sequence is learned, it employs a group of context

17

detectors, some of which may have been committed, thus causing interference.
But as the sequential memor y becomes large, so is the number of context de-
tectors. Out of these detectors, only a certain number of them will be interfered
as a result of learning a new sequence. The number of interfered detectors tends
to relate to the new sequence itself, not the size of the sequential memory . Con-
trasting capacity-independent incremental learning , catastrophic interference
would require simultaneous retraining of the entire memory when a new item is
to be learned. The cost of retraining when catastrophic interference occurs can
be prohibitive if the size of memory is not so small. Ruiz de Angulo and Torras
(1995) presented a study on sequential learning of multilayer perceptrons, and
reported that their model can learn sequentially several most recent patterns.
Although it is a better result than original multilayer perceptrons, their model
appears unable to support a sizable memory. The high variations in the number
of retraining sweeps are caused by the overlaps between the stored sequences.
For long overlapping subsequences, many sweeps may be needed to resolve the
interference caused by overlaps.

The second conclusion is that the number of intact sequences increases with
rounds of sequential training approximately linearly. This is to be expected given
the result on the amount of retraining. Again, there are considerable variations
from one round to another. Since interference is caused by the overlap between
a new sequence and the stored sequences, another way of looking at this result is
the following. As the memory expands, relatively the fewer items in the memory
will overlap with the new sequence.

Figure 4 illustrates the detailed retraining process during round 96. Right
after the model has learned Sgg of Table 1, the only interfered sequence is Si4.
After S14 is retrained, Syg is interfered and has to be retrained. This finishes the
first retraining cycle for round 96. During the second cycle, S7; is found to be
interfered. After Sy; is retrained, Syg is interfered again and has to be retrained.
The retraining with S7; alternates with that of Sgg for three more cycles. Notice
the large overlap between S7;: “OPTIMIZATIONT’ and Sgg: “OPTIMIZATION
IV”. In cycle 6, several more sequences are interfered. After retraining them
sequentially, all of the first 96 sequences have been learned successfully.

To examine the amount of detector sharing, we compare the detector use in
the anticipation model with one in which no detector is shared by different com-
ponents (see for example Wang & Arbib, 1993). Without detector sharing, the
number of detectors needed to acquire all of the 97 sequences is Z?Ll (1S;] = 1),
which equals 2520. As stated earlier, the anticipation model needs 1,088 detec-
tors to learn all of the sequences. Thus, the detector sharing in the anticipation
model cuts required context detectors by nearly a factor of 2.5.

5 Context Learning by Chunking

Even though the amount of retraining does not depend on the number of stored
sequences in the memory, retraining can still be expensive. As shown in Fig. 3,
it usually takes dozens of retraining sweeps to fully incorporate a new sequence.

18

IN<H4TOZZ >

57‘1
'
T

TH e

*

1 2 3 4
retraining cycle 2

v INS<CHOIDVOZEZrA—IM>

=

1 2 3 4
retraining cycle 1

S S96 S So6
A L L A L L
)]])]]
M L L M L L
N T T N T T
o o
P : : 4 T :
T T
v T T v T T
z z
. { ‘ . i ‘
1 2 3 4 t 1 2 3 4 t
retraining cycle 3 retraining cycle 4
S71 \
A s
¢ v
c T
H
7L S0 E .
A s L G H
v v v
| ! T H T
M 1 1 I 1
N : : L ;
o H H M H
P ! T N .
T H H o H
v : : P ;
z R
o : 1 s U
t T
T 2 3 1 U '
retraining cycle 5 v H
z v
z T
v
T 2 t
retraining cycle 6
\ Sr2 S8 Se8
A L s H
c ' v T
T T T
D H H H
E ' v T
G H H H
H ' v T
X T T T
. T T T
N ' v +
I T T T
. T T T
s ' v +
S T T T
U ' ' '
v T T T
z v v v
z T T T
v v v ¢
3 1 5 3 7 B

retraining cycle 6

Fig. 4. Retraining process during round 96 of Fig. 3. Each row represents the activity
trace of an input terminal indicated by the corresponding input symbol. White boxes
represent correctly anticipated terminal activities in sequence generation, whereas gray
boxes represent terminal activities which do not match anticipated ones. Solid vertical
lines separate training sweeps of different sequences, and dash vertical lines separate
training sweeps of the same sequence. Cycle numbers are indicated under each panel.
Time runs from left to right.

19

Our analysis of the model indicates that repeated sweeps are usually caused by
the need to commit a new detector and gradually expand the context of that
detector in order to resolve ambiguities caused by long recurring subsequences.
For example, consider the situation that the system has stored the following two
sequences

Sc: “JOE LIKES 07
Sq: “JAN LIKES 17,

and the network is to learn the sequence
Se: “DEB LIKES 27.

There is an overlapping subsequence between S, and Sy: “LIKES”. A common
situation before S, is learned is that there are two detectors, say u; and us,
tuned to the contexts of “F LIKES” and “N LIKES”, respectively. While S, is
being trained, neither uq nor us can be activated and a new detector, say us,
must be committed to anticipate “2” (u3 needs to recognize only “S” since “S”
cannot activate either u; or us). Suppose now the network is to learn yet another
sequence,

Sy “DIK LIKES 3”.

S. and Sy will take turns to capture uz and gradually increase its degree until
ug can detect either “B LIKES” or “K LIKES’. Eventually, another detector,
say ug4, will be committed for the other sequence. This gradual process of degree
increment is the major factor causing numerous retraining sweeps.

The above observation has led to the following extended model for cutting the
amount of retraining. The basic idea is to incorporate a chunking mechanism so
that newly committed detectors may expand their contexts from chunks formed
previously, instead of from the scratch.

The extended model consists of a dual architecture, shown in Figure 5. The
dual architecture contains a generation network (on the left of Fig. 5), which is
almost the same as the original architecture (see Fig. 1), and another similar
network, called the chunking network (on the right of Fig. 5). The two networks
are mutually connected at the top. The chucking network does not produce
anticipation, and thus does not need a layer of modulators. Because of this, the
detectors in this network do not increase their degrees by a mismatch. Besides,
the chunking network mirrors every process occurring in the generation network.

At any time step during training, there is a pair of winning detectors in the
dual architecture, each corresponding to one network. The algorithm is designed
so that the winning detector of the chunking network has a degree less by 1
than the degree of the winning detector of the generation network. In addition,
a newly committed detector of the generation network may take a degree which
is 1 plus the degree of the activated chunk detector. We refer to the detectors
of the chunking network as chunk detectors. The interaction between the two
networks takes place via the two-way connections between the two networks

20

generation network " chunking network
... global input

é..v global output
L
AN

context y ® ‘ ----- chunk
detectors NN | o mNC e e detectors

e

S
“}0

SRS

Fig. 5. Dual architecture of the extended anticipation model for chunking. The archi-
tecture consists of two mutually connected networks: the generation network and the
chunking network. The connections to and from global input and output units have
fixed weights. See the caption of Fig. 1 for other notations.

(Fig. 5). The introduction of the chunk detectors can speed up learning when a
subsequence (a chunk) occurs multiple times in the input flow. More specifically,
assume that a context detector u; of degree d has learned to recognize a context,
and a corresponding chunk detector u; of degree d—1 has learned a chunk which
is a right subsequence of the context learned by u;. If the chunk occurs at least
twice, then there will be a time when u; is activated but u; is not. Through
the learning process an uncommitted context detector, say u;, is activated (thus
committed). Instead of starting from degree 1, u; starts its degree at the value of
d, leading to a significant reduction of training/retraining sweeps. The speedup
in sequential training comes with a cost. Obviously, the addition of another
network - the chunking network - adds both to the size of the overall network and
to additional computing time. The formal description of the chunking network
is given in Wang and Yuwono (1996).

Before presenting simulation results with chunking, we explain using the
earlier example how the dual architecture helps speed up training. After training
with S, and Sy, there will be a context detector tuned to either “F LIKES” or
“N LIKES’. This, in turn, will lead to the formation of the chunk “LIKES’;
that is, a chunk detector will be tuned to “LIKES’ since the detector has a
degree that is one less than that of the corresponding context detector. After
the chunk is formed, Se can be acquired easily - the detector that is trained to
associate with ”2” can obtain its appropriate degree in just one sweep, thanks
to the formation of the chunk “LIKES”. Similarly, Sy can be acquired quickly.

To show the effectiveness of the chunking network, we present simulations
using the same sequences (Table 1) and the same procedure as in the previous

21

section. To complete the training, the dual architecture requires 1,234 context
detectors as compared to 1,088 without chunking, and 436 chunk detectors.
Other parts of the network are the same as used in the previous section. Figure
6 gives the result. A comparison between Fig. 6 and in Fig. 3 shows that the
former ends up with only a few more intact sequences. This indicates that, in the
dual architecture, later training causes almost the same amount of interference.
On the other hand, when the chunking is incorporated, the number of retraining
sweeps on the whole is cut dramatically. The total number of retraining sweeps
during the entire training is 1,104 when the chunking network is included. This
is compared to 3,029 without the chunking network, hence a reduction of the
overall amount of sequential training almost by three-fold.

"""" number of intact sequences
—a— number of retraining sweeps

80|

70|

60|

50|

40|

T b /W\/\/\/\ I
S I PN

T 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 6. 65676971737577798183858789919395 7

number of rounds

Fig. 6. The number of intact sequences and the number of retraining sweeps with
respect to training rounds during training with the Table 1 database with the dual
architecture.

For a comparison with Fig. 4 which illustrates the retraining process of round
96, Figure 7 shows the detailed retraining process during round 96 using the dual
architecture. Right after Sgg is learned, three sequences are interfered: Ssg, Sgo
and Sgg. After Ss9: “MACHINE VISION 17 is retrained, Sgo: “MACHINE VI-
SIONTII” can be correctly generated without further retraining. This interesting
situation arises because the two sequences have a large overlap and it is the
overlapping part that is interfered during training Sgg. Thus, when the over-
lapping part is regained during retraining with Ssg9, both Ss9 and Sgo can be
recalled correctly. The system needs another sweep to regain Sgg. After the first
retraining cycle, all of the first 96 sequences have been acquired.

22

I<HWTTVOZZC-—IOMO>

T T
1 2 3 4 5
retraining cycle 1

Fig. 7. Retraining process during round 96 of Fig. 6. The interference with Seo is
eliminated as a result of retraining Sso. See the caption of Fig. 4 for notations.

6 Further Discussion

The idea of anticipation-based learning seems to be consistent with psychological
evidence on human learning of sequential behaviors. Meyer (1956) noted that
expectation is key to music cognition. When a temporal sequence is repeatedly
presented to subjects, according to Nissen and Bullemer (1987), the reaction to a
particular component in the sequence becomes faster and faster, and the reaction
time to a component in a repeated sequence is much shorter than when it occurs
in random sequences. The latter finding rules out the possibility that the reduc-
tion in reaction time is due to the familiarity with a component. These findings
have been confirmed by later experiments (Willingham et al., 1989; Cohen et
al., 1990). The results suggest that the subjects have developed with practice
some form of anticipation before a particular component actually occurs in the
sequence. It is observed that in learning temporal sequences human subjects can
even be explicitly aware of the temporal structure of a sequence, and predict
what comes next in the sequence (Nissen & Bullemer, 1987; Willingham et al.,
1989; Curran & Keele, 1993).

As analyzed earlier, the anticipation model does not suffer from catastrophic
interference. When multiple sequences are presented to the model sequentially,
some degree of interference occurs. But this kind of interference can be overcome
by retraining the interfered sequences. Extensive computer simulations indicate
that the amount of retraining does not increase as the number of sequences stored
in the model increases. The anticipation model is characteristic of capacity-
independent incremental learning during sequential training. These results, plus
the fact that interference is caused by the overlap between a new sequence and
stored sequences, suggest that the behavior of the model in sequential learning
resembles aspects of retroactive interference.

After a sequence S is learned, it can be generated by its beginning component
- the sequence identifier. Partial sequence generation can also be elicited by a
subsequence of S. If a sufficient subsequence is presented, the rest of S can be
generated entirely. Partial generation may stop before the rest of the sequence
is completed. For example, after the sequence: X-A-B-C-D-E-A-B-C-D-F is

23

learned, the presentation of A activates the subsequence B-C-D, but not the
rest. The anticipation model exhibits partial generation because a sequence is
stored as a chain of associations, each of which is triggered by a context, or a
subsequence. This property of the model is consistent with our experience that
we are able to pick up a familiar song, a melody, or an action sequence (like Tai
Chi) from the middle.

As shown in Sect. 5, the model’s capability of chunking repeated subsequences
within a sequence and between sequences substantially reduces the amount of
retraining and improves the overall efficiency of learning. Without chunking,
recurring subsequences must be learned from the scratch. The basic idea behind
current chunking is to learn a recurring subsequence just once and store it as a
chunk, so that the next time the subsequence occurs the model can simply use
the chunk as a basic component. Chunking is a fundamental characteristic of
human information processing (Miller, 1956; Simon, 1974). We note that, though
the present model has addressed some aspects of chunking, the general issue of
automatic chunking is very challenging and remains an open problem. What
constitutes a chunk? A chunk is often taken to be a meaningful subsequence
(such as a word), but it may also be just a convenient way of breaking a long
sequence into shorter subsequences for facilitating further processing. In the
anticipation model, a chunk corresponds to a repeated subsequence. This is a
reasonable definition in the present context. The model, through its mechanism
of context learning , provides a neural network basis for forming such chunks.
On the other hand, this definition of a chunk does not capture the richness
of general chunking. Chunking depends critically on the STM capacity (Miller,
1956). Furthermore, different people, may have different ways of chunking the
same sequence in order to overcome STM limitations and memorize the sequence.
Chunking also depends on general knowledge and custom. For example, we tend
to chunk a 10-digit telephone number in the U.S. into three chunks: the first three
digits corresponding to an area code, then the next three digits to a district code,
and the last four digits. However, the same 10-digit number may well be chunked
differently in another country.

Proposition 4 and the property of capacity-independent incremental learning
together enable the anticipation model to perform long-term automatic learning
of temporal sequences. The system is both adaptive and stable, and its long-term
memory capacity increases gradually as learning proceeds. Thus, the anticipation
model provides a sequential memory , which can store and recall a large number
of complex sequences .

7 Summary

In this chapter, we have presented the anticipation model - a neural network
model - that learns and generate complex temporal sequences. In the anticipa-
tion model, sequences are acquired by one-shot learning that obeys a normalized
Hebbian learning rule, in combination with a competitive mechanism realized
by a winner-take-all network. During learning and generation, the network ac-

24

tively anticipates the next component on the basis of a previously anticipated
context. A mismatch between the anticipation and the actual input triggers self-
organization of context expansion. Analytical results on the anticipation model,
presented in Sect. 3, ensure that the model can learn to generate any complex
sequences . Multiple sequences are acquired by the model in an incremental
fashion, and large-scale simulation results strongly suggest that the model ex-
hibits capacity-independent incremental learning . As a result, the anticipation
model provides an effective sequential memory . In addition, by incorporating
a form of chunking we have demonstrated significant performance improvement
in learning many sequences that have significant overlaps.

Finally, the anticipation model argues (see also Wang & Arbib, 1993) from a
computational perspective for the chaining theory of temporal behavior, which
was rejected by Lashley (1951) but supported by recent psychological studies of
serial order organization (Murdock, 1987; Lewandowsky & Murdock Jr., 1989).
Simple associative chaining between adjacent sequence components is too lim-
ited to be true. However, if chaining between remote components and chunking
of subsequences into high-order components are allowed, the basic idea of asso-
ciative chaining can give rise to much more complex temporal behaviors, going
much beyond what was realized by Lashley (1951). The anticipation model shows
how learning and generation of complex temporal sequences can be achieved by
self-organizing in a neural network.

References

Baram, Y. (1994). Memorizing binary vector sequences by a sparsely encoded
network. IEEE Transactions on Neural Networks, 5(6), 974-981.

Barnes, J. M., & Underwood, B. J. (1959). ‘Fate’ of first-list associations in
transfer theory. Journal of Experimental Psychology, 58, 97-105.

Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2),
157-166.

Bower, G. H., Thompson-Schill, S.; & Tulving, E. (1994). Reducing retroac-
tive interference: An interference analysis. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 20, 51-66.

Bradski, G., Carpenter, G. A., & Grossberg, S. (1994). STORE working mem-
ory networks for storage and recall of arbitrary temporal sequences. Biological
Cybernetics, 71, 469-480.

Buhmann, J., & Schulten, K. (1987). Noise-driven temporal association in neural
networks. Europhysics Letters, 4, 1205-1209.

25

Carpenter, G. A., & Grossberg, S. (1987). A massively parallel architecture for
a self-organizing neural pattern recognition machine. Computer Vision, Graphs,
and Imaging Processing, 37, 54-115.

Chandler, C. C. (1993). Accessing related events increases retroactive interfer-
ence in a matching test. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 19, 967-974.

Cohen, A., Ivry, R. 1., & Keele, S. W. (1990). Attention and structure in sequence
learning. Journal of Experimenal Psychology, 16, 17-30.

Cohen, M. A., & Grossberg, S. (1987). Masking fields: A massively parallel neu-
ral architecture for learning, recognizing, and predicting multiple groupings of
patterned data. Applied Optics, 26, 1866-1891.

Crooks, R. L., & Stein, J. (1991). Psychology: Science, behavior, and life. Fort
Worth, TX: Holt, Rinehart and Winston.

Curran, T., & Keele, S. W. (1993). Attentional and nonattentional forms of
sequence learning. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 19, 189-202.

Diederich, S., & Opper, M. (1987). Learning of correlated patterns in spin-like
glass networks by local learning rules. Physical Review Letters, 58, 949-952.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-211.

French, R. M. (1994). Dynamically constraining connectionist networks to pro-
duce distributed, orthogonal representations to reduce catastrophic interference.
In Proceedings of the Sizteenth Annual Conference of the Cognitive Science So-
ciety, (pp. 335-340). Hillsdale, NJ: Erlbaum.

Granger, R., Whitson, J., Larson, J., & Lynch, G. (1994). Non-Hebbian prop-
erties of long-term potentiation enable high-capacity encoding of temporal se-
quences. Proceedings of the National Academy of Sciences of USA, 91, 10104-
10108.

Grossberg, S. (1976). Adaptive pattern classification and universal recoding: I.
Parallel development and coding of neural feature detectors. Biological Cyber-
netics, 23, 121-134.

Grossberg, S. (1987). Competitive learning: From interactive activation to adap-
tive resonance. Cognitive Science, 11, 23-63.

Guyon, 1., Personnaz, L., Nadal, J. P., & Dreyfus, G. (1988). Storage and re-
trieval of complex sequences in neural networks. Physics Review A, 38, 6365-
6372.

Hebb, D. O. (1949). The Organization of behavior. New York: Wiley & Sons.

26

Hertz, H., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of
neural computation. Redwood City, CA: Addison-Wesley.

Heskes, T. M., & Gielen, S. (1992). Retrieval of pattern sequences at variable
speeds in a neural network with delays. Neural Networks, bf 5, 145-152.

Jordan, M. I. (1986). Attractor dynamics and parallelism in a connectionist
sequential machine. In Proceedings of the Fighth Annual Conference of the Cog-
nitive Science Society, (pp. 531-546). Hillsdale, NJ: Erlbaum.

Kanerva, P. (1988). Sparse distributed memory. Cambridge, MA: MIT Press.

Kantor, 1., & Sompolinsky, H. (1987). Associative recall of memory without
errors. Physics Review A, bf 35, 380-392.

Kruschke, J. K. (1992). ALCOVE: An exemplar-based model of category learn-
ing. Psychological Review, 99, 22-44.

Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress
(Ed.), Cerebral mechanisms in behavior (pp. 112-146). New York: Wiley & Sons.

Lewandowsky, S., & Murdock Jr., B. B. (1989). Memory for serial order. Psy-
chological Review, 96, 25-57.

McCloskey, M., & Cohen, N. J. (1989). Catastrophic interference in connec-
tionist networks: The sequential learning problem. Psychology of Learning and
Motivation, 24, 109-165.

Meyer, L. B. (1956). Emotion and meaning in music. Chicago, IL: University of
Chicago Press.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits
on our capacity for processing information. Psychological Review, 63, 81-97.

Mozer, M. C. (1993). Neural net architectures for temporal sequence processing.
In A. Weigend & N. Gershenfeld (Ed.), Predicting the future and understanding
the past (pp. 243-264). Redwood City, CA: Addison-Wesley.

Murdock, B. B. J. (1987). Serial-order effects in a distributed-memory model.
In D. S. Gorfein & R. R. Hoffman (Ed.), Memory and learning: The Ebbinghaus
centennial conference (pp. 227-310). Hillsdale, NJ: Erlbaum.

Nissen, M. J., & Bullemer, P. (1987). Attentional requirements of learning: Ev-
idence from performance measures. Cognitive Psychology, 19, 1-32.

Ratcliff, R. (1990). Connectionist models of recognition memory: Constraints
imposed by learning and forgetting function. Psychological Review, 97, 285-308.

Rinkus, G. J. (1995). TEMECOR: an associative, spatio-temporal pattern mem-
ory for complex state sequences. In Proceedings of World Congress on Neural
Networks, (pp. 1.442-1.448). Washington DC:

27

Rodriguez, W. A., Borbely, L. S., & Garcia, R. S. (1993). Attenuation by con-
textual cues of retroactive interference of a conditional discrimination in rats.
Animal Learning & Behavior, 21, 101-105.

Ruiz de Angulo, V., & Torras, C. (1995). On-line learning with minimal degra-
dation in feedforward networks. IEEFE Transactions on Neural Networks, 6, 657-
668.

Simon, H. A. (1974). How big is a chunk? Science, 183, 482-488.

Sloman, S. A., & Rumelhart, D. E. (1992). Reducing interference in distributed
memories through episodic gating. In A. F. Healy, S. M. Kosslyn, & R. M.
Shiffrin (Ed.), From learning theory to connectionist theory: Essays in honor of
William K. Estes (pp. 227-248). Hillsdale, NJ: Erlbaum.

Sompolinsky, H., & Kanter, I. (1986). Temporal association in asymmetric neural
networks. Physics Review Letters, 57, 2861-2864.

von der Malsburg, C. (1973). Self-organization of orientation sensitive cells in
the striate cortex. Kybernetik, 14, 85-100.

Wang, D. L. (2001). Temporal pattern processing. In M. A. Arbib (Ed.), Hand-
book of brain theory and neural networks, Second Edition (to appear). Cambridge
MA: MIT Press.

Wang, D. L., & Arbib, M. A. (1990). Complex temporal sequence learning based
on short-term memory. Proceedings of the IEEE, 78, 1536-1543.

Wang, D. L., & Arbib, M. A. (1993). Timing and chunking in processing temporal
order. IEEE Transactions on Systems, Man, and Cybernetics, 23, 993-1009.

Wang, D. L., & Yuwono, B. (1995). Anticipation-based temporal pattern gener-
ation. IEEE Transactions on Systems, Man, and Cybernetics, 25, 615-628.

Wang, D. L., & Yuwono, B. (1996). Incremental learning of complex temporal
patterns. IEEE Transactions on Neural Networks, 7, 1465-1481.

Wang, L. (1999). Multi-associative neural networks and their applications to
learning and retrieving complex spatio-temporal sequences. IEEE Transactions
on Systems, Man, and Cybernetics - Part B: Cybernetics, 29, 73-82.

Willingham, D. B., Nissen, M. J., & Bullemer, P. (1989). On the development of
procedural knowledge. Journal of Ezperimental Psychology: Learning, Memory,
and Cognition, 15, 1047-1060.

Willshaw, D. J., Buneman, O. P., & Longuet-Higgins, H. C. (1969). Nonholo-
graphic associative memory. Nature, 222, 960-962.

