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Abstract

For scene analysis, it is important to ask theestion ofhow synchronizegopulationcodes - the
basic representation employed in theget article -are generated. Recewsbmputational advances
have resolvedhe critical challenges ofrapid synchronizationwith local coupling and rapid
desynchronization. The synchronized codes meddecontributions to tackling the problem of
scene analysis.

A fundamental aspect of perception isatslity to group elements of a perceived scene into
coherent clustergobjects). Thisability underlies perceptuaprocesses such agerceptual
organization, figure/ground segregation, and separatianuitfple objects, and it iggenerally
known as scene analysis (segmentation). Regarding this problem, Phillips and 8ggr in
their general framework of cortical computation, have answtbestbllowing two basic questions
explicitly. (1) How are coherent clusters representetienbrain2) What is the neurobiological
substrate for the representation? Regarding the first question (the "handbigm™), the authors
arguefor synchronizegopulationcodes. Thatis, anobject is represented by tlsgnchronized
firing activity of the scattered neurons coding different features of the object (MBTer; von der
Malsburg 1981Abeles1982). As forthe second questionthe authors distinguish between
receptive fields (RF) and contextual fields (CF), and atgaelateral CFconnections linking RFs
are the neurobiological substrate for the synchrontoels. There is another major questitrat
needs to be addressedtie same contex{3) Given CF connection§,ow can thesynchronized
codes be generated? The question is a computational one, and is importantréasovs. First,
it must be answered in order to explain how the brain analyzes various sctresfsaimework of
Phillips and Singer. Second, addressing this question woahdount to constructing a
computationakystemthat doesautomatic scenanalysis: an objective of great significance in its
own right. Automatic scene analysis is a fundamental tasknmdchine perceptiorand a
tremendously challenging engineeripgpblem.  This question, however, ngt treated in any
depth in the targearticle; dynamicgrouping is touchedipon in Sect.3.4.3, but, from the
computational perceptive, the functionality is simple and it is untlearthe networksgeneralize
to handle realistic inpypatterns. Orihe otherhand,there is a largéody of literature that deals
exclusively with this question, and major progress has been madeoriMyentary isocused on
this issue as it has important implications on the computational foundation of the target article.

The discovery of long-range synchronous oscillations in the visual cortex (Eckhorn et al. 1988;
Gray et al. 1989) triggered many computational studies on the synchraooidesl There are two
major computationathallenges. The first is how to achieve rapid synchronization within a

population of locally coupled oscillatdrsEarlier models proposed for achieving phaygechrony
generally rely on all-to-allconnections.  However, a networwith full connectivity
indiscriminately connects and synchronizes all activated oscillators; it lacks topological information
(Sporns et al. 19910Wang 1993b). The indiscriminategrouping problem hinders this class of
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models from addressingeal images. The second challenge is how to achieve fast
desynchronization among differegitoups ofoscillators representing distinabjects. Weregard
the rapidity ofsynchrony and desynchrony particularly important, not only because speed is
critical for real-time scenanalysis but also because perception is vapid. It is knownthat
human subjectsan segment and identify an object in a small fraction sé@nd(Biederman
1987; I. Biederman, personal communicati®@894). This suggestgshat both synchrony and
desynchrony must ba&chieved in just &ew cycles if thesynchronized codes of 40 Hz rhythms
(Eckhorn et al. 1988; Gray et al. 1982 the underlyingnechanism. Because of these two
challengesthe synchronized codes have not contributed much to buildirgressfulartificial
neural systems for analyzing real images.

Somers and Kopell (1993) and Wang (1993a; 19@%E independently recognized the severe
limitations of widelyused sinusoidal oscillators generating globasynchrony based ofocal
coupling, and proposed to use different oscillator models to overcome the problem. More recently,
Terman and Wang havaroposed andnalyzed locally excitatory globally inhibitory oscillator
networks (LEGION)(Terman & Wang 1995; Wang &erman1995). In aLEGION network,
each oscillator is modeled as a standard relaxation oscillatotwathime scales (see also Somers
& Kopell 1993). Local excitation is implemented by late@upling, andglobal inhibition is
realized by a globahhibitor. Whether an oscillator can oscillate is determined by the external
stimulus tothe oscillator, andhe connections in LEGION modifgnly the phases of oscillators.
Thus, the LEGIONnetwork is fully compatiblewith the generaRF/CF framework otthe target
article. The network exhibits a mechanisnselective gatingwhereby an oscillator jumping up to
the activephase rapidly recruitthe oscillators stimulated by the samattern, while preventing
other oscillators from jumping up. We have proven that, with selective gating, the network rapidly
achieves both synchronization within groups of oscillators that are stimulated by comagaiad
and desynchronization between differgmbups. To sumthe LEGION network provides an
elegant solution to the two challenges outlined above.

A _ B

Figure 1. A A gray-level imageconsisting of 160x160 pixels.B The result of segmentation by a
LEGION network with 160x160 oscillators. (from Wang and Terman, 1997)

The ability of LEGION in producingthe synchronized codes presents a unique approach to
addressing scerenalysis. Wang and Termafil997) applied LEGION to segmenting gray-level
images, and reported very promising results. For gray-level images, each oscillator corresponds to
a pixel, and two neighboring oscillators are connected with a weight proportional to corresponding
pixel similarity. As an exampldsig. 1A showsone gray-level image, andig. 1B shows the
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result of segmentationThe entire image is segmented intor2gions. Eachregion corresponds
to a different density in the figure, indicating the phases of oscillatorthe gimulation, different
regions "pop out" alternately. As can be seen fFagr 1B, almostall majorregions in Fig. 1A
aresegmented.The black scatteretegions inthe figure represent thieackgroundthat always
remains inactive (see for details Wang & Ternt®97). Otherimages,including MRI (magnetic
resonance imaging) images and texture images, have also been successfully segmented.

In summary, | think it iSmportant toaskthe question of howthe synchronized codesan be
generated. Major advances have bemade inaddressing this question. In particuléwe critical
challenges of rapicsynchrony based ofateral coupling and rapid desynchroriyave been
successfully resolve@nd these synchronized codeake reakontributions to tackling the hard
engineering problem of scene analysis. These advémcesoundcomputationaground for the
theoretical framework of Phillips and Singer.

Acknowledgements Thanks to R. Lewis for helpful comments on an earlier version.

Notes

1. An "oscillator" here is used as a mathematical notion, and this does not necesphripn
oscillatory (periodic) outcome. An oscillator is compatible with a spiking neuron.
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