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INTRODUCTION   

Temporal pattern processing is important for various intelligent behaviors, including hearing,
vision, speech, music and motor control.  Because we live in an ever-changing environment, an
intelligent system, whether it be a human or a robot, must encode patterns over time, recognize and
generate temporal patterns.  Time is embodied in a temporal pattern in two different ways:

• Temporal order.  It refers to the ordering among the components of a sequence.  For
example, the sequence N-E-T is different from T-E-N.  Temporal order may also refer to a
syntactic structure, such as subject-verb-object, where each component may be any of a category
of possible symbols.

• Time duration.  Duration can play a critical role for temporal processing.  In speech
recognition, for example, we want rate invariance while distinguishing relative durations of the
vowel /i:/ (as in beet) and /i/ (as in bit).

Following Wang and Arbib (1990), a sequence is defined as complex if it contains repetitions
of the same subsequence like C-    O-N     -F-R-    O-N     -T, otherwise as simple.  For generation of complex
sequences, the correct successor can be determined only by knowing components prior to the
current one.  We refer to the prior subsequence required to determine the current component as the
context of the component, and the length of this context as the degree of the component.  The
degree of a sequence is defined as the maximum degree of its components.  Thus, a simple
sequence is a degree 1 sequence.  

Temporal pattern processing is a challenging topic because the information is embedded in time
(thus inherently dynamic), not simultaneously available.  Nonetheless, this topic has been studied
by a number of investigators; see Sun and Giles (2001) for a recent collection of articles on this
topic.

Fundamentally different from static pattern processing, temporal processing requires that a
neural network have a capacity of short-term memory (STM) in order to maintain a component for
some time.  This is because a temporal pattern extends over a time period.  How to encode STM
thus becomes one of the criteria for classifying neural networks for temporal processing.  In this
article, I provide an outline of temporal pattern processing, discussing the topics of recognition and
generation separately.  In the end, I point out several outstanding issues, including time warping
and chunking, that require future investigation.
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STM      MODELS

Delay Lines
The simplest form of STM uses a fixed-length buffer of N units to maintain the N most recent
input items.  This can be implemented by either a shift register with a fixed delay between
consecutive units or an array of systematic delay lines.  The delay line STM transforms a temporal
pattern into a spatial one where time forms another dimension.  This idea forms the basis of many
recognition models (e.g. Waibel et al., 1989).  

Decay Traces
Here an item in STM decays in time, corresponding to the decay theory of forgetting in human
STM.  The decay usually takes on an exponential form.  Theoretically, time information can be
precisely recovered from the current value. But due to rapid decay and noise, only a limited
number of the most recent items can be reliably discerned from STM.  This form has been used by
Jordan (1986) and Wang and Arbib (1990), among others.  Fig. 1a shows a typical decay trace.

Exponential Kernels
Tank and Hopfield (1987) proposed a set of normalized exponential kernels to sample the history,
described as
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where α regulates the width of each kernel.  Notice that fk(t) = 1 if t = k.  Fig. 1b shows a set of 4
kernels.  There are K units to represent each symbol.  Unlike delay line STM, each unit here
samples a symbol within a certain period peaked at a specific time step (t = k).  

Along similar lines, de Vries and Principe (1992) proposed the gamma model, which uses a set
of gamma kernels (integrands of Γ-functions, hence the name)
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where µ is a parameter between 0 and 1.  K is called the order of the memory, and there are K
units for storing a symbol S in STM.  Fig. 1c shows a set of 4 kernels. Since gk has a maximum

value at t = (k–1)/µ, µ determines the depth of the peak of each kernel in STM.  Thus, unlike
normalized exponential kernels, an N-step history may be sampled by less than N gamma kernels.
Note that gamma kernels can be computed recursively.

STORE Model
The STM models examined so far are autonomous, for the trace of each item is fully independent
of other items in STM.  A basic property of human STM is that it has a limited capacity (7±2), so
that whether and how long an item is held in STM depends on other inputs entering STM.  In
addition, the study of human retention of sequences shows a recency factor, where more recent
items tend to be better retained, and a primacy factor, whereby the beginning items of a sequence
are less prone to forgetting.  These two factors together give rise to the bowing effect, which
motivated the STORE model (Bradski et al., 1992) using a pair of units

xi(t+1) = xi(t) + [β Ii(t) + yi(t) – xi(t) x(t)] I(t) (3a)
yi(t+1) = yi(t) + [xi(t) – yi(t)] [1 – I(t)] (3b)
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where x(t) = x tj
j

∑ ( ) , the sum of STM item values, and I(t) = I tj
j

∑ ( ), the sum of external inputs.

The behavior of STORE has two aspects.  The first is the global inhibition term in (3a), which
reduces the value of xi in favor of new items.  The second is the excitatory loop between xi  and yi ,
which favors old items in STM.  Combined together, they are able to produce the bowing shape
for a sequence of items.  Fig. 1d shows three bows generated with different values of β.  

TEMPORAL     PATTERN      RECOGNITION

The shared goal of all STM models is to make input history available simultaneously when
recognition takes place.  With a STM model in place, recognition is not much different from the
recognition of static patterns.  

Template Matching Using Hebbian Learning
The architecture for this type of recognition is simply a two-layer network: the input layer that
incorporates STM, and the sequence recognition layer where each unit encodes an individual
sequence.  The recognition scheme is essentially template matching, where templates are formed
through following Hebbian learning

Wij(t) = Wij(t–1) + C si(t)[xj(t) – Wij(t–1)] (4)

where Wij  is the connection weight from unit xj in the input layer to sequence recognizer si in the
recognition layer.  Parameter C controls learning rate.  Hebbian learning is applied after the
presentation of the entire sequence is completed.  The templates thus formed can be used to
recognize specific input sequences. The recognition layer typically includes recurrent connections
for selecting a winner by self-organization (e.g. winner-take-all) during training or recognition.

Kohonen (1990) proposed an architecture, called the phonetic typewriter for phoneme
recognition.  The phonetic typewriter extracts a vector of frequency components using Fast Fourier
Transform.  After this step, his algorithm of feature mapping is applied for recognition, where
winner-take-all is applied in both training and recognition.  The phonetic typewriter has been
applied to recognize Finnish and Japanese phonemes (Kohonen, 1990).  Wang and colleagues
(Wang and Arbib, 1990; Wang and Yuwono, 1995) adopted a learning method similar to (4), and
showed that a recognition algorithm plus either decay trace or shift register can recognize complex
sequences.

Associative Memory Approach
The dynamics of the Hopfield associative memory model (see ARTICLE) can be characterized as
evolving towards the memory state most similar to the current input pattern.  If one views each
memory state as a category, the Hopfield net performs pattern recognition: the recalled category is
the recognized pattern.  This process of dynamic evolution can also be viewed as an optimization
process, which minimizes a cost function until equilibrium is reached.  

With normalized exponential kernel STM, Tank and Hopfield (1987) described a recognition
network based on associative memory dynamics.  A layer of sequence recognizers receives inputs
from the STM model.  Each recognizer encodes a different template sequence by its unique weight
vector acting upon the inputs in STM.  In addition, recognizers form a competitive network.  The
recognition process uses the current input sequence (evidence) to bias a minimization process so
that the most similar template wins the competition, thus activating its corresponding recognizer.
Due to the exponential kernels, they demonstrated that recognition is fairly robust to time warping,
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distortions in duration.  A similar architecture is later applied to speaker-independent spoken digit
recognition.  

Multilayer Perceptrons
A popular approach to temporal pattern learning is multilayer perceptrons (MLP).  MLPs have been
demonstrated to be effective for static pattern recognition.  It is natural to combine MLP with an
STM model to do temporal pattern recognition.  For example, using delay line STM Waibel et al.
(1989) reported an architecture called Time Delay Neural Networks (TDNN) for spoken phoneme
recognition.  Besides the input layer, TDNN uses 2 hidden layers and an output layer where each
unit encodes one phoneme.  The feedforward connections converge from the input layer to each
successive layer so that each unit in a specific layer receives inputs within a limited time window
from the previous layer.  They demonstrated good recognition performance: for the three stop
consonants /b/, /d/, and /g/, the accuracy of speaker dependent recognition reached 98.5%.

TEMPORAL     PATTERN      GENERATION

An early model of sequence generation is the outstar avalanche introduced by Grossberg in 1969,
which is composed of n sequential outstars.  Each outstar Mi stores a static pattern and is activated

by a signal in the vertex vi.  These vertices are connected as: v1 → v2 → ... → vn.  So an initial
signal at v1 can generate sequentially the spatial patterns stored in M1, M2, ..., Mn.  See
Grossberg (1982) for a more detailed description as well as some of the later extensions.  In recent
years, a number of more sophisticated solutions have been proposed for temporal pattern
generation.  

Associative Memory Approach
Since associative memory studies how to associate one pattern with another, its mechanism can be
extended to generating a sequence.  A sequence is treated as a set of pairs between consecutive
components, and these pairs are stored into an associative memory.  Hence, after the first
component of the sequence is presented, the next component will be activated after some delay,
which further activates the third one, etc.  This basic idea, however, leads to ambiguity when
generating a complex sequence, where one pattern may be followed by different ones.  Several
investigators have proposed to use high-order networks to deal with the problem.  In a kth-order
network, the input to each unit is the weighted sum of k-tuples, instead of individual units, and
each k-tuple is a product of k units.  In such a network, one component in a sequence is associated
by a prior subsequence of length k.  Thus, a sequence of degree k can be generated without
ambiguity by a kth order associative memory (Guyon et al., 1988).  A major problem with high
order networks is the required number of connections, which grows exponentially with the order
of the network.

Multilayer Perceptron Approach
Jordan (1986) described the first MLP architecture with recurrent connections for sequence
generation.  The input layer has two parts: plan units representing external input and the identity of
the sequence and state units that receive one-to-one projections from the output layer, forming
decay trace STM.  After a sequence is stored into the network by backpropagation training, it can
be generated by an external input representing the identity of the sequence.  This input activates the
first component of the sequence in the output layer.  This component feeds back to the input layer
and, together with the external input, activates the second component, and so on.  A particular
component of a sequence is generated by the part of the sequence prior to the component, earlier
components having lesser roles due to exponential decay.  Elman (1990) later modified Jordan's
architecture by having the hidden layer connect to a part of the input layer, called the context layer.
The context layer simply duplicates the activation of the hidden layer in the previous time step.



Wang: Temporal Pattern Processing            ____________      _                                                                             5   

Elman used this architecture to learn a set of individual sequences satisfying a syntactic description,
and found that the network exhibits a kind of syntax recognition.  This result suggests a way of
learning high-level structures, such as natural language grammar.  

Anticipation Model and Multi-associative Networks
Generation of complex sequences has been a major issue.  The approaches described so far rely on
either fixed degree contexts, or a composite vector recording the history.  The latter is prone to
ambiguity. The former entails high system overhead, because, in order to avoid ambiguity, such a
method must use a degree no smaller than the degree of the sequence, which is usually much
greater than the degrees of most components.  This analysis calls for a mechanism of self-
organization, where each component in a sequence can learn the degree of its own context.

By extending basic ideas for complex sequence processing in Wang and Arbib (1990), Wang
and Yuwono (1995) introduced such a mechanism of self-organization for generating complex
patterns.  This so-called anticipation model is based on the following two ideas.  First, the system
actively anticipates the next component in sequence learning, and a mismatch between the
anticipated component and the actual component triggers context adjustment through competitive
learning.  Second, generation of a sequence component hinges on recognition of the component's
context.  Fig. 2a shows the architecture of the anticipation model, using a shift-register STM
model.  Each unit in the detector layer recognizes a specific context, and a winner-take-all
mechanism is implemented within the detector layer.  There is a modulator layer in correspondence
to the detector layer, and each modulator receives a downward connection from its respective
detector as well as upward connections from every input terminal.  The modulators perform
comparison between anticipation from a winning detector and the next input component. Wang and
Yuwono (1995) showed that the anticipation model can learn to generate an arbitrary temporal
sequence.  

Wang and Yuwono (1996) later applied the anticipation model to learn multiple complex
sequences sequentially, i.e. new training does not take place until existing sequences are acquired.
Using a set of 97 highly correlated complex sequences, they demonstrated that learning a new
sequence can interfere with already acquired ones.  However, the number of intact sequences
increases linearly with the size of the existing memory, while the amount of retraining needed to
eliminate interference is independent of the size of the memory, as illustrated in Fig. 2b.  Such
characteristics are largely derived from the fact that each sequence is represented in a distributed
manner, and different sequences and subsequences within a sequence may share context detectors.
The interference properties of the anticipation model are consistent with human retroactive
interference well documented in psychology, while contrasting MLP that shows catastrophic
interference in sequential learning.

A limitation with the anticipation model is that it deals with symbol sequences rather than
sequences of spatial patterns.  Recently, L. Wang (1999) proposed to use multi-associative neural
networks for learning and retrieving spatiotemporal patterns.  STM is coded as systematic delay
lines.  The basic idea is that, when dealing with complex sequences, one pattern is allowed to be
associated with a set of multiple subsequent patterns, and ambiguity can be eliminated by
intersecting multiple sets associated by the previous pattern, the pattern prior to the previous
pattern, etc.  A complex sequence of degree k can thus be unambiguously generated with k
systematic delay lines.  Associations between spatial patterns are established through individual
units in a competitive layer.  A drawback of this model is that many network operations are
algorithmically described, rather than arising from a network autonomously.

DISCUSSION

This brief tour of neural network processing of temporal patterns shows that effective models and
techniques exist for both recognition and generation (see DOMINEY article for a more biologically
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oriented review).  There are, however, many questions yet to be answered.  In my view, the
following two problems are particularly interesting and challenging for future research:

(1) Rate invariance and time warp.  Humans show rate invariance to a certain extent in
recognizing a temporal pattern.  Rate invariance is different from what I call interval invariance,
where the former is invariance to only global scaling of durations and the latter to all changes of
durations.  Interval invariance is exhibited in several models, but not rate invariance (see Wang et
al., 1996, for a comprehensive discussion).  One must be careful about time warping.  We would
like to have invariance over limited warping, but dramatic change in relative duration must be
recognized differently.

(2) Chunking.  A fundamental ability of human information processing is chunking, which, in
the context of temporal processing, means that frequently encountered and meaningful
subsequences organize into chunks that form basic units for further chunking at a higher level.
Chunking and STM are closely related.  A chunk often corresponds to a meaningful subsequence
(such as a melody), but it may be just a convenient way of breaking a long sequence into shorter
parts to cope with limited capacity of STM.  One aspect of chunking is studied by Wang and
Yuwono (1996), but the general problem of unsupervised chunking has been little addressed and
will be increasingly important for future research into temporal pattern processing.
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FIGURE      CAPTIONS  

Figure 1. STM traces. a. Exponential decay. b. Normalized exponential kernels. α = 5.0, and k

= 1, ..., 4 for the curves from left to right, respectively. c. Gamma kernels. µ = 0.9, and k = 1,

..., 4 for the curves from left to right, respectively. d. The STORE model. β = 0.5 for the empty
square bow, 0.3 for the diamond bow, and 0.15 for the filled square bow. Seven items are kept in
STM. (scanned from Fig. 2, 1st edition.)

Figure 2. Anticipation model. a. Architecture (adapted from Wang and Yuwono, 1995).  Thin
solid lines denote modifiable connections, thick and dashed lines fixed connections, and undirected
lines bidirectional connections.  b. The number of intact sequences and the number of retraining
sweeps with respect to the number of training rounds for individual sequences (adapted from
Wang and Yuwono, 1996).  The 97 sequences denote all the session titles of the 1994 IEEE
International Conference on Neural Networks.
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Figure 1
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