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INTRODUCTION

Temporal pattermprocessing igmportant for various intelligent behaviors,including hearing,
vision, speechmusic and motocontrol. Because we live in aaver-changing environment, an
intelligent system, whether it be a human or a robot, must encode patterns over time, recognize and
generate temporal patterns. Time is embodied in a temporal pattern in two different ways:

» Temporalorder. It refers tahe ordering amonghe components of aequence. For
example,the sequenc®&l-E-T is different fromT-E-N. Temporalorder may also refer to a
syntacticstructure, such as subject-verb-object, whereh component may laay of a category
of possible symbols.

» Time duration. Duration can play a critical roléor temporal processing. Inspeech
recognition, for example, we wardte invariance whil@istinguishingrelative durations of the
vowel /i:/ (as in led) and /i/ (as in 1).

Following Wang and Arbib (1990), a sequence is definecbagplexif it contains repetitions
of the same subsequence IB€®-N-F-R-O-N-T, otherwise asimple For generation ofomplex
sequencesthe correctsuccessorcan be determinednly by knowing components prior to the
current one. We refer to the prior subsequence requirgetéomine the current component as the
contextof thecomponentand the length othis context aghe degreeof the component. The
degree of asequencas defined as the maximum degree itsf components. Thus, asimple
sequence is a degree 1 sequence.

Temporal pattern processing is a challenging topic because the information is embeiiaed in
(thus inherently dynamic), not simultaneously availalmnetheless, thigpic hasbeen studied
by a number of investigators; s8enand Giles (2001) for gecent collection of articles on this
topic.

Fundamentally different fronstatic patterrprocessing,temporal processing requirethat a
neural network have a capacity of short-term memory (STM) in ord@atotain a component for
some time. This is becausdemporal pattern extends ovetime period. How toencode STM
thusbecomes one of thaiteriafor classifyingneuralnetworks fortemporalprocessing. Irthis
article, | provide an outline of temporal pattern processing, discussing the topics of recognition and
generation separately. theend, Ipoint out several outstandingsues,including time warping
and chunking, that require future investigation.
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STM MODELS

Delay Lines

The simplestorm of STM uses dixed-length buffer ofN units tomaintain theN most recent
input items. Thiscan be implemented by eithershift register with a fixeddelay between
consecutive units or an array of systematic delay lines. The ldea$TM transforms @aemporal
pattern into a spatial one where time forms anatimaension. Thisdeaforms the basis ofmany
recognition models (e.g. Waibel et d1989).

Decay Traces

Here anitem in STMdecays in time, corresponding tilee decay theory of forgetting in human
STM. The decay usually takes on an exponeritamn. Theoretically,time information can be
precisely recovered frorthe currentvalue. But due taapid decay andioise, only a limited
number of the most recent items can be reliably discerned from STM. This folmedmased by
Jordan (1986) and Wang and Arbib (1990), among others. Fig. 1a shows a typical decay trace.

Exponential Kernels
Tank and Hopfield (1987) proposed a sehofmalized exponential kernels to sample history,
described as

i (t) = (i)“e“(l‘“ k) fork =1, ..K (1)

wherea regulates the width of each kernel. Notice @) = 1 ift =k. Fig. 1b shows aet of 4
kernels. There areK units to representachsymbol. Unlike delayline STM, each unit here
samples a symbol within a certain period peaked at a specific time step (

Along similar lines, de Vries and Principe (1992) proposed#nemamodel, which uses a set

of gamma kernels (integrandsicfunctions, hence the name)

k

—_H k-1 -t —
gk(t)—(k_l)!t e fork=1, ...,.K (2)

wherey is a parameter between 0 and K. is called theorder ofthe memory, andthere areK
units for storing a symb@in STM. Fig. 1c shows set of 4kernels.Sincegy, has amaximum

value att = (k—1)/u, u determines the depth of the peak of each kern&8TiM. Thus,unlike
normalized exponential kernels, idrstep history may be sampled by |&#sanN gammakernels.
Note that gamma kernels can be computed recursively.

STORE Model

The STM models examined so far angonomous, fothe trace of each item fally independent
of other items in STM. A basic property of hunfaiM is that ithas alimited capacity (£2), so
that whether anchow long anitem is held in STMdepends on other inputs enteriS§M. In
addition, the study ofhuman retention of sequenca&sows arecencyfactor, wheremore recent
items tend to be betteetained, and a primadgctor, wherebythe beginning items of a sequence
are less prone to forgetting.Thesetwo factorstogether give rise téthe bowing effect, which
motivated the STORE model (Bradski et al., 1992) using a pair of units

Xi(t+1) =xi(t) + [B 1i(1) + i) = (0 x(O] (1) (3a)
Yi(t+1) =yi(0) + () —yi(®] [1 - 1()] (3b)
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wherex(t) = 3 x;(t), the sum of STM item values, atd) = 5 lj(t), thesum ofexternalinputs.

j j
The behavior of STORIBas two aspectsThefirst is the global inhibition term in(3a), which
reduces the value @f in favor of new items. The second is the excitatory loop betweandy;,

which favors olditems inSTM. Combined togethethey are able tproduce thébowing shape
for a sequence of items. Fig. 1d shows three bows generated with different vgues of

TEMPORAL PATTERN RECOGNITION

The shared goal ofall STM models is tomake inputhistory available simultaneously when
recognition takes placeWith a STM model irplace, recognition is not much different from the
recognition of static patterns.

Template Matching Using Hebbian Learning

The architecturdor this type of recognition is simply a two-layer netwotke input layerthat
incorporatesSTM, and the sequence recognition layenere each unitencodes an individual
sequence.The recognition scheme is essentigdiynplatematching, wherdemplates are formed
through following Hebbian learning

W;i(0) = W;j(t=1) + C si(Ox(1) — W;(t=1)] (4)

whereW; is the connection weight from unif in the input layer to sequence recogngen the
recognitionlayer. ParameterC controls learningrate. Hebbianearning is applied after the
presentation of the entire sequence is completed. The temilagegormedcan beused to
recognize specific inpugequenceslhe recognition layer typically includes recurrent connections
for selecting a winner by self-organization (e.g. winner-take-all) during training or recognition.

Kohonen (1990) proposed an architectucalled the phonetic typewriterfor phoneme
recognition. The phonetic typewriter extracts a vector of frequency components using Fast Fourier
Transform. After this step, hisalgorithm of feature mapping is appliéor recognition, where
winner-take-all is applied in both training amelcognition. The phonetic typewritehas been
applied to recogniz&innish and Japanese phonenfiéshonen, 1990). Wang and colleagues
(Wang and Arbib, 1990; Wang and Yuwono, 1995) adoptiedraing method similar t4), and
showed that a recognition algorithm plus either ddrage orshift registercan recognize complex
sequences.

Associative Memory Approach

The dynamics of thélopfield associative memory mod@eeARTICLE) can be characterized as
evolving towarddhe memory statenost similar tathe current inpupattern. If one viewach
memory state as a category, the Hopfiedd performspattern recognition: the recalled category is
the recognized pattern. This processlyriamic evolution camalso be viewed as aptimization
process, which minimizes a cost function until equilibrium is reached.

With normalized exponential kern8ITM, Tank and Hopfield1987) described eecognition
network based on associative memory dynamics. A layer of sequence recognizers receives inputs
from the STM model. Each recognizer encodes a difféeemplatesequence by its unique weight
vector acting upon the inputs 8ITM. In additionrecognizers form aompetitivenetwork. The
recognitionprocess usethe current input sequence (evidencebitis aminimization process so
that themost similartemplatewins the competitionthusactivating itscorresponding recognizer.
Due to the exponential kernels, they demonstrated that recognition igdanist totime warping,
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distortions in duration. Aimilar architecture is later applied speaker-independent spokeigit
recognition.

Multilayer Perceptrons

A popular approach to temporal pattern learning is multilayer perceptrons (MLP). MLPs have been
demonstrated to be effectifer static pattermecognition. It isnatural to combine MLRvith an

STM model to do temporal patteracognition. For example, usimglay line STM Waibel et al.
(1989) reported an architecture callEiche DelayNeuralNetworks (TDNN) for spokephoneme
recognition. Besides the input layer, TDNN usdsdtlen layers and an output layehereeach

unit encodes onphoneme. The feedforward connections converge froine input layer tceach
successive layer sthat each unit in a specific layer receiweguts within alimited time window

from the previous layer. They demonstratedood recognition performancdor the threestop
consonants /b/, /d/, and /g/, the accuracy of speaker dependent recognition reached 98.5%.

TEMPORAL PATTERN GENERATION

An early model of sequence generation isdhistar avalanchéntroduced byGrossberg in 969,
which is composed of sequential outstars. Each outdfrstores sstatic pattern and iactivated

by a signal in the vertew,. These vertices are connected\gs— Vo — ... » V,. S0 an initial
signal atvq, can generate sequentially the spatial pattetosed inMq, Mo, ..., M, See

Grossberg (1982) for a more detailed description as well as some of the later extensregsent In
years, anumber of more sophisticatesblutions have beenproposed fortemporal pattern
generation.

Associative Memory Approach

Since associative memory studies how to associate one pattern with anothechigmism can be
extended to generatingsaquence. A sequencetisated as a set gfairs between consecutive
components, andhese pairsare stored into an associativeiemory. Henceafter the first
component of the sequencepiesentedthe next component will be activated afsarme delay,
which furtheractivates the thirdne, etc. This basicidea, howeverjeads to ambiguityvhen
generating a complesequence, where omattern may bdollowed by differentones. Several
investigators have proposed to use high-order networéieaiwith the problem. In &th-order
network, the input to each unit is the weightedm ofk-tuples, instead of individualunits, and
eachk-tuple is a product df units. In such a network, one component in a sequence is associated
by a prior subsequence of lendth Thus, asequence of degrde can be generated without
ambiguity by akth order associative memo¢uyon et al., 1988). Major problem with high
order networks ishe required number afonnections, which growsxponentially withthe order
of the network.

Multilayer Perceptron Approach

Jordan (1986) describetthe first MLP architecturewith recurrent connectionfor sequence
generation. The input layer has two parts: plan units representing external input and the identity of
the sequence and staieits that receiveone-to-one projections frortne outputlayer, forming
decay trace STM. After a sequence is storedtmmetwork by backpropagation training, it can
be generated by an external input representing the identity of the sequence. Tlastivgies the
first component of the sequence in the output layer. ddngponent feeds back the input layer
and, together withthe externainput, activates thesecond component, and so. A particular
component of a sequence is generated by the part of the sequende the componentgarlier
components having lesser roles duexponentialdecay. Elman(1990)later modifiedJordan's
architecture by having the hidden layer connect to a part of thelayauicalled the contexayer.
The context layer simply duplicates the activation of the hidden layer ipréweoustime step.
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Elman used this architecture to learn a set of individual sequences satisfying a syntactic description,
and foundthat thenetwork exhibits a kind of syntax recognition. This resuljgests a way of
learning high-level structures, such as natural language grammar.

Anticipation Model and Multi-associative Networks

Generation of complex sequences has been a major issue. The approaches described so far rely on
either fixed degreeontexts, or a&omposite vector recording thestory. The latter isprone to
ambiguity. The former entails high system overhead, because, in order to avoid andughity,

method mustuse adegree no smaller than the degree of dbgquence, which is usualiyuch

greater than the degrees wiost components. This analysialls for a mechanism of self-
organization, where each component in a sequence can learn the degree of its own context.

By extending basic ideder complex sequencgerocessing inVang and Arbil(1990), Wang
and Yuwono (1995)ntroducedsuch amechanism of self-organizatidor generating complex
patterns. This so-callehticipation modeis based on théllowing two ideas. First, the system
actively anticipates the next component saquence learning, and raismatch between the
anticipated componemind theactualcomponent triggers context adjustmémtough competitive
learning. Second, generation of a sequence component hinges on recogritecoaiponent's
context. Fig. 2a showthe architecture of the anticipationodel, using a shift-register STM
model. Each unit in the detector layer recognizes a specifintext, and awinner-take-all
mechanism is implemented within the detector layer. There is a modulator layer in correspondence
to the detectotayer, andeach modulator receives downward connection from its respective
detector as well aspward connections frorevery input terminal. The modulators perform
comparison between anticipation from a winning detector and the next input component. Wang and
Yuwono (1995) showedhat the anticipation model can learn to generate an arbitrary temporal
sequence.

Wang and Yuwonq1996) later applied the anticipation model to learn multiple complex
sequences sequentially, i.e. new training does notplake untilexisting sequenceareacquired.
Using aset of 97 highly correlated compleequencesthey demonstrated that learning a new
sequence can interfergth already acquirednes. Howeverthe number ofintact sequences
increases linearly witthe size of the existingiemory,while the amount of retraining needed to
eliminate interference imdependent of the size of timemory, asllustrated inFig. 2b. Such
characteristics are largely deriviedm the fact that eackequence is represented in a distributed
manner, and different sequences and subsequences within a segagsbarecontextdetectors.
The interference properties of the anticipation model are consisiémt human retroactive
interference well documented jpsychology, while contrasting MLPthat shows catastrophic
interference in sequential learning.

A limitation with the anticipation model is that it dealgth symbol sequences rath#ran
sequences of spatial patterns. Recently, L. W&B8§9) proposed to usaulti-associative neural
networks forlearning and retrieving spatiotempopatterns. STM is coded as systematic delay
lines. The basi@ea isthat, whendealing with complexsequencesyne pattern is allowed to be
associated with a set ahultiple subsequent patterns, arabiguity can be eliminated by
intersecting multiplesetsassociated by th@revious patternthe patternprior to the previous
pattern, etc. Acomplex sequence of degr&ecanthus be unambiguouslgenerated withk
systematic delajines. Associations between spatial patterns are establigtredgh individual
units in acompetitivelayer. A drawback of thisnodel is that manyetwork operations are
algorithmically described, rather than arising from a network autonomously.

DISCUSSION

This brief tour of neural network processingtefmporal patternshowsthat effectivemodels and
techniques exist for both recognition and generation (see DOMIdECe for a more biologically
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orientedreview). Thereare, howevermany questionsyet to beanswered. In my view, the
following two problems are particularly interesting and challenging for future research:

(1) Rate invarianceand time warp. Humans showate invariance to a certain extent in
recognizing a temporgdattern. Rate invariancas different from what Icall interval invariance
wherethe former is invariance tonly global scaling of durations aride latter to allchanges of
durations. Interval invariance is exhibited in sevemablels,but notrate invariancésee Wang et
al., 1996, for a comprehensive discussion). One musataful aboutime warping. We would
like to have invariancever limited warping, but dramatic change in relativduration must be
recognized differently.

(2) Chunking. A fundamental ability of human information processirghisiking, which, in
the context of temporaprocessing, means that frequently encounterexhd meaningful
subsequencesrganize intochunksthat form basic unitsfor further chunking at a higher level.
Chunking and STM are closely related. A chunk ofterresponds to meaningful subsequence
(such as a melody), butritay bejust a convenientvay of breaking a long sequenic¢o shorter
parts to cope withimited capacity ofSTM. Oneaspect of chunking is studied by Wang and
Yuwono (1996)but the general problem ohsupervised chunking hagenlittle addressed and
will be increasingly important for future research into temporal pattern processing.
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FIGURE CAPTIONS

Figure 1. STM tracesa. Exponential decay. Normalized exponential kernelg.= 5.0, andk
=1, ..., 4 for the curvesom left to right, respectivelyc. Gammakernels.u = 0.9, andk = 1,

..., 4 for the curves from left to right, respectivaly. The STOREmModel. = 0.5 forthe empty

square bow, 0.3 for the diamond bow, and 0.15 for the filled square bow. igenerare kept in
STM. (scanned from Fig. 2;'&dition.)

Figure 2. Anticipationmodel.a. Architecture (adapteffom Wang andYuwono, 1995). Thin

solid lines denote modifiable connections, thick and dashed lines fixed connections, and undirected
lines bidirectionakonnections.b. The number ointact sequences anitie number of retraining
sweeps withrespect to the number of trainimgunds forindividual sequences (adapted from
Wang andYuwono, 1996). The 97 sequences denotdl the sessiontitles of the 1994 IEEE
International Conference on Neural Networks.
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