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Primitive Auditory Segregation Based on
Oscillatory Correlation

DELIANG WANG
The Ohio State University

Auditory scene analysis is critical for complex auditory processing. We study
auditory segregation from the neural network perspective, and develop o
tramework for primitive auditory scene analysis. The architecture is a laterally
coupled two-dimensional network of relaxation oscillators with a global in-
hibitor. One dimension represents time and another one represents frequency.
We show that this architecture, plus systematic delay lines, can in real time group
auditory features into a stream by phase synchrony and segregate different
streams by desynchronization. The network demonstrates a set of psychological
phenomena regarding primitive auditory scene analysis, including dependency
on frequency proximity and the rate of presentation, sequential capturing, and
competition among different perceptual organizations. We offer a neurocompu-
tational theory—shifting synchronization theory—for explaining how auditory
segregation might be achieved in the brain, and the psychological phenomenon
of stream segregation. Possible extensions of the model are discussed.

INTRODUCTION

A listener in a realistic auditory environment is always exposed to acoustic
energy from many different sources. In order to recognize and understand
the auditory environment, the listener must first disentangle the acoustic
wave and capture each event. This process is referred to as auditory scene
analysis (Bregman, 1990), or auditory segregation. Its task is to separate the
sensory features of an auditory scene into multiple coherent streams, each
having a high likelihood of coming from the same source. A stream in the
auditory domain roughly corresponds to an object in the visual domain.
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Auditory scene analysis is a remarkable achievement of the auditory system,
playing a fundamental role in auditory perception. It has much in common
with segmentation of a visual scene into a set of objects, and figure-ground
segregation, the perceptual processes much studied in Gestalt psychology
(Koffka, 1935; Rock & Palmer, 1990). It should be clear that auditory segre-
gation differs from the segmentation of a single auditory flow into different
successive components, which corresponds to, for example, the process of
separating a continuous utterance from a single speaker into successive
phonemes or words.' Notice that successive segmentation is different from
sequential integration, a term used by Bregman (1990) to refer to the group-
ing of a set of sequential tones that are interleaved in presentation with
another set of sequential tones (discussed later). Auditory segregation, which
is potentially a parallel process, should be a precursor to successive separation.

Auditory segregation can be divided into primitive auditory segregation
and memory-based auditory segregation (Bregman, 1990). Primitive auditory
segregation is an innate process, relying on the similarities of local qualities
within the input scene itself, such as frequency, timing, or amplitude.
Memory-based auditory segregation is based on prior knowledge stored in
memory to segregate the auditory input. In this article, we deal with primi-
tive auditory segregation only.

The remaining part of this section reviews the psychological background
of auditory scene analysis and pertinent computational studies on the subject.

Psychological Evidence
The human ability to segregate multiple auditory sources was observed long
ago (Helmholtz, 1863/1954). Auditory stream segregation was first system-
atically studied by Miller and Heise (1950), who noted that listeners split a
signal with two alternating sine wave tones into two streams. Auditory
segregation could be obtained with as little as a 15% difference in frequency
and could be obtained throughout the frequency range from about 150 Hz
to 7000 Hz. Bregman and his collaborators have carried out a series of
studies on this subject (see Bregman, 1990, for an extensive review). In one
of the early studies (Bregman & Campbell, 1971), participants were asked to
report the temporal order of six tones in a sequence. Three of them werein a
high-frequency range, and the other three in a low-frequency range. This
situation is depicted in Figure 1. The results showed that at high rates of

" In this article, we reserve the word segregation to refer to the process of separating an
auditory scene into multiple streams, and segmentation to refer to the process of marking
boundaries in a continuous auditory flow, in line with the terminology used in auditory percep-
tion (Bregman, 1990; Handel, 1989). In visual processing, segmentation is widely used to mean
separation of an image into multiple objects. Adding to the confusion, the word segmentation
has been used to mean segregation in some previous computational studies on auditory scene
analysis (von der Malsburg & Schneider, 1986; Wang, in press).
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Figure 1. Six alternating pure tones as displayed in a spectrogram. Three of them are in a
high-frequency range and the other three in a low-frequency range. When stream segre-
gation occurs, the high-frequency tones form one stream and the low-frequency tones form
another stream (indicated by thin lines).

presentation, participants perceived two separate sequences corresponding
to high- and low-frequency tones respectively, and they were able to report
only the temporal order of the tones within each sequence, but not across
the two sequences. Bregman and Campbell called this phenomenon stream
segregation. Furthermore, there is a trade-off between frequency separation
and presentation rate, and the higher the presentation rate, the smaller the
frequency separation is needed to generate stream segregation (Bregman &
Campbell, 1971; van Noorden, 1975). The loss of order information across
different streams was observed earlier by Warren, Obusek, Farmer, & Warren
(1969).

This basic phenomenon of stream segregation was repeatedly verified in
different contexts (see among others, Bregman, 1990, 1993; Bregman,
Abramson, Doehring, & Darwing, 1985; Hartmann, 1988; Jones & Yee,
1993; Rasch, 1978; van Noorden, 1975). Although stream segregation is
primarly about segregation of tones presented sequentially, the basic phe-
nomenon also occurs in auditory stimuli with temporal overlap. In general,
if the auditory patterns are displayed on a spectrogram, the results of
stream segregation are analogous to Gestalt laws of grouping (the reverse
process of segregation) that have been expressed in the visual domain (see
also Handel, 1989). The following is a list of several important determinants
of auditory scene analysis:

® Frequency (pitch) proximity. The closer the frequencies of two tones,
the easier they are to be grouped into the same stream. Frequency prox-
imity is considered the prime factor in auditory scene analysis (see
Bregman, 1990).

® Presentation rate. The faster the presentation rate, the easier it is for
each of interleaving tone sequences to be grouped into the same stream,
or the harder are successive tones to be grouped into the same stream,
where tones in each sequence have similar frequencies. This situation is
illustrated in Figure 1. Because faster presentation of a tone corresponds
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to shorter separation of the tones in each sequence, this property is con-
sistent with the proximity principle as applied to the time domain of a
spectrogram.

e Continuous/smooth transition. Tones tend to be grouped into the same
stream if they form continuous transition (e.g., continuous frequency
transition) or smooth but discontinuous transition (e.g., an ascending
set of gliding tones), from one to another.

e Onset or offset synchrony. A person tends to perceive two or more
tones as in the same stream if the tones have the same onset or offset
time.

¢ Common modulation. Simultaneous tones that undergo the same kind
of modulation at the same time tend to be bound together into a com-
mon stream. This principle applies to both frequency modulation and
amplitude modulation.

e Prior knowledge. Prior knowledge can strongly influence auditory
scene analysis, in the sense that components belonging to the same
familiar pattern tend to be bound together.

Jones and her colleagues argued that a rhythmic structure in a sequence of
tones can promote their grouping into the same stream (Jones, Jagacinski,
Yee, Floyd, & Klapp, 1995; Jones, Kidd, & Wetzel, 1981). For example,
they observed that if a sequence of tones forms a simple rhythm, for exam-
ple, the duration between the onset times of the tones in the sequence is a
constant, the sequence tends to be integrated into the same stream.

In speech perception, auditory segregation seems to contribute to a lis-
tener’s ability to separate utterances from different speakers into different
streams. One question arises: What prevents the undesirable effects of
segregating the speech sound (like syllables) of the same speaker into compet-
ing streams, given that the rate of speech production is very high and for-
mants (peaks in the spectrum of a speech signal) of the same speaker are
spread widely? In general, the production of a syllable involves a set of tran-
sitions from several frequency partials associated with the consonant of the
syllable to the same number of frequency partials associated with the vowel.
One acoustic factor leading to the coherence of the speech sound of the
same speaker is the relative degree of onset and offset synchrony of these
frequency transitions (called formant transitions). A second factor leading
to coherence is the continuous nature of some formant transitions. These
continuous transitions are caused by the nature of articulation and coarticu-
lation, the latter referring to the interactions between adjacent sounds due
to overlapping articulatory movements of the vocal tract. These two factors
are consistent with the general properties of auditory scene analysis (see
Bregman, 1990; Handel, 1989).

Music perception is also subject to auditory segregation. As shown by
Dowling and coworkers (Dowling, 1973; Dowling, Lund, & Herrbold,



PRIMITIVE AUDITORY SEGREGATION 413

1987), if the notes of two melodies whose pitch ranges do not overlap are in-
terleaved in time so that adjacent tones come from the different melodies,
the resulting sequence of tones is perceptually divided into two streams that
correspond to the two melodies. If two melodies overlap in the pitch domain,
they are no longer perceived as the same melodies by the listeners who are
familiar with each of the melodies. In fact, composers of music have made
purposeful use of pitch difference to permit the perception of interleaved
melodies (Dowling, 1973). On the other hand, if listeners know in advance
what melody to listen for, they can attend to it even if it is intermixed with
other notes by making use of attentional expectancy, a ‘‘cocktail party
effect”’ (Cherry, 1953) in music perception. These observations are also true
for simultaneously presented melodies (see Chapter 5 in Bregman, 1990).

Computational Studies

The technology for auditory pattern recognition (sometimes called temporal
pattern recognition, see Covey, Hawkins, McMullen, & Port, in press;
Wang, 1995b), particularly speech recognition, has been rapidly advanced
in recent years. It has been demonstrated that neural networks can make a
significant contribution to this technology (Bourlard & Morgan, 1994; Wang,
1995b). However, segregation of interleaving or simultaneous auditory
signals remains a tremendous challenge, one that has hardly been addressed
at all. Almost all speech recognition systems assume presegregation, and
many can perform well only if the input is from a single stream (Bourlard &
Morgan, 1994; Rabiner, 1989). Obviously, auditory segregation is a neces-
sary ability for any speech recognizer to work in a realistic environment.
Thus, a successful method of auditory segregation would be a breakthrough
in making speech recognition technology reach the real world.

Parsons (1976) developed a computer program to separate two speakers
on the basis of different fundamental frequencies. It uses Fourier analysis
as the front end to extract frequency partials. Based on the extracted fre-
quency partials, the algorithm computes the fundamental frequency of the
first speaker that can best account for these frequency partials. This funda-
mental frequency is later used to cancel those partials that fall in the harmon-
ics of the fundamental. The remaining partials are then used to compute
another fundamental frequency corresponding to the second speaker. The
system is programmed to separate only two voices, and it cannot detect how
many voices there are to be separated. Using a similar idea, Weintraub
(1986) proposed another model for separating two simultaneous talkers. The
speech to be separated was taken from a male speaker and a female speaker.
The input signal was first processed by a cochlear model that extracts time
and frequency information. The model uses a dynamic programming algo-
rithm to compute the periods of two fundamentals presumably correspond-
ing to the two talkers. Then a Markov model is used to identify whether the
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voice of each talker is silent, periodic, or nonperiodic. The fundamental fre-
quencies and the voice characteristics of each talker are used to compute a
spectral estimate for each sound source. Because many other factors con-
tributing to speech separation were not considered, the success of both
models is quite limited even just for two input sources. It is not clear how
the models could be extended to handle sound separation beyond two talkers
speaking voiced sounds.

Beauvois and Meddis (1991) proposed a computational model to simulate
stream segregation. The model uses a bank of bandpass filters to extract fre-
quency partials of an auditory input, and assumes winner-take-all competi-
tion between different filter channels. The winning channel does not decrease
its activity while other channels do. Their model is designed to simulate
stream segregation of successive high-frequency and low-frequency tones. It
is assumed that streaming occurs if the overall system consistently shows a
higher response to one of the two alternating tones. The criterion of judging
whether streaming occurs is somewhat arbitrary, and cannot explain the
basic fact that an individual hears two streams when streaming occurs
(Bregman & Campbell, 1971). Also, the model cannot address auditory
segregation of temporally overlapping streams.

More recently, Brown and Cooke (1994) presented a multistage compu-
tational model for auditory scene analysis. Like Beauvois and Meddis
(1991), their model starts with a bank of bandpass filters. After this stage,
the model reveals auditory features, such as harmonicity, frequency transi-
tion, onset, and offset in the representation of auditory maps. Then a sym-
bolic representation is extracted from the auditory maps to describe an
auditory scene. Finally, a search algorithm is employed that groups the sym-
bolic elements into streams. The grouping process is based on some known
psychophysical principles. Another computational study by Mellinger
(1992) also uses multistage processing. Similarly, Mellinger’s model uses an
algorithmic approach to derive the results of segregation. His model mainly
uses the grouping cues of onset synchrony and common frequency modula-
tion. Whereas the model of Brown and Cooke aims at general auditory
signals, the model of Mellinger is oriented toward musical signals. Both
models do not need to assume the number of streams to be segregated in ad-
vance, an advantage over those models already described. The performance
of both models, however, is limited by the grouping cues integrated, and it
remains to be seen how other cues can be effectively incorporated in the
symbolic framework employed.

Sound localization seems to influence auditory segregation, for different
sources have high probability of originating from different spatial loca-
tions. Models of sound localization are based primarily on analyzing inter-
aural time difference, interaural intensity difference, and spectral cues. The
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model of Lazzaro and Mead (1989) computes interaural time difference
using layers of silicon chips, which can produce azimuth information in real
time. It has been found that in mammals, due to the head and the pinna, the
variation in stimulus level (intensity) with respect to frequency shows a unique
relation with sound location. The models by Neti and Young (1992) and by
Zakarauskas and Cynader (1993) use such spectral cues to compute the
spatial location of sound. All these models concern localizing only a single
sound, although the auditory system can identify multiple locations simul-
taneously (Blauert, 1983). It is not clear how the algorithms may be extended
to deal with multiple simultaneous sounds, the very problem facing auditory
segregation. Furthermore, it is not even clear whether sound localization
aids auditory segregation or auditory segregation aids sound localization
(Bregman, 1990), or both.

Perhaps the only neural network model that addresses the problem of
auditory segregation was one proposed by von der Malsburg and Schneider
(1986). They described the idea of using neural oscillations for expressing
segregation, a form of the temporal correlation theory proposed earlier by
von der Malsburg (1981). Because an oscillatory pattern has an extra degree
of freedom, its phase, it can be used to elegantly represent synchronization
and desynchronization among a group of oscillators. In this representation,
a set of auditory features forms a stream if the corresponding oscillators
oscillate in phase with no phase lag (synchronization). Oscillators represent-
ing different streams oscillate out of phase (desynchronization). Similar
ideas were suggested in general contexts earlier by Milner (1974) and at
about the same time by Abeles (1982). Using this idea, von der Malsburg
and Schneider constructed a network of oscillators, each representing a
specific auditory feature. Each oscillator connects to all the others in the
network, and there is also a global inhibitory oscillator introduced to desyn-
chronize different streams. With a mechanism of rapid modulation of con-
nection strengths, they simulated segregation based on onset synchrony;
that is, oscillators simultaneously triggered (by a stream) synchronize with
each other, and these oscillators desynchronize with those representing
another stream presented at a different time.

Although the idea of using oscillators for segregation has been around
for quite some time, it has not led to successful solutions to the problem of
auditory segregation. For example, the model of von der Malsburg and
Schneider cannot reproduce the basic phenomenon of stream segregation
shown in Figure 1. One major reason for this lack of success is that an
auditory pattern in their model is represented as a set of features that have
no geometrical (spectral) relationships. Stream segregation in contrast has a
clear dependency on the distances among tones in the time and frequency
domain. In other words, auditory segregation that is best explained by
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Gestalt laws of grouping requires a representational framework that clearly
exhibits geometrical relationships among different tones, such as proximity
and continuity.

In this article, we study auditory segregation from a neurocomputational
perspective, and present a neural network framework for primitive auditory
segregation. The model is based on the idea of using synchronization of
neural oscillations to represent one stream and desynchronization to repre-
sent different streams. The formation of synchrony is produced by lateral
excitatory connections between relaxation oscillators, and the formation of
desynchrony is produced by a global inhibitory mechanism. This mechanism
of segregation is called oscillatory correlation (Terman & Wang, 1995).
Both the building block—the single oscillator model—and the mechanism
of reaching synchrony and desynchrony differ fundamentally from those
used by von der Malsburg and Schneider (more comparisons are given in the
Discussion section). Simulations show that the model is capable of replicat-
ing the basic phenomenon of stream segregation, and explaining a set of
psychological observations concerning primitive auditory scene analysis. A
neurocomputational theory, namely shifting synchronization theory, is pro-
vided for explaining the psychological effects of stream segregation, and the
theory is argued to be consistent with auditory neurophysiology and neuro-
anatomy. The model proposed here promises to explain a varity of experi-
mental data and to provide an effective computational approach to auditory
segregation.

The rest of the article is organized as follows. The next section describes
the computational elements of our auditory segregation network. The third
section provides the simulation results of the network in performing stream
segregation and a number of other auditory segregation tasks. On the basis
of the simulation results, the following section presents the shifting syn-
chronization theory. Some further discussions on the theory are provided
following that. Finally, the last section concludes the article.

NEURAL ARCHITECTURE

We introduce a network of neural oscillators to model primitive auditory
segregation, called the segregation network. As described previously, the
idea is to achieve segregation by oscillatory correlation. More specifically, a
set of auditory tones form a stream if their corresponding oscillators syn-
chronize with each other. Different streams correspond to different groups
whose oscillation desynchronize from each other. Synchrony and desyn-
chrony are achieved by local excitation and global inhibition, respectively.
In this representation, it is very easy to read out the results of segregation:
Simple thresholding will reflect grouping and segregation of the involved
oscillators. This is because the synchronized oscillators reach high and low
activity simultaneously.
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The building block of the segregation network, a single oscillator i, is
defined in the simplest form as a feedback loop between an excitatory unit
x; and an inhibitory unit y; (cf. Terman & Wang, 1995; Wang & Terman,
1995):

daxi

i Sxi, yi)+1i+Si+p (1a)
d .
= e gxi ) (1b)

where, in the following implementation, f(x;, y;)= 3xi—xi+2- yi, and g (x;,
yi)=+ (1+tanh(xi/B))— yi. I; represents external stimulation to the oscillator,
and S; represents overall coupling from other oscillators in the network. The
symbol o denotes the amplitude of a Gaussian noise term. The purpose of in-
troducing the noise term is twofold. First, it can test the robustness of the
system. Second and perhaps more importantly, it plays a role in helping de-
synchronize different input patterns that happen to start with very similar
initial conditions (so-called symmetry breaking). The parameter ¢ is chosen to
be a small positive number. In this case, Equation 1 without any coupling or
noise, corresponds to a standard relaxation oscillator (Verhulst, 1990). The
x-nullcline (namely dx/dt=0= f(x, y)+I) of Equation 1 is a cubic curve,
while the y-nullcline (dy/dt=0=g(x, y)) is a sigmoid function with the
parameter 8. For 7> 0, the two nullclines intersect only on the middle branch
of the cubic, and Equation 1 gives rise to a stable periodic orbit for all
values of ¢ sufficiently small (Figure 2a). The periodic solution alternates
between a phase of relatively high values of x, called the active phase of the
oscillator, and a phase of relatively low values of x, called the silent phase of
the oscillator. Within these two phases, Equation 1 exhibits near steady state
behavior. Compared to the behavior within the two phases, the transition
between the phases takes place on a fast time scale. In this case, that is,
I>0, we call the oscillator enabled. For 1< 0, the two nullclines intersect on
the left branch of the cubic, and Equation 1 produces a stable fixed point
(an equilibrium point) at a low value of x (Figure 2b). In this case, we call
the oscillator disabled. The parameter v is introduced to control the relative
times an enabled oscillator spends in the two phases, and a larger v yields a
relatively short active phase.

The model of Equation 1 resembles the simple neuronal models of
action potential generation by FitzHugh (1961) and Nagumo, Arimoto, and
Yoshizawa (1962). However, the form of nonlinearity plus the parameter vy
provides a dimension of flexibility that is missing from the FitzHugh-
Nagumo equations. Thus, Equation 1 can be interpreted biologically as a
model of action potential generation of a single neuron (see also Morris &
Lecar, 1981). The oscillator model may also be interpreted as a mean field
approximation to an interacting network of excitatory and inhibitory
neurons (Buhmann, 1989; Sporns, Gally, Reeke, & Edelman, 1989).
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Figure 2. Nullclines and behavior for a single oscillator. (A) When 1.0, the system gives
rise to a stable periodic (limit cycle) solution. The periodic orbit is shown with a bold curve.
The orbit consists of an active phase and a silent phase of near steady state behavior {in-
dicated by single arrowheads), and fast transitions between the two phases (indicated by
two arrowheads on each transition). (B} When /<0, there is no periodic solution. In this
case, the system yields an asymptotically stable fixed point on the left branch of the cubic.
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Figure 3. Diagrom of the segregation network. The main architecture is a two-dimensional
time-frequency matrix. External input is applied to the input end that consists of a set of in-
put channels. Each input channel detects input of a specific frequency and projects to a
(horizontal) row of isofrequency oscillators with decreasing delays trom left to right. The
connections from a typical oscillator in the network are shown in the figure, and those from
other oscillators are omitted for clarity. The global inhibitor receives an excitatory input
from and sends an inhibitory output to every oscillator in the matrix. As in the following
figures, symbol H indicates an auditory input with a high frequency and L indicates an
auditory input with a low frequency.

The fact that auditory scene analysis is a time-varying process and
depends on the rate of presentation requires a representation of time for any
system that deals with auditory scene analysis. We treat time in this model
as a separate dimension. To simplify the discussions, we consider only time
and frequency; it should be straightforward to include other dimensions.
The architecture of the network we study thus consists of a two-dimensional
matrix of oscillators plus a global inhibitor. One dimension represents time,
and another one represents frequency, as shown in Figure 3. Each oscillator
in the matrix is laterally connected with its neighboring oscillators, and
lateral connections are all excitatory. The global inhibitor receives excita-
tion from each oscillator, and inhibits in turn each oscillator of the net-
work. The network has an input end that consists of units representing
distinct frequencies, called input channels. Each input channel connects to a
corresponding oscillator row representing the same frequency, called a fre-
quency channel, by delay lines with different delays. These delay lines are
arranged so that delays decrease systematically from left to right. Thus,
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each oscillator in the matrix is activated by an input of a specific frequency
at a specific time relative to the present time.

Following Wang and Terman (1995) and Terman and Wang (1995), we use
a pair of weights to describe the connection from one oscillator to another:
one representing permanent weight and another dynamic weight. Specifically,
we use Tj; and Jij to represent the permanent connection weight and the
dynamic connection weight from oscillator j to oscillator /, respectively. Per-
manent connections reflect the hardwired structure of a network (see Figure
3), whereas dynamic connections quickly change their strengths from time to
time, depending on the current state of the network. For neural computation,
only dynamic connections formed on the basis of permanent connections play
an effective role. The idea of using two types of connection weights was
first proposed by von der Malsburg (1981; von der Malsburg & Schneider,
1986). Wang (1993, 1995a) later formulated the idea to the dynamic normal-
ization mechanism for synchronizing a population of locally coupled neural
oscillators. Dynamic normalization is adopted in the present model as the
modification rule of dynamic links J;, which combines a Hebbian rule
(Hebb, 1949) that emphasizes coactivation of oscillators / and j and normal-
ization of all incoming connections to an oscillator. More specifically, it is a
two-step procedure: First, update dynamic connections on the basis of per-
manent connections and then normalize dynamic connections:

AJij=9 T h(x;) h(x;) (2a)

Wr (Jij+ AJy)

B fe+ %: (Jik+ AJik)) @)

Jij

where the parameter 5 controls the speed of dynamic modification, and Wy
specifies the overall strength of dynamic connections converging on a single
enabled oscillator at any given time; that is, every enabled oscillator receives
the same amount of dynamic connections. The small constant ¢ is introduc-
ed to prevent dividing by 0. The function A(x;) measures whether
oscillator / is enabled. It is implemented as #(x)= 1 if <x> is greater than a
specified constant (0.05 in the following simulations) and A(x)=0 other-
wise. The angular bracket <x> stands for temporal averaging of the activity
X over a most recent time period roughly corresponding to the period of the
oscillation as defined in Equation 1. All J;’s are initialized to 0. Thus, if any
given oscillator / is disabled, that is, #(x;)=0, then Jij =0 for every j. Nor-
malization of all incoming dynamic weights to a single unit is commonly
used in various neural models (see among others, Goodhill & Barrow, 1994;
von der Malsburg, 1973; Wang & Arbib, 1990).

The permanent connectivity pattern between the oscillators in the segre-
gation network, except for the self-connection, is assumed to take on a two-
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Figure 4. Two-dimensional Gaussian distribution that describes the strengths of the per-
manent lateral connections of the center oscillator. The distribution is generated according
to Equation 3 in the text. The parameter values are +=0, fj=0, 03=8.0, and ¢f=5.0.

dimensional Gaussian distribution: The permanent connection strength
between any pair of oscillators on the matrix of Figure 3 falls off exponen-
tially with the distance between the two oscillators. Let the two-dimensional
indices of oscillator i be (¢, fi), representing the time and frequency coordi-
nates of the oscillator respectively. Then, oscillator / connects to oscillator j
with strength

)2 S AY)

Ty = expl( (fj—zt!) + (i zfl)

ot af

) 3

where the parameters o; and g7 determine the widths of the Gaussian distri-
bution along the time axis and the frequency axis, respectively. It is easy to
see that 7= T, that is, the permanent weights are symmetrical. Figure 4
illustrates a two-dimensional Gaussian distribution, which shows the perma-
nent connection strengths of the center oscillator. The oscillator receives
connections from the oscillators with higher (indicated by a positive
number) or lower (indicated by a negative number) frequency coordinates,
and higher or lower time coordinates. The self connectivity 7} is set to 0.
Such a Gaussian distribution is often used to describe the lateral connection
pattern in the brain (Hubel, 1988; von der Malsburg, 1973). Once T}’s are
defined, Ji;’s are updated according to Equation 2.

The coupling term S; (see Equation 1a) from the oscillator network to
oscillator / is given by

Si= j‘:fu Soo (Xk, Ox) — W1 S (21, 01)~ W2 S (22, 62) )

1
Se (x, §)= T+explxx—0)] i



422 WANG

The first term of the right-hand side of Equation 4 describes the lateral
excitatory connections to i, and the second term and the third term describe
the inhibition from the global inhibitor. Note that dynamic weights Ji;’s,
not permanent weights 7};’s, are used in Equation 4. The parameter 8y is a
threshold above which an oscillator can influence the oscillators it connects
to (see the sigmoid function of Equation 5). W) and W are the weights of
inhibition from the global inhibitor, which we denote by a pair of the units
z1 and z2. The activity of the global inhibitor is defined as

dzi _ oo

P =¢ ¢ (0o —21) (6a)
92 _ 4\ (00 / Ni-22) (6b)
dat

where 0 =0 if x;< 8, for every oscillator i and 0w = 1 if x;=6; for at least
one oscillator i, and oo equals the number of oscillators whose x activities
are greater than or equal to 6;. Hence, 6, represents a threshold. If the x
activity of every oscillator is below 6;, both z; and z; approach 0, and the
oscillators on the network receive no inhibition. On the other hand, if the x
activity of at least one oscillator is above the threshold, the global inhibitor
will receive input. In this case, z approaches 1, and z; is proportional to the
number of oscillators that exceed the threshold. Thus, every oscillator on
the network will sense inhibition when z is above 8; or z; is above 6. N; in
Equation 6b is the total number of the oscillators in a row of the segregation
network (Figure 3), and 6, is set to 1/(2N;). Finally, ¢ determines the rate at
which the inhibitor reacts to such stimulation.

The system of Equations 1 to 6 in a slightly simplified version has recently
been analyzed in general contexts by Terman and Wang (1995; for a much
abbreviated version see Wang & Terman, 1995). The analysis concerns the
properties of synchronization and desynchronization of Locally Excitatory
Globally Inhibitory Oscillator Networks (LEGION; see Wang & Terman,
1995). Because their studies lay down the computational foundation of the
present investigation, let us briefly summarize the main results. Their
analysis is conducted with a general two-dimensional laterally connected
matrix of relaxation oscillators with a global inhibitor, the same structure
shown in Figure 3 after the delay lines are excluded. In particular, they have
analyzed nearest neighbor connections on the network and the global in-
hibitor composed of only z;. Let a pattern be a connected region, and a
block be a subset of oscillators stimulated by a given pattern. For the case
¢ >0 sufficiently small, the network exhibits a mechanism of selective
gating, whereby an enabled oscillator jumping up to the active phase rapidly
recruits the oscillators stimulated by the same pattern, while preventing
other oscillators from jumping up. With the selective gating mechanism, the



PRIMITIVE AUDITORY SEGREGATION 423

network rapidly achieves both synchronization within each block and desyn-
chronization between different blocks. Here, desynchronization between
two blocks means that they never stay in the active phase at the same time.
Starting with random initial conditions, the overall time the system takes to
achieve both synchronization and desynchronization is no greater than m
cycles of oscillations, where m is the number of patterns simultaneously
presented to the network. These results are true with an arbitrary number of
oscillators, and can extend to lateral connections beyond nearest neighbor
coupling.

The selective gating mechanism can be understood as a result of the in-
teraction between local cooperation through excitatory lateral coupling and
global inhibition through the global inhibitor. As described in Equations 6a
and 4, once an oscillator jumps up to the active phase, it triggers the global
inhibitor, which then inhibits the entire network. On the other hand, an
oscillator in the active phase will spread its activation to its nearest neigh-
bors (see Equation 4), and from them to its further neighbors. To illustrate
how selective gating can be applied to scene segregation, Figure 5 shows a
simulation where the input image is composed of three objects: a ‘‘rabbit,”’
a ““duck,”” and a “‘flower.’’ These patterns are simultaneously presented to
the system as shown in Figure 5A. Notice that this way of presenting the
entire input image af once, although justified in the visual domain, cannot
apply to the auditory domain. Human subjects can easily separate them
visually, as the three objects are not connected in space. In the simulation,
the input image was presented to a 30 x 30 oscillator grid as shown in Figure
5B. In terms of permanent connections, each oscillator on the grid connects
only to its four nearest neighbors, except on the boundary where no wrap-
around is assumed. All permanent connections have the same weight, whose
precise value does not matter for computation. All the oscillators stimulated
(mostly covered, see Figure 5B) by the objects received an external input
I=0.2, whereas the others had 7= —0.02. Thus the oscillators under
stimulation become enabled, whereas the others are disabled. For each
oscillator, o =0.02 (see Equation 1a). Namely, compared to the external
input, a 10% noise is included in every oscillator. The phases of all the
oscillators on the matrix were randomly initialized. Figure SC-5F shows the
instantaneous activity (snapshot) of the network at various stages of
dynamic evolution. The diameter of each black circle represents the x activ-
ity of the corresponding oscillator. That is, if the range of x values of all the
oscillators is given by Xmin and Xmax, then the diameter of the black circle
corresponding to an oscillator is proportional to (x — Xmin )}/ (Xmax — Xmin).
Figure 5C shows a snapshot of the network at the beginning of the simula-
tion. The activities of the network were random at this time. Figure 5D
shows a snapshot after the system had evolved for a short time period. One
can clearly see the effect of grouping and segregation: All the oscillators
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Figure 5. Scene segmentation. (A) An input image with three patterns, each being a con-
nected region (Thanks to Ping Bai for drawing the illustration). (B) The input image as
sampled by a 30X 30 grid of oscillators. An oscillator receives an external input [=0.2 if the
corresponding box is covered by the image at least by half. Otherwise /= —0.02 for an
oscillator. (C) A snapshot (instantaneous recording) of the activities of the oscillator grid at
the beginning of dynamic evolution. (D) A snapshot taken shortly after the beginning. (E)
Another snapshot taken shortly after D. (F) Another snapshot taken shortly after E. (G)
Temporal activities of the oscillator grid. The upper three traces show the combined tem-
poral activities of the oscillator blocks representing the patterns indicated by the symbols to
their left, respectively. The bottom trace shows the temporal activity of the global inhibitor.
The parameters: ¢=0.02, ¢=3.0, y=6.0, $=0.1, x=50, »=10.0, Wr=6.0, W1=1.5,
Ox=—0.5, §2=601=0.1. The simulation took 8,000 integration steps.

representing the ‘‘flower’” were entrained and had large activities. At the
same time, the oscillators stimulated by the other two patterns had very
small activities. A short time later, as shown in Figure SE, the oscillators
stimulated by the ‘‘rabbit’’ reached high values and were separated from the
rest of the input. Finally in Figure 5F, the oscillators representing the
‘“*duck”’ were highly active and the rest of the input remained inactive. The
almost empty regions in Figure SD-SF reflect the fact that when an active
block of oscillators jumps down to the silent phase, these oscillators reach
their minimum x values (see Figure 5G). This successive ‘‘pop-out”’ of the
objects continued in a stable periodic fashion. To provide a complete pic-
ture, Figure 5G shows the temporal evolution of each oscillator. Because
the oscillators receiving no external input were disabled during the entire
simulation process, they were excluded from the display. The activities of
the oscillators stimulated by each object are combined together in the
figure. Thus, if they are synchronized, they appear like a single oscillator.
In Figure 5G, the three upper traces represent the activities of the three
oscillator blocks, and the bottom trace represents the activity of the global
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inhibitor. Although the network started with random phases, the synchroni-
zation within each block and the desynchronization between different blocks
are clearly shown within just two oscillation cycles of dynamic evolution.

Emergent synchrony on the basis of local connections as illustrated in
Figure 5 (see also Somers & Kopell, 1993; Wang, 1993, 1995a) eliminates the
use of either all-to-all connections (Sompolinsky, Golomb, & Kleinfeld, 1991;
von der Malsburg & Schneider, 1986) or a global phase coordinator (Kammen,
Holmes, & Koch, 1989), the two mechanisms commonly used for reaching
global phase synchrony. The failure to achieve emergent synchrony with
local coupling is largely due to the use of sinusoidal (or harmonic) oscillators
and linear coupling, which have been shown to differ qualitatively from
relaxation oscillators and nonlinear coupling as used in the preceding defini-
tions (Somers & Kopell, 1993; Terman & Wang, 1995; Wang, 1993). Note
that the global inhibitor in Figure 3 is used here for producing desynchrony,
and that rapid synchrony occurs regardless of the global inhibitor (Terman
& Wang, 1995). From the perspective of scene analysis, this is significant
because global mechanisms of synchronization would lead to indiscriminate
synchrony. For example, the task of segmenting the three objects in Figure
SA could not be performed by an oscillator network that relies on global
mechanisms. This is because critical information of geometrical (spatial)
relations between the objects is lost in a globally connected network, and
thus the oscillator block representing the ‘‘rabbit’’ and the block represent-
ing the ‘“‘duck,’’ for example, would be connected in the same way as the
oscillators within the same block.

The precise definitions of the cubic and the sigmoid in f(x, ¥) and g (x, »)
do not matter for following simulations (see Equation 1). Terman and
Wang (1995) gave more discussions about the generality of their mathemati-
cal analysis of LEGION. What is important is the network ability to rapidly
achieve both synchrony with local connections and desynchrony among dif-
ferent oscillator groups. To the best of our knowledge, LEGION is the only
model that can achieve this network ability. Furthermore, this behavior of
LEGION is established by mathematical analysis. The rapidity of synchrony
and desynchrony is particularly important for the auditory domain, because
auditory signals to be segregated vary quickly from time to time.

What complicates auditory segregation is time. An auditory scene must
be unfolded over a certain time, and the auditory scene keeps changing. In
addition, temporal relationships unique to audition must be captured.
Before we present detailed simulations, let us see how the oscillator network
of Figure 3 functions in general terms. From the study of the general
oscillator network (Terman & Wang, 1995; Wang & Terman, 1995), we
know that a pair of oscillators synchronize if they both are enabled and
their mutual dynamic excitation is sufficiently strong to overcome the
global inhibition. Otherwise, the two oscillators would be desynchronized.
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According to Equation 2, in order to form an effective dynamic connection
between two oscillators, they both must be enabled by external stimulation
and there must be nonzero permanent connections between them. If a
dynamic connection can be formed, its strength will be proportional to the
strength of the corresponding permanent connection. The previous results
(Terman & Wang, 1995) also suggest that synchronization is transitive: If
separately oscillator i can synchronize with oscillator j and oscillator j can
synchronize with oscillator &, then all three are synchronized. The delay lines
in the segregation network serve to provide some form of short-term
memory (STM) that can make simultaneously available a recent history of
external stimulation. Thus, the transitivity of synchronization plus the
Gaussian distribution of permanent connections (Figure 4) should promote
grouping of a sequence of interleaved tones that have similar frequencies
(proximity in frequency) and/or high presentation rates (proximity in time).
At the same time, tones that cannot be grouped will be segregated due to the
global inhibition. We now present simulation experiments using the segrega-
tion network with respect to a set of psychological phenomena regarding
primitive auditory scene analysis.

SIMULATION RESULTS

The segregation network (Figure 3) with the detailed quantitative descrip-
tion defined in the previous section has been simulated with respect to
auditory segregation. To reduce numerical computations involved in inte-
grating a large number of the differential equations of Equations 1 and 6, a
computer algorithm has been extracted based on these equations. The algo-
rithm follows every major step in the numerical simulation of the equations,
preserving the essential properties of relaxation oscillators, such as two time
scales (fast and slow) and the properties of synchrony and desynchrony.
More specifically, the following approximations have been made:

1. When no oscillator is in the active phase (see Figure 2), the one closest
to the jumping point among all enabled oscillators is selected to jump
up to the active phase.

2. An oscillator jumps up to the active phase immediately if it receives an
excitatory input from its neighbors and the net input it receives from
external input, neighboring oscillators, and the global inhibitor is
positive.

3. The alternation between the active phase and the silent phase of a single
oscillator takes one time step only.

4. All of the oscillators in the active phase jump down if no more oscilla-
tors can jump up. This situation occurs when the oscillators stimulated
by the same stream have all jumped up.
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In these steps, 1 and 4 are particularly effective in saving simulation time,
because these two steps dramatically shorten the time a stream stays in the
active phase and the silent phase, the two relatively stable and time-
consuming stages in dynamical evolution (see Figure 2 and Figure 5G).
Despite these approximations, it should be straightforward to see that the
behavior of the segregation network produced in the following simulations
will be exhibited in corresponding dynamical systems defined in Equations 1
and 6.

Simulated auditory tones are presented to the segregation network in
simulated real time by triggering appropriate input channels. An oscillator
in the network is activated if the stimulus has the same frequency as
represented by the oscillator and an appropriate delay has elapsed since the
onset of the stimulus. In order to relate to real time, we assume that the
basic delay interval, that is, the difference in delay between two neighboring
isofrequency oscillators is 40 ms. Assuming the same length of silences
between succesive tones, the rate of presentation of a sequence of tones is
inversely proportional to the duration of each tone in the sequence. The
duration then corresponds to the number of enabled oscillators occupied by
the tone along the time axis. When an oscillator is triggered, a random phase
is generated for it. Additionally, the phases of all enabled oscillators are ran-
domized after every delay step (40 ms). This is a reasonable assumption
because an oscillator senses its input channel after every delay step (cf. Figure
3). The simulation results are presented in the following four subsections.

Auditory Stream Segregation

We first study segregation of sequential tones. Some preliminary simulation
results of stream segregation were previously presented with a different oscil-
lator system (Wang, 1994, in press). As illustrated in Figure 1, a sequence
of six alternating tones HLHLHL is used as input in this simulation. All L
tones are assumed to trigger the same frequency channel (Fz), and so are all
H tones (Fv). The distance between F, and Fp, was first set to eight rows, cor-
responding to the condition of large frequency separation. The distance was
later set to four rows, corresponding to the condition of small frequency
separation. The sequence was repeatedly presented to the network, as in the
psychological experiments. We conducted the simulation with durations of
160 ms and 320 ms per tone, corresponding to fast and slow presentations,
respectively. Thus, for fast presentation, each tone occupies four oscil-
lators, and for slow presentation eight oscillators.

A network of 15 X 30 oscillators was simulated for fast presentation. We
present the results with large frequency separation first, and with small fre-
quency separation next. Figure 6 shows the diagram of the stimulus condition
with large frequency separation. The figure depicts the stimulus pattern as
mapped to the oscillator network at one time, which in a sense reflects a spec-
trogram. Notice that the silence of one delay step (40 ms) was included
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Figure 6. A stimulus pattern as mapped to the segregation network at a specific time. This
condition corresponds to fast presentation and large frequency separation. The network
consists of a matrix of 15X 30 oscillators. The stimulus pattern is a sequence of six tones.
Each tone has a frequency of either Fq or Fb, representing an L or an H tone, respectively.

between successive tones for better correspondence with experimental con-
ditions. The presence of such silence does not affect the qualitative response
of the network. Figure 7 displays the complete response of the two frequency
channels triggered by the tones. Because all of the other frequency channels
were not stimulated, the oscillators in those channels were disabled, hence
omitted in the display. Each trace displays the activity of the excitatory unit
of one oscillator. The top 30 traces represent the 30 isofrequency oscillators
with progressively increasing response delays (latencies) in the F, channel
(H tone). Similarly, the bottom 30 traces represent the 30 oscillators in the
Fa channel (L tone). A total of 40 delay steps were simulated, corresponding
to 1,600 ms, while the complete sequence of the six tones corresponds to 30
delay steps or 1,200 ms (see Figure 6). The vertical lines were included in the
figure to help compare the phases of different oscillators. As can be seen
from the figure, except for a beginning period, all enabled oscillators of the
Fyv channel rapidly reached synchronization, and so did the oscillators of the
Fa channel. Furthermore, the oscillators of one channel became desynchro-
nized with those of the other channel. Taken together, all H tones are
grouped into one stream, and all L tones are grouped into another stream.
Relating to the experiments, stream segregation occurred in this simulation
for fast presentation with large frequency separation, and two streams were
segregated apart in real time.

Compared to Figure 5 where only connected regions are synchronized,
here tones that are disconnected in the time/frequency domain can still be
synchronized. This is because of the pattern of lateral connectivity. In
Figure 5, only nearest neighbors are connected excitatorily. In this simula-
tion, however, a more general scheme of lateral excitatory connectivity is
adopted: a two-dimensional Gaussian distribution (see Figure 4).

Figure 8 shows the combined x values (see Equation 1) of all oscillators
of each of the frequency channels for one typical delay interval after the
presentation of a full sequence of six tones was completed. The top and the
middle panels show the combined activities of the Fy and F, frequency
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Figure 8. The combined activities of all the enabled oscillators during one delay interval in
the high- (Fb) or the low-frequency (Fa) channels, respectively. The bottom trace shows the
activity of the global inhibitor during the same period. The ordinates indicate the normalized
x values of the oscillators and the value of the global inhibitor.

channels respectively, and the bottom panel shows the activity of the global
inhibitor during the same time period. For each frequency channel, only the
enabled oscillators are included in the display because disabled oscillators
are always silent. As is clear in the figure, the quality of synchronization
within the same frequency channel improved after the first cycle of oscilla-
tions. The frequency of the global inhibitor is double that of an enabled
oscillator in the segregation network, because the inhibitor is activated by
both streams. Rather rigid oscillations shown in Figure 8 as compared to
Figure 5G result from algorithmic implementation of the system of Equa-
tions 1 to 6. But synchronization within the same frequency channels and
desynchronization across the two channels are clearly captured in the for-
mat of illustration of Figure 8, which will be used for all the following
simulations for the sake of simplicity.

It should be clear that synchrony and desynchrony in these simulations
are the emergent properties of the segregation network, not caused by input.
The input that a particular input channel received due to stimulation was a
constant. The rhythm that happens to exist between the sequence of H (or
L) tones (Figure 6), has nothing to do with the periodic oscillations gen-
erated in the oscillator network. As shown in Figure 7, the stimulus rhythm
has a very different frequency than that of each oscillator. Also in the sim-
ulations, emergent synchrony can still be generated even if no rhythmic
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Figure 9. Response of two corresponding frequency channels to fast presentation of alter-
nating H and L tones, with small frequency separation (4 rows). (A) The stimulus pattern as
mapped to the segregation network at a specific time. The stimulus is a sequence of six
tones, and each tone has a frequency of either Fq or Fb, representing an L tone or an H tone
respectively. (B) The combined activities of all of the enabled oscillators in the high- or the
low-frequency channels respectively, plus the activity of the global inhibitor. Only shown is
one delay interval after the full sequence of six tones was presented. The parameter values
are the same as in Figure 7. The algorithm took 1,500 steps.

structure exists in stimulus tones. Jones has suggested that a rhythm in a
tone sequence helps the grouping of the sequence into a single stream (see
the Introduction), but it is not a required condition for producing stream
segregation (Bregman, 1990).
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Figure 9 shows the simulation results with the same presentation rate but
small frequency separation. The stimulus condition is illustrated in Figure
9A, where F, is separated from Fp by four rows. Figure 9B displays the com-
bined oscillatory activities for the Fa and the Fy, channels as well as the activ-
ity of the global inhibitor, for a typical delay step after the full sequence of
six tones was presented. The figure clearly shows that in this stimulus condi-
tion all enabled oscillators across both frequency channels were synchro-
nized. Thus all tones are grouped into a single stream. In other words, no
stream segregation occurred when frequency separation was small.

In another test, we kept large frequency separation as in Figure 6, but
slowed down the presentation rate to eight oscillators per tone. In this case,
a network of 15 x 54 oscillators was simulated, so that the entire sequence
of six tones could be represented in the simulation. Figure 10A depicts the
stimulation pattern, and Figure 10B provides the simulation results. Dif-
ferent from either of these cases, there was no phase synchronization at all
between different tones, even within the same frequency channel. Rather,
each tone formed its own stream, and the entire ‘‘scene’’ was segregated
into six streams. This can also be seen from the activity of the global inhibitor,
whose frequency is now six times that of the each stream.

Another logical condition, which is small frequency separation (four
rows) combined with slow presentation (eight oscillators per tone), has also
been tested. As expected, all six tones are grouped into the same stream as
similarly shown in Figure 9. We have also tested an intermediate duration
for each tone—six oscillators per tone—with large frequency separation.
Consistent with an earlier observation (Wang, in press), the results are
somewhere between Figure 8 and Figure 10B. That is, partial stream segre-
gation occurred for this medium presentation rate.

From all the given simulations, we conclude that tones can be grouped
together based on their proximity in frequency, and stream segregation cri-
tically depends on the rate of presentation. Stream segregation is best for
high rates of presentation and absent for low rates. These simulation results
are consistent with classical psychological findings on stream segregation as
reviewed in the Introduction.

Frequency Modulation
The phenomenon of stream segregation is established similarly for fre-
quency-modulated (FM) tones, such as glides with gradually increasing or
decreasing frequencies (Bregman, 1990, pp. 58-65; Steiger & Bregman, 1981).
The simulations presented here concern only pure tones. The basic simula-
tion results of stream segregation, however, extend to FM tones as well.
This is demonstrated in the following simulation. As shown in Figure 11A,
the stimulus pattern consists of eight glides that fall into two frequency
regions, R, and R,. The two regions are separated in frequency by six rows.
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Figure 10. Response of two corresponding frequency channels 1o slow presentation of
alternating H and L tones, with large frequency seporation (8 rows). (A) The stimulus as
mapped to the segregation network at a specific time. The stimulus is o sequence of six
tones. Each tone has a frequency of either Fq or Fb, representing an L tone or an H tone
respectively. The network consists of a matrix of 15X 54 oscillators. (B} The combined activ-
ities of all of the enabled oscillators representing each single tone, plus the activity of the
global inhibitor. Only shown is one delay interval ofter the full sequence of six tones was
presented. The parameter values are the same as in Figure 7. The algorithm took 2,800
steps.

A network of 15 x 40 oscillators was simulated. As clearly shown in Figure
11B, all of the enabled oscillators in R, were synchronized, and so were the
enabled oscillators in R,. But the oscillations in the two regions were desyn-
chronized from each other. The simulation results demonstrate that stream
segregation occurred and the tones are grouped into two different streams.
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Figure 11. Response of two corresponding frequency regions, separated by 6 rows, to fast
presentation of a sequence of 8 FM tones. (A) The stimulus pattern as mapped to the
segregation network at a specific time. The network consists of a matrix of 15X 40 oscilla-
tors. (B) The combined activities of all of the enabled oscillators in the two frequency
regions respectively, plus the activity of the global inhibitor. Only shown is one delay inter-
val after the full sequence of six tones was presented. The parameter values are the same
as in Figure 7. The algorithm took 2,400 steps.

Here, frequency proximity plays the dominant role in stream segregation
because relatively strong connections between oscillators of similar frequency
but dissimilar time (see Figure 4) are responsible for grouping the tones in
each frequency region together. The simulation results conform with the
findings of Steiger and Bregman (1981), which show that frequency rela-
tions are of primary importance for segregation of FM tones. To be clear,
this simulation does not deal with common FM modulation, which is known
to be a factor of grouping (see Introduction). A discussion of how to incor-
porate FM modulation into this model is given in the Discussion section.
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Before we conduct further simulation experiments, let us understand
why the previous behavior of the segregation network occurs. It can be
explained by general principles of competition and cooperation in the segre-
gation network. Oscillators that are adjacent in both the frequency and the
time domains will always synchronize because they are strongly coupled
with each other (see Figure 4). For the fast presentation, interleaved tones
of similar frequencies are separated only by six oscillators (Figures 6, 9, and
11). Thus, with strong coupling, all tones of similar frequencies are grouped
into the same stream. With large frequency separation (Figures 6 and 11),
tones of dissimilar frequencies cannot be grouped together. Furthermore,
because of global inhibition exerted by the global inhibitor, tones that can-
not be grouped will be segregated, thus producing stream segregation. With
small frequency separation (Figure 9), tones of different frequencies can
still be grouped together and no streaming occurs. On the other hand, slow-
ing down the rate of presentation increases the distance between interleaved
tones of similar frequencies, and thus reduces the probability of grouping
these tones. This explains the results in Figure 10, where no grouping occurs
at all. The global inhibitor plays a critical role in segregation. Without it, all
enabled oscillators in the network would synchronize regardless of which
tones they represent, as these oscillators would form a locally coupled pop-
ulation by the Gaussian connectivity pattern (Figure 4), which we have
shown will reach global synchrony (see Terman & Wang, 1995; Wang &
Terman, 1995).

Sequential Capturing

One of the well-known phenomena in auditory scene analysis is so-called
sequential capturing. It was first reported by Bregman and Pinker (1978; see
also Bregman, 1990), who tested a repeating sequence formed by a pure
tone T, and a complex tone composed of two pure tone components T, and
T, (Figure 12A). By varying the frequencies of T, and T, and the onset time
differences between T, and T, they show that T, may capture T, from the
complex T,/T, to form a new stream T,/T,. Sequential capturing is pro-
moted by decreasing frequency distance between T, and T;, increasing fre-
quency distance between T, and T,, or increasing onset time differences
between T, and T,.

We have simulated the phenomenon of sequential capturing. To capture
the frequency relations between different tones, we held T, and T; tones at
constant frequencies and set T, to two different frequencies. As in the
experiments, a repeating sequence of three simulated pure tones were used,
as shown in Figure 12A. Relating to the experiments of Bregman and
Pinker, Fa tones correspond to T, tones, F; to T,, and Fq to T,. The tones
with frequencies F. and F: constitute a complex tone, with substantial
overlapping in time (we avoided full onset synchrony between them). We



PRIMITIVE AUDITORY SEGREGATION 437

A
I TTT] IERERE 11T
Fy T3
H i |
Fc:d T2
Ft"m T — Ty
t
B
Fq
Fc
Fa
Inhibitor

Y i Y Y X 1 || \ Y
Time

Figure 12. Sequential capturing: Case 1. (A) The stimulus pattern to the segregation net-
work at a specific time. The stimulus is a sequence of nine tones, triggering three frequency
channels: Fq, Fe, or Fd. Overlapping Fo and Fc tones compose the complex tone and Fd tones
are the captor. The separation between Fq and F¢ is 7 rows, and between Fc and Fd is 4
rows. The network consists of a matrix of 15X 27 oscillators. (B) The combined activities of
all of the enabled oscillators in each of three frequency channels, plus the activity of the
global inhibitor. Only shown is one delay interval after the full sequence of six tones was
presented. The parameter values are the same as in Figure 7 except that W1=0.3 and
W2=1.2. The algorithm took 1,600 steps.

first tested the case that the distance between T, and T, is closer than that
between T, and T,. A network of 15 x 27 oscillators was simulated so that
it could represent a sequence of three repetitions of the stimuli. Figure 12B
provides the simulation results within a typical delay step after the whole se-
quence was presented. As is clear in the figure, the enabled oscillators in the
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Figure 14. Competition among different organizations: (A) The stimulus pattern as mapped
to the segregation network at a specific time. The stimulus is a sequence of 12 tones, trig-
gering four frequency channels: Fq, Fb, Fc or Ff. The network consists of a matrix of 24 X 24
oscillators. (B) The combined activities of all of the enabled oscillators in each of four fre-
quency channels, plus the activity of the global inhibitor. Only shown is one delay interval
after the full sequence of six tones was presented. The parameter values are the same as in
Figure 7 except that W1=0.1 and W2=1.8. The algorithm took 1,600 steps.
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The simulation results in Figures 12 and 13 resemble those of the corre-
sponding psychological experiments (Bregman, 1990; Bregman & Pinker,
1978). Different from stream segregation, these simulations of sequential
capturing used tones with time overlaps. As shown in the results, unlike
other models of auditory segregation (e.g., Beauvois & Meddis, 1991), our
model handles simultaneous tones equally well as sequential tones. We did
not test the case of full onset synchrony between T, and T, because the simple
segregation network of Figure 3 lacks the ability of detecting stimulus
onsets, which should be incorporated in a more comprehensive model (see
the Discussion section).

Competition Among Alternative Organizations

Whether a set of tones is grouped into the same stream depends not only on
the arrangement within the set but also on the context of which the set is
part. Grouping takes place as though different streams competed for the
belonging of a specific tone (Bregman, 1978, 1990, pp. 165-172; Idson &
Massaro, 1976; McNally & Handel, 1977). To test whether our model exhibits
appropriate competition among rival organizations, we have simulated the
experiment of Bregman (1978). In the experiment, two tones T, and T, with
a fixed frequency separation formed the first pair and were presented suc-
cessively. At the same time, another two tones T; and T,, also with fixed
frequency separation, formed the second pair and were also presented suc-
cessively. The presentation of the two pairs was interleaved in time. When
the frequency separation between the pairs was large, each pair formed its
own stream. But when the two pairs were brought into the same frequency
region so that the frequency distance within each pair was greater than the
distances between T, and T, and between T, and T, across the pairs, then T,
of the first pair formed a stream with T, of the second pair and T, formed a
stream with T,. The experiment demonstrates that whether the sequence of
the first pair can form its own stream, even if the time/and frequency rela-
tions within the sequence are kept fixed, depends on the presence of other
tones in the auditory scene.

To simulate the experiment of Bregman (1978), a network of 24 x 24
oscillators was used so that each tone could be repeated three times. Follow-
ing the experiment, each tone was assumed to be brief. More specifically, it
occupied only two oscillators. We first tested the case with large frequency
separation between the two pairs. The stimulus condition is described in
Figure 14A, where the first pair of T,/T, stimulates the frequency channels
of Fa and Fy respectively, and the second pair of T,/T, stimulates the fre-
quency channels of F. and Fr respectively. The frequency distance between
Fa and Fy is 5 rows, between F. and Fy is 7 rows, and between Fy and F. is 11
rows. Figure 14B displays the simulation results. The figure shows that the
sequence of T,/T, tones (the first pair) was grouped into the same stream by
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Figure 13. Sequential capturing: Case 2. The only difference from Figure 12 is that T2 tones
in this case have frequency Fp instead of Fe.

Fc and Fq frequency channels were synchronized, and their oscillations were
desynchronized from those in the Fa channel. In this case, the T, tones cap-
tured the T, tones from the T,/T, complex to form a new stream T:/T,.
Next we tested the case where the frequency separation between T, and
T, is larger than that between T, and T,, as shown in Figure 13A. Different
from the previous case, Fy tones correspond to T, tones. The simulation
results are shown in Figure 13B, clearly demonstrating that the complex
tone of T,/T, is kept together and it is separated from the captor T,. That
is, no capturing was exhibited in the simulation. As in Figure 12B, the
global inhibitor in Figure 13B oscillated with a frequency double that of an
enabled oscillator in the segregation network, signifying auditory segregation.
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phase synchronization, and the sequence of T,/T, tones (the second pair)
was grouped into a different stream. We later moved the first pair up to the
same frequency region as the second pair, keeping the frequency distance
within each pair unchanged. In this case, the first pair of T,/T, stimulated
the frequency channels of F4 and F. respectively, as shown in Figure 15A.
The simulation results are given in Figure 15B. In this case, T, tones were
grouped with T; tones, instead of with T, tones. T, tones were grouped with
T, tones. The two pairs were broken down into different streams.

The simulation results well resemble the experimental findings of Bregman
(1978), and capture the essential properties of competition among alternative
organizations. Three aspects of the segregation network are responsible for
the successful simulation: (a) lateral excitatory coupling that falls off with
distance (see Figure 4); (b) dynamic normalization of Equation 2 in which
only relative connection strengths are important; and (c) global inhibition.
When the first pair was brought into the same frequency region as the
second pair (Figure 15A), dynamic normalization led to much weakened
relative coupling between frequency channels F. and channel Fy, because
each had much stronger coupling with the first pair as compared with the
situation in Figure 14A. The weakened coupling within the second pair
could not overcome global inhibition. Thus the pair was segregated into two
streams, each of which then grouped with one tone sequence of the first pair
instead.

4. A NEUROCOMPUTATIONAL THEORY
OF AUDITORY SEGREGATION

Based on extensive empirical studies, Bregman put forward a theory to
explain experimental phenomena of auditory scene analysis (Bregman,
1990). Bregman’s theory extends Gestalt principles of grouping that result
from visual observations to the auditory domain. Time is viewed as a sep-
arate dimension, and the theory builds on a number of rules of perceptual
organization, such as proximity, similarity, good continuation, common
fate, and so on (Rock & Palmer, 1990). Bregman’s theory can explain a
variety of experimental data in terms of these rules. As for primitive audi-
tory scene analysis, his theory claims that it is a bottom-up, data-driven
process, and that it is immediate and innate. It involves no attention or
learning, both of which, however, are assumed to happen in the process of
schema-driven (memory-based) auditory scene analysis. On the other hand,
Jones’ theory of rhythmic attention emphasizes the unique properties of
auditory perception (Jones, 1976; Jones et al., 1981). According to the rhy-
thmic attention theory, listeners group tones that fall into a certain rhyth-
mic structure and anticipate the onset of a next tone using the rhythm.
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Figure 15. Competition among different organizations: Case 2: The only difference from

Figure 14 is that in this simulation T1 and T2 tones trigger Fq and Fe frequency channels,
respectively.
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Contrasting Bregman, for Jones, attention is intimately involved even in
what is regarded as primitive auditory scene analysis by Bregman. Also,
Jones emphasizes anticipation, which involves a top-down process. The
theory is supported by the experiments that vary the rhythmic structure in a
sequence of sequential tones (see the first section). Furthermore, the rhyth-
mic attention theory asserts the existence of an internal biological mechanism
that is also rhythmic. This internal rhythmic mechanism entrains itself with
the rhythms in a sequence of input tones, and generates active anticipation
(Jones, 1976).

Neither of these theories, however, makes specific reference to the under-
lying neural mechanisms. Bregman’s theory makes no attempts to link to
biological principles. Although Jones makes an appeal to a possible bio-
logical mechanism, her theory does not offer a plausible neural model.

We present the following neural theory to explain primitive auditory seg-
regation. The underlying structure of our theory is the oscillator network of
Figure 3. Relaxation oscillators, the building blocks of the network, exhibit
nonstationary behavior. This limit-cycle dynamics differs fundamentally
from the commonly used limit-point dynamics, which always approaches
stationary behavior (Guckenheimer & Holmes, 1983). Oscillators in the net-
work are enabled by auditory stimuli. Because current auditory stimuli
always change and the input end projects to the oscillator network through
systematic delay lines, the ensemble of the oscillators thus stimulated shifts
on the network constantly (see Figure 3). The basic hypothesis is that a set of
tones, presented either sequentially or simultaneously, forms the same
stream if the underlying oscillators enabled by the tones reach synchrony
because of lateral excitatory connections. Moreover, different streams cor-
respond to oscillator groups that desynchronize from each other because of
global inhibition. Such a theory is referred to as shifting synchroniza-
tion (see the Introduction).? More elements of the theory are given in the
following.

A fundamental effect accompanying stream segregation is the loss of
information about the order of successively presented tones. Take the clas-
sical example of a sequence of alternating pure tones HLHLHL. When
stream segregation occurs, the individual perceives two streams, one for H
tones and another for L tones. In the meantime, the individual cannot
identify relative order between tones across the two streams, for example,

? The word shifting is used to indicate that the ensemble of the oscillators that is enabled by
auditory stimuli shifts on the oscillator network. As a result, which oscillators form a synchro-
nized group and which oscillator groups desynchronize from each other also shift on the
oscillator network as the stimuli change in time. The word is also consistent with our model
description that attention shifts back and forth (alternates) between different segments when
stream segregation occurs (see the following paragraph).



444 WANG

the second tone (L) in the sequence and the third one (#). The shifting syn-
chronization theory can explain the phenomena on the basis of the follow-
ing two assumptions. First, we assume that attention is paid to a stream
when its constituent oscillators reach their active phases. This is a natural
assumption for auditory segregation on the basis of oscillatory correlation.
So in our computational model, attention quickly alternates between the
two different streams, and attention can be paid to multiple interleaved
tones that belong to the same stream. Second, we assume that the temporal
order between two items (tones) can be perceived only if (a) they have dis-
tinct onset times, and (b) they are in the same stream, or they constitute two
different streams, one of which comes before another. The first requirement
is natural, because the order would be undefined otherwise. The second
one merits further discussion. If the two items are in the same stream, they
will be attended to simultaneously according to the first assumption. If they
do not overlap in onset times, the individual should be able to tell their order
of occurrence on the basis of recency (which may be coded in STM). If, on
the other hand, one item constitutes a stream that has clear temporal order
with respect to the stream constituted by another item (i.e., the two streams
do not interleave in time), then the sequential relation of the two streams
enables the individual to perceive the order. With the two assumptions, the
shifting synchronization theory explains the loss of temporal order in stream
segregation as follows.

1. For fast presentation, all H tones are grouped into a single stream, and
all L tones are grouped into a different stream (see Figure 8). According to
the second assumption, the relative order between the tones within each
stream is perceived because these tones are attended to simultaneously and
have a clear ordering in their presentations. But the relative order between
tones across the two streams is not perceived because they are in two streams
that interleave in time.

2. For slow presentation, a number of situations are possible. If the
frequency separation between the tones is not large, all tones may form a
single stream (see Figure 9). In this case, the temporal order between the
tones is perceived according to the assumptions. If the frequency separation
is large, each tone may form its own stream (see Figure 10). In this case, the
order can still be revealed because these streams do not interleave in time.
For intermediate frequency separation, neighboring pairs of A and L tones
may form a single stream. In this case, the order of tones is again perceived,
because streams do not overlap in time. In sum, the order is fully perceived
for slow presentation.

These explanations of the theory are consistent with typical psychologi-
cal data of stream segregation as reviewed in the Introduction. What hap-
pens for intermediate rates of presentation? As observed in our simulations,
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pairs of interleaved tones with similar frequencies may form a single stream,
together with streams that are made of adjacent H and L tones. Because this
situation is somewhere between the two previous cases, our theory predicts
that the individual should be able to tell the order across different frequencies
to a certain extent. Thus, the performance on recalling the ordering of tones
should be between total confusion and full perception of the order. This
effect of intermediate stream segregation seems to happen in the experi-
ments (Bregman, 1990, pp. 143-165).

The main point of the shifting synchronization theory is that attention is
directed to streams, each of which is formed by phase synchrony of its con-
stituent oscillators, and the overlapping of different streams in time is
responsible for the individual’s inability to report the temporal order of
tones across different streams. The latter prediction can be verified by
psychological experiments. As an example, in the experiments of Bregman
and Pinker (1978), sequential capturing occurs when the frequency of the
captor tone T, is near that of tone T, of the complex T,/T.. Our theory pre-
dicts that when sequential capturing occurs, the individual cannot perceive
the relative order across the sequences of T, tones and the T, tones (see
Figure 12B). Because the original study of Bregman and Pinker did not dis-
cuss the loss of order information, this prediction remains to be experimen-
tally tested.

The shifting synchronization theory explains the phenomena of competi-
tion among alternative organizations in terms of general principles of local
cooperation and global competition, characteristic of the segregation net-
work (see the previous section). These experimental phenomena (Bregman,
1978; Idson & Massaro, 1976; McNally & Handel, 1977) appear to pose
thorny problems to both Bregman’s theory and Jones’ rhythmic attention
theory. For Bregman’s theory, no obvious Gestalt principle seems to readily
provide a solution. For the rhythmic attention theory, the rhythmic struc-
ture does not change when the first pair (T,/T,) is moved to the frequency
range of the second pair (T;/T,). The competition among different organi-
zations seems to call for a global control mechanism for auditory segrega-
tion, which in our model is mediated by the global inhibitor.

Relating back to the previous theories of primitive auditory scene analy-
sis, our theory is consistent with many aspects of Bregman’s theory. For
example, our segregation network represents an innate neural structure,
involving no learning. Primitive auditory segregation in our model is also an
immediate process, which is achieved in real time. Gestalt principles of group-
ing are embodied in the network architecture (Figure 3 is a much simpli-
fied version), such as proximity and continuation. Linking to the rhythmic
attention theory, our theory also assumes the involvement of attention that
rapidly switches between different streams. However, it should be clear that
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attention in the shifting synchronization theory does not influence which
tones should be grouped or segregated, as assumed in the rhythmic atten-
tion theory.

Is the segregation network of Figure 3 neurally plausible? As mentioned
earlier, an oscillator may be interpreted either as a single neuron, as a neuron
generates action potentials from time to time, or as the collective behavior
of a local group of neurons. In the latter case, an oscillator corresponds to
the average activity of an excitatory cell group that is mutually connected
with an inhibitory cell group. The cells in the excitatory cell group have
recurrent connections among themselves and excite the inhibitory cells. The
inhibitory cells send inhibition to the excitatory cell group. It has been shown
that such a network of excitatory and inhibitory binary neurons exhibits
emergent neural oscillations (Buhmann, 1989; Sporns et al., 1989).

There is ample evidence that suggests the existence of neural oscillations
in the brain (Buzsaki, Llinas, Singer, Berthoz, & Christen, 1994). It was
first observed that the central olfactory system, namely the olfactory bulb
and the olfactory cortex, yields oscillatory activity in response to olfactory
stimulation (for a review, see Freeman, 1991). More recently, it has been
reported that local field potentials in the visual cortex and the sensorimotor
cortex show oscillations that are initiated by appropriate visual stimuli
(Eckhorn et al., 1988; Gray, Konig, Engel, & Singer, 1989; Murthy & Fetz,
1992). The frequencies of these oscillations are generally between 20 and 80
Hz, often referred to as 40-Hz oscillations. In addition, neural oscillations
seem to exhibit temporal coherence (synchronization) across remote regions
of the visual system when stimulated by a coherent stimulus pattern. In
auditory processing, 40-Hz oscillations have also been observed. Galambos,
Makeig, & Talmachoff (1981) first reported that auditory evoked poten-
tials in humans by a tone show 40 Hz oscillations, which can last for several
cycles after the stimulus presentation is over. These oscillations of auditory
evoked potentials were later confirmed by Madler and Poppel (1987), who
further found that these characteristic oscillations were absent from the
patients under deep anesthesia. The work by Mikeld and Hari (1987) also
confirmed the observation of Galambos et al., and further suggested that
the auditory cortex gives rise to the oscillations.

The work by Ribary et al. (1991) lends perhaps the most direct support to
the shifting synchronization theory. Using a noninvasive imaging technique
called magnetic field tomography, they recorded three-dimensional human
brain activity during auditory processing. Their results show 40-Hz activity
in localized brain regions both at the cortical level and at the thalamic level
in the auditory system. These oscillations are synchronized over consider-
able cortical areas, and the synchronized oscillations can be elicited by both
rhythmic and transient sound stimuli. Llinas and Ribary (1993) in a later
report described 40-Hz oscillations triggered by frequency modulated tones.
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An important part of the architecture of the model is an array of delay
lines (see Figure 3). An array of delay lines has been argued to be neurally
plausible (Hopfield & Tank, 1989), and it has been used as a basis for tem-
poral pattern recognition (see Tank & Hopfield, 1987; Waibel, Hanazawa,
Hinton, Shikano, & Lang, 1989). Latencies of neuronal responses to audi-
tory stimuli have been found at various levels of the auditory pathway, and
the range of delays increases greatly in higher auditory structures (Popper &
Fay, 1992). For instance, electrophysiological recordings in the cat auditory
cortex identify up to 1.6 s delays in response to a tone sequence (Hocherman
& Gilat, 1981; McKenna, Weinberger, & Diamond, 1989). In echolocating
bats, Dear, Simmons, & Fritz (1993) discovered that cells in the auditory
cortex show systematic response latencies. Furthermore, these cortical cells
with different response latencies encode multiple objects located at different
distances so that the echoes arriving at different times can concurrently trig-
ger their corresponding cells. The use of systematic delay lines is also consis-
tent with the proposal of shifter circuits by Anderson and van Essen (1987),
who argued that such neural circuits exist at many levels in the visual system.
Our model uses delay lines to provide some form of STM that can simulta-
neously make available a recent history of external stimulation. In an elec-
trophysiological experiment, neurons that exhibit STM characteristics have
been found to constitute most of the recorded cells in the auditory cortex of
the monkey during a delay task (Gottlieb, Vaadia, & Abeles, 1989).

Other structural characteristics of the neural architecture of Figure 3
include tonotopic organization and lateral connections (see Figure 4). Tono-
topic organization is a characteristic structural principle of the auditory
system, including the auditory cortex (Popper & Fay, 1992). Lateral con-
nections within the auditory cortex have been observed (for a review, see
Winer, 1992), and the local projections of cortical cells can span up to 3 mm
in the auditory cortex. The global inhibitor in our model exerts control to
the entire oscillator network, and its role is to segregate simultaneously
active multiple streams. The shifting synchronization theory regards atten-
tion as shifting between different streams; thus it is reasonable to assume
that the global inhibitor is involved in some form of attentional control.
Crick (1984, 1994) suggested that part of the thalamus, the thalamic reticular
complex in particular, may be involved in selective attention. The thalamus is
located in a unique place in the structure of the brain: It sends projections
to and receives input from almost the entire cortex. In light of Crick’s sug-
gestion and the structural properties of the thalamus, the global inhibitor
may be speculated to correspond to a neuronal group in the thalamus. The
activity of the global inhibitor should be taken to represent the collective
behavior of the neuronal group.

On the basis of these discussions, it is tempting, although preliminary, to
suggest that the two-dimensional oscillator network, as shown in Figure 3,
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describes an aspect of the structure of the auditory cortex. The auditory cor-
tex is bound to be more complex than the model we have specified. On the
other hand, this suggestion, in the coarse scale, seems to be consistent with
the neurobiology of the auditory cortex. Thus, as a working hypothesis, we
suggest that auditory segregation may be achieved in the auditory cortex.
Here a parallel can be made with the visual system where neurobiological
evidence suggests that motion-based visual segmentation may occur in the
primary visual cortex (Lamme, van Diijk, & Spekreijse, 1993; Stoner &
Albright, 1992).

It is interesting to compare the neural pathways underlying vision and
audition. Each human retina contains roughly 130 million light receptors,
which converge onto roughly 1 million (optic) fibers of the visual nerve.
Optic fibers in turn innervate about 100 million neurons in each side of the
visual cortex. In contrast, each human cochlea contains rougly 12,000 re-
ceptors (inner and outer hair cells), which give rise to roughly 30,000 fibers
of the auditory nerve (Kandel, Schwartz, & Jessell, 1991). The connections
from the auditory nerve to the auditory cortex are relayed by many auditory
nuclei, each having an increased number of neurons so that there are about
100 million cells in each side of the auditory cortex (Handel, 1989; Kandel et
al., 1991). In other words, the number of visual and the number of auditory
cortical cells are roughly identical. It is a striking phenomenon that the
number of auditory cells significantly increases along the auditory pathway.
The time delay network of Figure 3 provides an explanation of this phenom-
enon as follows. Approximately speaking, the representation of auditory
stimuli in the cochlea is in real time; that is, the representation is instanta-
neous. The numerous relay stations along the auditory pathway progres-
sively expand the time dimension so that by the level of the auditory cortex,
a broad range of latencies (delays) are present. The significant increase in
the cell populations along the ascending stations of the auditory pathway
may provide the neural substrate for the increased ranges of latencies. How-
ever, ever increased latencies cannot stretch endlessly. The limit on the
ranges of latencies may reflect the nature of STM, which provides a sliding
representation that is shortlived.

We call the shifting synchronization theory neurocomputational (the title
of this section) in order to emphasize that its underlying elements and arch-
itecture are neurally plausible.

DISCUSSION

The global inhibitor in the segregation network plays the role of breaking
groups of oscillators that have weak mutual coupling into different streams
by phase desynchronization. In other words, it adds a dimension of compe-
tition into the oscillator network so that only relatively strong coupling
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leads to phase entrainment. The segregation network incorporates both
competition (global inhibition) and cooperation (local excitation; see Arbib,
1989, for a general discussion of the roles of competition and cooperation in
the brain). As a result, the network does not segregate tones based on their
absolute distances in the frequency domain or the time domain, which would
have been the case without global competition. Instead, the context of the
tones plays an important role in the overall outcome of segregation. The
influence of such contexts is responsible for competition among different
organizations (Figures 14 and 15, for example). Because of this, the net-
work also predicts an interaction between frequency proximity and presen-
tation rate. Such ‘‘trading’’ between frequency and time seems to be present
in human stream segregation (Jones, 1976).

Although structural similar to the comparator model in Kammen et al.
(1989), the global inhibitor of our model serves an entirely different role. In
the comparator model, the comparator receives input from every oscillator
of a population of uncoupled oscillators, and feeds back a function of the
average phase of the population to every oscillator. The comparator is used
to synchronize all the enabled oscillators in the oscillator population, whereas
the global inhibitor is to desynchronize oscillator groups, each of which is
synchronized. Llinas and his colleagues (Llinas & Ribary, 1993; Ribary et al.,
1991) also suggested that synchronization in the brain is achieved by a
mechanism similar to the comparator model. More precisely, they suggest
that the thalamus, through its mutual connections with the cortex, plays the
role of synchronizing cortical oscillations. In our model, synchrony within
each oscillator group is led to by lateral excitatory connections within the
network, consistent with the suggestions of Singer and colleagues (Engel,
Konig, Kreiter, & Singer, 1991a, 1991b; Singer, 1993; Singer & Gray, 1995)
that coherent oscillations in the visual cortex result from lateral interactions
within the cortex. Because both the comparator and the global inhibitor are
implicated to be located in the thalamus, which provides the necessary
organizational structure, the disputes may be settled by the following exper-
iment. Assume that there are only two streams. As noted previously, our
model predicts that the global inhibitor oscillates with a frequency double
that of the oscillators on the network when stream segregation occurs (see
Figure 8). The prediction implies that if the auditory cortex shows 40-Hz
oscillations then the thalamus oscillates with a frequency of 80 Hz. In con-
trast, the comparator model assumes that the feedback loop between the
thalamus and the cortex produces synchrony, and thus would predict that
the thalamus oscillates with the same frequency as the auditory cortex. The
occurrence of stream segregation is a critical condition. Otherwise, both of
these models predict the same frequency of the oscillations in the auditory
cortex and the thalamus. We recognize that this physiological experiment
would be difficult to conduct because stream segregation is demonstrated so
far only in human psychological experiments. However, animal experi-
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ments in the visual domain may be able to help verify the contrasting
models, as both models have also been implicated in visual segmentation.
In terms of representing multiple streams, our shifting synchronization
theory can be regarded as a special form of the temporal correlation theory
of von der Malsburg (1981; von der Malsburg & Schneider, 1986). Generally
speaking, temporal correlation is not necessarily committed to the use of
neural oscillators. Besides, the idea of using a global inhibitor to segregate
multiple streams is common to both models. However, the two theories
differ fundamentally in underlying computational models. More specif-
ically, the single oscillator model in von der Malsburg and Schneider (1986)
is constructed by ad hoc definitions that make further analysis very hard, if
not impossible. Our single oscillator is a standard relaxation oscillator with
well-understood mathematical properties. As mentioned in the Introduc-
tion, their network relies on full connectivity to achieve synchrony, whereas
ours is based on local connectivity. As described in the first two sections of
this article, the difference between full connectivity and local connectivity in
generating synchrony is critical for general segregation, including auditory
segregation. Although a global inhibitor is used in both models, the defini-
tion of the global inhibitor and the mechanism to achieve segregation are
much different. To summarize, our model is a LEGION network that has
been shown to exhibit the property of selective gating, which in turn gives
rise to rapid synchrony and rapid desynchrony. These computational prop-
erties, plus systematic delay lines that represent time, which are responsible
for the simulation results presented in this article, are missing from their
model. As a result, their simulation of auditory segregation is limited to illu-
strating their idea of temporal correlation. In addition, our shifting syn-
chronization theory provides an explanation of how auditory scene analysis
may arise from an interacting neural structure (see the previous section).
The simulations in the Simulation Results section represent only a start at
providing neurocomputational explanations of an important aspect of audi-
tory perception. Many psychological data remain to be explained at this
stage of model development. But, we believe that the approach outlined
here—Ilateral connections providing the basis for encoding similarities and
yielding synchronization—holds significant promise to explain a variety of
experimental phenomena. Take, for example, onset synchrony, which has
been used by von der Malsburg and Schneider (1986) as the determinant for
producing synchronization. Our model can be extended to include another
layer for detecting stimulus onset (various onset-detecting neurons have
been identified in the auditory system; see Pickles, 1988; Popper & Fay,
1992). For example, Smith (1994) proposed to use different filters to detect
onsets of sound, such as the difference of Gaussians. The determinant of
onset synchrony can be embodied by strengthened connections between
onset detectors that are activated more or less at the same time. These extra
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links derived from the onset detection layer should suffice to promote
grouping by synchronization among tones that exhibit onset synchrony.
This is attributed to transitivity of synchronization as discussed in the earlier
section on neural architecture, which is a unique property of our segrega-
tion network. Also, the permanent connectivity pattern of a Gaussian distri-
bution (Figure 4) strongly biases the network toward the grouping of sounds
that have continuous frequency transitions, which is consistent with the
analysis of speech perception (Bregman, 1990; Handel, 1989).

Although much can be accomplished with the basic architecture of Figure
3 as demonstrated earlier, to achieve more realistic auditory pattern segre-
gation, the architecture must be extended to incorporate other qualities of
auditory stimuli, such as amplitude, rhythm, harmonics, timbre, and so on.
Grouping based on common amplitude/frequency modulation may be
handled in a way similar to onset synchrony. Grouping of multiple frequency
partials that form harmonics of a fundamental frequency may be incor-
porated based on two cues. The first is onset/offset synchrony among these
partials. The second is spectral relations among the partials. There are many
models for pitch perception on the basis of harmonic relations (Moore,
1989). Most of them are not built on neurobiology. A topic of future research
is how to combine the detection of harmonic relations with the present
model of auditory segregation.

Our discussion so far has been concerned with only primitive auditory
segregation. A good deal of psychological evidence suggests that segregation
is also influenced by prior knowledge possessed by an individual (Bregman,
1990). Thus, knowledge effects also must be considered in future research.
We previously proposed a model of oscillatory associative memory (Wang,
Buhmann, & von der Malsburg, 1990). This associative memory model can
separate an input that is a mixture of multiple patterns, based on the patterns
stored in the memory. In the future, these two types of segregation must be
integrated into a coherent model. Such a model should be able to address
the data on melody segregation observed by Dowling (1973) and Dowling
et al. (1987), which showed the influence of previously acquired melodies.
The model should also be able to simulate the experiments of Tougas and
Bregman (1985), which involve extracting a pattern held in memory from a
mixture of tones. Their experiments tested participants’ ability to follow a
tone sequence, and they found that grouping based on frequency proximity
dominates over grouping based on a smooth trajectory.

The shifting synchronization theory proposes a novel approach for tackl-
ing automatic auditory scene analysis, which is largely an unsolved engineer-
ing problem. Automatic auditory segregation is a critical part of auditory
signal processing, real-time speech recognition, and music transcription in
natural environments. Compared to existing computer algorithms for audi-
tory input separation (Brown & Cooke, 1994; Mellinger, 1992; Parsons, 1976;
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Weintraub, 1986), the oscillatory correlation approach offers many unique
advantages. Due to oscillatory dynamics, no single stream can dominate and
suppress the perception of the rest of the auditory scene for a long time. The
processing is inherently parallel. The organizational simplicity renders the
segregation network particularly feasible for VLSI implementation. Also,
rapid continuous time dynamics allows real-time processing.

CONCLUSION

Auditory segregation is critical for complex auditory pattern processing.
This article presents a novel neurocomputational theory, namely the shift-
ing synchronization theory, of how primitive auditory segregation might be
achieved in the brain. The architecture of the model is a laterally coupled
two-dimensional network of neural oscillators with a global inhibitor, one
dimension representing time and the other representing frequency. Com-
puter simulation of the segregation network exhibits a set of psychological
phenomena of primitive auditory segregation, including stream segregation.
We have argued that the model is neurally plausible and may provide an
effective computational approach to automatic auditory segregation.
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