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INTRODUCTION

A remarkable achievement of the visual system is visual sogalgsis, which involves twbasic
perceptual processes: the segmentation of a visual scene into a set of coherent patterns (objects) and
the recognition of memorized ones. In this article, | focus on scene segmentation. €latady

to scene segmentation are figure-ground segregation, which emphasizes segmentatiobjectone

from the rest of the scene (background), and perceptual organization.

Although humans perform scene segmentation with appaease, automatic scene
segmentation is a very challengipgoblem. This is salespite dozens of years of intensive
research in computer vision amdage processing, wher@nage segmentation is the commonly
used term.

Objects appear in a natural scene as gheuping of similar sensoryfeatures and the
segregation of dissimilar ones. Studies in visual perception, in particular Gestalt psychaiegy,
uncovered a number of principlés perceptual organization. | briefly summarize some of the
more important principles (see Chapter 6 of Palmer, 1999):

* Proximity. Features nearby in space and time tend to group into the same segment.

 Similarity. Features that have similar attributes, such as brightness, tend to group.

» Connnectednes# uniform, connectedegion, forinstance éblackboard, tends to form a
single segment.

* Memory Features that belong to the same memory pattern tend to group.

Compared to recognition, far fewer papers addsesae segmentation in neunatworks. A
main reason ighat the problem is particularly challengifay neuralnetworksbecause they also
need toaddressthe bindingproblem. The binding problenrefers to howthe coherence of a
pattern,generally as a large collection &datures, is represented innaural network. One
proposal ighe grandmother-cetepresentation, whicblaims that individuaheuronscan become
so selective as to represent individwdljects. Multiple objects in a visual sceneould be
represented by the coactivation of multiple cells. Another propkisalyn astemporal correlation
(von der Malsburg, 1981), encodes the bindingheycorrelation of temporal activities of feature-
detecting cells. A special form of temporal correlationgsillatory correlation where basic units
are neural oscillators (Terman amdang, 1995). Oscillatory correlation is the underlying
representatiorfor a number ofrecentstudiesthat have substantially advanced the capability of
neural networks in scene segmentation.

| first review non-oscillatory approaches, and then turn to oscill@ppyoaches. Concluding
remarks are given in the Discussion section.
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NON-OSCILLATORY APPROACHES

Boltzmann Machine

In an earlystudy, Sejnowskand Hinton (1987)ntroduced thause of aBoltzmann machinésee
SIMULATED ANNEALING AND BOLTZMANN MACHINES) for figure-ground segregation.
Their network consists of two types of binary units: figure units adgeunits. Units in the
network are locallyand symmetrically connected with fixed excitatory and inhibitagights.
Such connections reflect local cooperation within a connected region and local competition between
figure and background. There are two kinds of input to the network: bottom-ughapebntains
the location and orientation efiges (ofine segments) and top-downput thatcorresponds to
visual attention angbrovides a necessary bias felecting a figure in aimage. The desired
output of the system ithat theunits corresponding to a figurabject and itdoundaryare active
while therest ofthe network unitsaresilent. Their simulationresults onsmall synthetic images
produce desiredesults. Aspointed out by theauthors, it isuncertain whether the Boltzmann
machine approach is applicable to segmenting real images.

FBF Model

Grossberg and Wyse (1991) proposed the so-called FBF model for scene segmentatiBiF

model iterates betwedwo subsystems: feature contour system andaundary contour system

in the order of feature-boundary-featuteence theacronym. The feature contousystemdetects

local features using on-center/off-surround and off-center/on-surrbiteis and then performs
diffusion within animageregion, while the boundary contour systermetects localedges and
performs contour completion. Subsequently, a fillingiiocess spreads a regiladel until there

is a boundary signal. The model has been tested using simple images,panirilsance omeal
images is unclear given the recognized difficulty of contour completion in real images. Labeling by
filling-in is rather cumbersome: too few labels may miss significant regions and toogaaenate
duplicate segments. This labeling process, however, can be significantly improved by introducing
top-downattentionfor selecting oneegion, asdescribed by Sejnowski and Hint¢h987), and

shift of attention for selecting multiple regions sequentially.

Classification-based Approach

Neural networksare well-established as pattestassifiers. Since scene segmentation, in some
sense, may be viewed as a classification problem, neural networks have been used in many studies
to do image segmentation elassification. A training stage precedesualclassification, and in

the training stage multiplelassesareformed, corresponding tamultiple labelsfor the regions of

interest. After training, the classifier is used to label each individual pixel imémge. Koh et al.

(1995) proposed hierarchicalkohonen map (see SELF-ORGANIZINGMAPS; KOHONEN

MAPS) for range image segmentation. edich level of thénierarchy, a Kohonomap isused to

segment an image into a given numberetfions. Ahierarchy isused for two purposeskFirst,

the requirement t&know the number ofsegmentsa priori is alleviated. Second,the hierarchy
embodiesmultiple scales of the input featuspace. More recently, Alirezaie etal. (1997) used

both the Kohonenmap and a multilayer perceptréor segmenting two-dimensional (2-D) MRI
(magnetic resonance imaging) images of the hubnaim. Both networksire trained to classify
threekinds of tissuewhite matter, gray matter, and cerebrospfhatl. After training, the two

networks are used to segment the same images. They report good performance for Kohonen maps
and worse performance for multilayer perceptrons.

A fundamental limitation ofall classification-based approaches to segmentation, neural
networks or not, isthat classification isbased onlocal informationonly, whereas proper
segmentation of a locatiodepends orthe image context of thdocation. Thislimitation is
illustrated in Fig. 1, where twelve line segments are arranged iniffeoentways in Fig. 1la and
Fig. 1b. Because the same set lofe segments occurs in both imagéscal classification
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producesthe same segmentatioasult, while the two images are perceptually organized very
differently. Of course onean train asystem to classify pixel together with itsneighborhood.
But fixed neighborhoods cannot capture the variability of image contexts.

OSCILLATORY APPROACHES

Early Simulations

Theoreticalconsiderations and thdiscovery of coherent oscillations the visual cortex irate
eighties (see SYNCHRONIZATION OF NEURONAIRESPONSES AS APUTATIVE
BINDING MECHANISM) have triggered much interest in exploring oscillatory correlation to
addressscene segmentation and figure-growsadjregation. Most of the early models employ
harmonic oscillators and all-to-all connections to reaghchronization. These models are
fundamentally limited iraddressinghe scene segmentatipnoblem,becausecritical information
about the topology of sensory features is lost.

Recognizing the limitation of all-to-atlonnectivity,Sporns et al. (19919onstructed docally
connected network for modeling perceptual organization.achieveproper synchronizatiothey
use reentrant connections and dynawsightsthat quickly adapt t@resynaptic and postsynaptic
stimulation. Schillen an&dnig (1994) proposed a netwotkat performs synchronization and
desynchronization irmultiple featuredomains. Their network uses Wilson-Cowan oscillators,
which model oscillations from an interacting population of excitatory and inhibiguwyons, and
time delays between elements of neighboring oscillatoradueveboth synchronization and
desynchronization. Tdeal with multiple featuredomains,the network is extended tanclude
multiple modules and cross-module connections. Both of these studies have beearstegtedly
synthetic stimuli.

LEGION Networks

Terman and Wan{1995) proposed ananalyzed alass oflocally excitatory globally inhibitory
oscillator networks, called LEGION. Each oscillatori in a LEGION network is aelaxation
oscillator:

=f(x)-y+li+§+p (1a)
yi = &(9(x) - ¥) (1b)

Here f(x):3x—x3+2 is a cubic, g(x) =a[l+tanh(x/B)] is a sigmoid ¢ and B are
parameters)l; denotes externahput, and p intrinsic noise. The parameteg is a small positive

number, whichyields two time scalesthat are thedefining property of relaxatiomscillations.
Whenl; > 0, (1) gives rise to a stadlmit cycle, whichalternates between a silgsttase (smatk

values) and amctive phrase (largex values). Due to ¢, the oscillator activitychanges slowly
within either of thetwo phases buthe alternation between theo phasedakesplace rapidly,
referred to as jumping.S denotes the overall inpditom the network, and it contains docal

excitatory termand a global inhibitoryerm. The excitatory ternrepresentshe excitatory input
from a set ofadjacentoscillatorsthat connect ta. In a 2-D LEGIONnetwork, the set in the
simplest case contairfsur immediateneighbors. Thisarchitecture isshown in Fig. 2a. The
inhibitory term specifies the inhibition from a global inhibitor (see Fig. 2a).

Terman and Wang conducted an extensive analysis on LEG&DMbrks, based on aarlier
analysis by Somers and Kopell (1993) on wonpled relaxatiomscillators. They showedthat
LEGION exhibits the mechanism eélective gatings follows. When an oscillator jumps to the
active phase, its activity spreads to its neighboring oscillators, which further #peeadivity to
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their neighbors,and soon. This leads to synchronization IlEGION. In addition,oscillating
groupsinhibit each othethrough global inhibition sthat atmost one grougan be in the active
phase at a time. This leads to desynchronization. They ptiogéallowing theorem: LEGION
networksachieveboth synchronization and desynchronization in no greater itmarycles of
oscillations, wheren is the number of patterns in an input scene, so longd®es noexceed the
segmentation capacity. The segmentation capeafigys tothe maximurmumber of patternghat
can be segmented by LEGION, correspondinthéoratio of the oscillation period to the duration
of the active phase. The capacity is about 5 to 7 for typical parameter values.

The following simulation illustrates the selective gating mechanism. An im@gfewith three
caricature patterns, a rabbit, a duck and a flower, is simultaneously presented to BEBBK3N
network, as shown in Fig. 2[@he oscillatoraunder stimulatiorbecomeoscillatory, while those
without stimulation cannot oscillateFig. 2c showsthe temporal evolution of every stimulated
oscillator. The activities of the oscillators representearh object are combined togetherriig.
2c. Althoughthe oscillators in th@etwork start with randorphasesthe synchronization within
each pattermnd the desynchronization between different patterns are chtaiged injust two
oscillation periods.

Image Segmentation Using LEGION

Wang and Termaif1997) extended LEGION to distinguish betwesrajor imageregions and
noisy fragments; the latter are collected into the background. For gray-level imagesscillator
corresponds to one pixel, and two neighboring oscillators are connected with a weight proportional
to pixel similarity. Tospeed up simulation with &rge number of oscillators needed for
processingreal images,Wang and Termamlso abstracted an algoriththat follows LEGION
dynamics. To illustrate typical segmentation results, Fig. 3a shows a gray-level aerial Fiage.
3b showsthe result of segmentation by thiyorithm.The image is segmented into 2&gions,
each of which corresponds to a different intensity level in g which indicates a distinct phase
of oscillators. Notehat the segmentation capacity is removed in the algofitiincomputational
efficiency. Inthe simulation, different segmentsop out fromthe network sequentially, as
similarly shown in Fig. 2c. Aslisplayed inFig. 3b, almostall major regionsare successfully
segmented. The black scattered areas in the figure represent the background.

A variety of real imagenhasbeen successfully segmented by LEGI@&tworks andheir
variants,including intensity imagesuch asmedical (Shareef etl., 1999)and satelliteimages,
textureimages, andmagesequences (motion)Oscillatory correlatiorprovides a unique way to
scene labeling. As illustrated in Fig. 2c, segmentation is performeddreach segmergops out
at a distinct time from thaetwork and different segmerda#iernate intime. Once asegment is in
the active phase,all of its features, but none dahe ones fromcompetingsegments, are
simultaneoushavailablefor later visual processing such astention and recognitio(see Wang
and Liu, 2002).

Contour Extraction

Yen and Finkel (1998) usedhterally coupledphase oscillators textract salientcontours.
Excitatory and inhibitory connections in theietwork encodeorientation relations between edge
filters. The saliency of a contour is embodied by tb&l activity of asynchronized oscillator
group that corresponds tdhe contour. Usingintegrate-and-fireoscillators, Hornand Opher
(1999) studiedthe detection ofbordersbetweenregions. Their network usesdifference-of-
gaussian coupling, anitheir simulationssuggestthat at local minima of totahetwork activity,
firing oscillators tend to correspond to edges that separate different regions.
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DISCUSSION

The field of neural networks has seen major advances in visual scene segmentation yeagsent
The temporal correlatiomypothesis is aiologically plausible representation to dewth the
binding problem. The selective gating mechanisprovides acomputational foundation for
oscillatory correlation. These advances have finally enabled neetrabrks toanalyze real
scenes. | conclude with a brief discussion of two issues for future research.

1. Multi-cue interaction. There are mangrouping cues responsible fgoerceptual
organization. It is important to buildystemsthat synergistically integrate multipleues, not
simply breakingthem to independeninodules. Is there, or shoulidhere be, a common
segmentation mechanism at a deeper level?

2. Top-down analysis. Studieshuman visuapsychophysicglemonstratestrong top-down
influence on scenanalysis. Sources of top-downformation includerecognition, goal and
expectation, short-term memory, and attention. Few studies have seriously addressssuinese
in the context of analyzing real scenes. Their importance deserves far more attention.
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FIGURE CAPTIONS

Figure 1. Perceptual organization of line segmeats\ spatial arrangement of 1ide segments.
b. A different arrangement.

Figure 2. LEGION network. a. Architecture of 2-DLEGION, wherewhite circlesindicate
oscillators and the blaakircle indicates the globahhibitor. b. An inputimage as sampled by a
30x30 LEGION network. c. Temporal activity of thenetwork (adapted fronD.L. Wang
Cognitive Sciengevol. 20, p. 425, 1996)where the upper three traceshow the combined
temporal activities of the oscillat@groups corresponding tibe indicatedpatterns. The bottom
trace shows the activity of the global inhibitor.

Figure 3. Image segmentatioffrom Wang and Termarnl997). a. A gray-level imagewith
160x160 pixelsb. Segmentation resuior a, whereeach segment is indicated by a distigicly
level.
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