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Summary. A remarkable achievement of the perceptual system is its scene anal-
ysis capability, which involves two basic perceptual processes: the segmentation of
a scene into a set of coherent patterns (objects) and the recognition of memorized
ones. Although the perceptual system performs scene analysis with apparent ease,
computational scene analysis remains a tremendous challenge as foreseen by Frank
Rosenblatt. This chapter discusses scene analysis in the field of computational intel-
ligence, particularly visual and auditory scene analysis. The chapter first addresses
the question of the goal of computational scene analysis. A main reason why scene
analysis is difficult in computational intelligence is the binding problem, which refers
to how a collection of features comprising an object in a scene is represented in a
neural network. In this context, temporal correlation theory is introduced as a bio-
logically plausible representation for addressing the binding problem. The LEGION
network lays a computational foundation for oscillatory correlation, which is a special
form of temporal correlation. Recent results on visual and auditory scene analysis
are described in the oscillatory correlation framework, with emphasis on real-world
scenes. Also discussed are the issues of attention, feature-based versus model-based
analysis, and representation versus learning. Finally, the chapter points out that
the time dimension and David Marr’s framework for understanding perception are
essential for computational scene analysis.

1 Introduction

Human intelligence can be broadly divided into three aspects: Perception,
reasoning, and action. The first is mainly concerned with analyzing the in-
formation in the environment gathered by the five senses, and the last is
primarily concerned with acting on the environment. In other words, percep-
tion and action are about input and output, respectively, from the viewpoint of
the intelligent agent (i.e. a human being). Reasoning involves higher cognitive
functions such as memory, planning, language understanding, and decision
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making, and is at the core of traditional artificial intelligence [49]. Reasoning
also serves to connect perception and action, and the three aspects interact
with one another to form the whole of intelligence.

This chapter is about perception - we are concerned with how to analyze
the perceptual input, particularly in the visual and auditory domains. Be-
cause perception seeks to describe the physical world, or scenes with objects
located in physical space, perceptual analysis is also known as scene analy-
sis. To differentiate scene analysis by humans and by machines, we term the
latter computational scene analysis'. In this chapter I focus on the analy-
sis of a scene into its constituent objects and their spatial positions, not the
recognition of memorized objects. Pattern recognition has been much stud-
ied in computational intelligence, and is treated extensively elsewhere in this
collection.

Although humans, and nonhuman animals, perform scene analysis with
apparent ease, computational scene analysis remains an extremely challenging
problem despite decades of research in fields such as computer vision and
speech processing. The difficulty was recognized by Frank Rosenblatt in his
1962 classic book, “Principles of neurodynamics” [47]. In the last chapter,
he summarized a list of challenges facing perceptrons at the time, and two
problems in the list “represent the most baffling impediments to the advance
of perceptron theory” (p. 580). The two problems are figure-ground separation
and the recognition of topological relations. The field of neural networks has
since made great strides, particularly in understanding supervised learning
procedures for training multilayer and recurrent networks [2, 48]. However,
progress has been slow in addressing Rosenblatt’s two chief problems, largely
validating his foresight.

Rosenblatt’s first problem concerns how to separate a figure from its back-
ground in a scene, and is closely related to the problem of scene segregation:
To decompose a scene into its comprising objects. The second problem con-
cerns how to compute spatial relations between objects in a scene. Since the
second problem presupposes a solution to the first, figure-ground separation is
a more fundamental issue. Both are central problems of computational scene
analysis.

In the next section I discuss the goal of computational scene analysis.
Section 3 is devoted to a key problem in scene analysis - the binding prob-
lem, which concerns how sensory elements are organized into percepts in the
brain. Section 4 describes oscillatory correlation theory as a biologically plau-
sible representation to address the binding problem. The section also reviews
the LEGION? network that achieves rapid synchronization and desynchro-
nization, hence providing a computational foundation for the oscillatory cor-
relation theory. The following two sections describe visual and auditory scene

! This is consistent with the use of the term Computational Intelligence.
2 LEGION stands for Locally Excitatory Globally Inhibitory Oscillator Network
[68].



Computational Scene Analysis 165

analysis separately. In Section 7, I discuss a number of challenging issues facing
computational scene analysis. Finally, Section 8 concludes the chapter.

Note that this chapter does not attempt to survey the large body of liter-
ature on computational scene analysis. Rather, it highlights a few topics that
I consider to be most relevant to this book.

2 What is the Goal of Computational Scene Analysis?

In his monumental book on computational vision, Marr makes a compelling
case that understanding perceptual information processing requires three dif-
ferent levels of description. The first level of description, called computational
theory, is mainly concerned with the goal of computation. The second level,
called representation and algorithm, is concerned with the representation of
the input and the output, and the algorithm that transforms from the input
representation to the output representation. The third level, called hardware
implementation, is concerned with how to physically realize the representation
and the algorithm.

So, what is the goal of computational scene analysis? Before addressing this
question, let us ask the question of what purpose perception serves. Answers to
this question have been attempted by philosophers and psychologists for ages.
From the information processing perspective, Gibson [21] considers perception
as the way of seeking and gathering information about the environment from
the sensory input. On visual perception, Marr [30] considers that its purpose is
to produce a visual description of the environment for the viewer. On auditory
scene analysis, Bregman states that its goal is to produce separate streams
from the auditory input, where each stream represents a sound source in the
acoustic environment [6]. It is worth emphasizing that the above views suggest
that perception is a private process of the perceiver even though the physical
environment may be common to different perceivers.

In this context, we may state that the goal of computational scene analysis
18 to produce a computational description of the objects and their spatial loca-
tions in a physical scene from sensory input. The term ‘object’ here is used in
a modality-neutral way: An object may refer to an image, a sound, a smell,
and so on. In the visual domain, sensory input comprises two retinal images,
and in the auditory domain it comprises two eardrum vibrations. Thus, the
goal of visual scene analysis is to extract visual objects and their locations
from one or two images. Likewise, the goal of auditory scene analysis is to
extract streams from one or two audio recordings.

The above goal of computational scene analysis is strongly related to the
goal of human scene analysis. In particular, we assume the input format to
be similar in both cases. This assumption makes the problem well defined
and has an important consequence: It makes the research in computational
scene analysis perceptually relevant. In other words, progress in computa-
tional scene analysis may shed light on perceptual and neural mechanisms.
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This restricted scope also differentiates computational scene analysis from en-
gineering problem solving, where a variety and a number of sensors may be
used.

With common sensory input, we further propose that computational scene
analysis should aim to achieve human level performance. Moreover, we do not
consider the problem solved until a machine system achieves human level
performance in all perceptual environments. That is, computational scene
analysis should aim for the versatile functions of human perception, rather
than its utilities in restricted domains.

3 Binding Problem and Temporal Correlation Theory

The ability to group sensory elements of a scene into coherent objects, often
known as perceptual organization or perceptual grouping [40], is a funda-
mental part of perception. Perceptual organization takes place so rapidly and
effortlessly that it is often taken for granted by us the perceivers. The diffi-
culty of this task was not fully appreciated until effort in computational scene
analysis started in earnest. How perceptual organization is achieved in the
brain remains a mystery.

Early processing in the perceptual system clearly involves detection of
local features, such as color, orientation, and motion in the visual system, and
frequency and onset in the auditory system. Hence, a closely related question
to perceptual organization is how the responses of feature-detecting neurons
are bound together in the brain to form a perceived scene? This is the well-
known binding problem. At the core of the binding problem is that sensory
input contains multiple objects simultaneously and, as a result, the issue of
which features should bind with which others must be resolved in objection
formation. I illustrate the situation with two objects - a triangle and a square
- at two different locations: The triangle is at the top and the square is at the
bottom. This layout, shown in Figure 1, was discussed by Rosenblatt [47] and
used as an instance of the binding problem by von der Malsburg [60]. Given
feature detectors that respond to triangle, square, top, and bottom, how can
the nervous system bind the locations and the shapes so as to perceive that
the triangle is at the top and the square is at the bottom (correctly), rather
than the square is on top and the triangle is on bottom (incorrectly)? We
should note that object-level attributes, such as shape and size, are undefined
before the more fundamental problem of figure-ground separation is solved.
Hence, I will refer to the binding of local features to form a perceived object,
or a percept, when discussing the binding problem.

How does the brain solve the binding problem? Concerned with shape
recognition in the context of multiple objects, Milner [32] suggested that dif-
ferent objects could be separated in time, leading to synchronization of firing
activity within the neurons activated by the same object. Later von der Mals-
burg [59] proposed a correlation theory to address the binding problem. The
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Fig. 1. Illustration of the binding problem. The input consists of a triangle and a
square. There are four feature detectors for triangle, square, top, and bottom. The
binding problem concerns whether the triangle is on top (and the square at bottom)
or the square is on top (and the triangle at bottom).

correlation theory asserts that the temporal structure of a neuronal signal
provides the neural basis for correlation, which in turn serves to bind neu-
ronal responses. In a subsequent paper, von der Malsburg and Schneider [61]
demonstrated the temporal correlation theory in a neural model for segre-
gating two auditory stimuli based on their distinct onset times - an example
of auditory scene analysis that I will come back to in Section 6. This paper
proposed, for the first time, to use neural oscillators to solve a figure-ground
separation task, whereby correlation is realized by synchrony and desynchrony
among neural oscillations. Note that the temporal correlation theory is a the-
ory of representation, concerned with how different objects are represented in
a neural network, not a computational algorithm; that is, the theory does not
address how multiple objects in the input scene are transformed into multi-
ple cell assemblies with different time structures. This is a key computational
issue I will address in the next section.

The main alternative to the temporal correlation theory is the hierarchi-
cal coding hypothesis, which asserts that binding occurs through individual
neurons that are arranged in some cortical hierarchy so that neurons higher
in the hierarchy respond to larger and more specialized parts of an object.
Eventually, individual objects are coded by individual neurons, and for this
reason hierarchical coding is also known as the cardinal cell (or grandmother
cell) representation [3]. Gray [23] presented biological evidence for and against
the hierarchical representation. From the computational standpoint, the hier-
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archical coding hypothesis has major drawbacks, including the need to encode
a prohibitively large number of scenarios by cells [59, 65].

It should be clear from the above discussion that the figure-ground sepa-
ration problem is essentially the same as the binding problem. A layered per-
ceptron may be viewed as a computational implementation of the hierarchical
coding hypothesis, and the problems challenging Rosenblatt’s perceptrons un-
derline the limitations of hierarchical coding.

4 Oscillatory Correlation Theory

A special form of temporal correlation - oscillatory correlation [52] - has been
studied extensively. In oscillatory correlation, feature detectors are represented
by oscillators and binding is represented by synchrony within an assembly
of oscillators and desynchrony between different assemblies. The notion of
oscillatory correlation is directly supported by the substantial evidence of
coherent oscillations in the brain. In addition, the activity of a neuron or a
local group of neurons can be accurately modeled by an oscillator. It is worth
pointing out here that a mathematical oscillator need not always produce
periodic behavior; indeed an oscillator in response to a time varying input
often exhibits a variety of aperiodic responses.

Like the temporal correlation theory, the oscillatory correlation theory is
a representation theory, not a computational mechanism. A computational
mechanism for the oscillatory correlation theory needs to exhibit three key
features [65]. First, the mechanism can synchronize a locally coupled assembly
of oscillators. Second, it can desynchronize different assemblies of oscillators
that are activated by multiple, simultaneously present objects. Third, both
synchrony and desynchrony must occur rapidly in order to deal with the
changing environment.

The first neural network that successfully met the above requirements
is the LEGION mechanism proposed in 1995 by Terman and Wang [52, 62].
LEGION builds on relaxation oscillators characterized by two time scales [58].
Formally, a relaxation oscillator, i, is defined as a pair of an excitatory unit
x; and an inhibitory unit y; [52]:

$¢:3$i—$§+2_yi+—ri+si+p (1a)
y; = e(a(1 + tanh(z;/8)) — yi) (1b)

In the above equation, I; denotes the external stimulation to the oscillator and
S; the input from the rest of the network, to be specified below. p denotes the
amplitude of intrinsic noise (e.g. Gaussian noise) which assists the process of
desynchronization, and « and ( are parameters. € is a small positive param-
eter, and it is this parameter that induces the two time scales with y on a
slower one.

Figure 2 illustrates the oscillator defined in (1). As shown in Fig. 2A, the
x-nullcline (i.e. & = 0) is a cubic function and the y-nullcline is a sigmoid
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Fig. 2. Behavior of a relaxation oscillator. A. Enabled state of the oscillator. This
state produces a limit cycle shown as the bold curve. The direction of the trajectory
is indicated by the arrows, and jumps are indicated by double arrows. B. Excitable
state of the oscillator. This state produces a stable fixed point. C. Temporal activity
of the oscillator in the enabled state. The curve shows the z activity.
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function. When I > 0, the two nullclines intersect at a single point on the
middle branch of the cubic, and the oscillator produces a stable limit cycle
shown in Figure 2A. In this case, the oscillator is referred to as enabled, and
the limit cycle alternates between an active phase with relatively high x values
and a silent phase with relatively low x values. Within each of the two phases
the oscillator exhibits slow-varying behavior. However, the transition between
the two phases occurs rapidly, called jumping. The role of « is to determine
the relative times the oscillator spends in the two phases - a larger o produces
a relatively shorter active phase. The situation when I < 0 is shown in Fig.
2B. In this case, the two nullclines intersect at a stable fixed point on the
left branch of the cubic, and no oscillation occurs - the oscillator is referred
to as excitable. Whether the state of an oscillator is enabled or excitable
depends solely on external stimulation; in other words, oscillation is stimulus
dependent. The x activity of an enabled state is given in Fig. 2C, and it
resembles a spike train. Indeed, relaxation oscillators have been widely used
as models of single neurons, where x is interpreted as the membrane potential
of a neuron and y the activation state of ion channels [19, 35, 36]. A relaxation
oscillation may also be interpreted as an oscillating burst of neuronal spikes,
where x corresponds to the envelope of the burst.

In a LEGION network an oscillator is excitatorily coupled with other os-
cillators in its neighborhood, and excites a global inhibitor which then inhibits
every oscillator in the network. Specifically, S; in (1a) is defined as

Si= Y WiH(zy —8,) — W.H(z —6.) (2)
kEN ()

where N (i) denotes a set of neighbors of 7, and Wy the connection weight
from oscillator k to ¢. H stands for the Heaviside step function, and 6, and
0, are thresholds. W, is the weight of inhibition from the global inhibitor z,
which is defined as

2= (000 — 2) 3)

where ¢ is a parameter. 0., = 1 if at least one oscillator is in the active phase
and 0., = 0 otherwise. From (3) it is easy to see that z — 1 when o, equals
1.

On the basis of the earlier analysis by Somers and Kopell [51] on two
coupled relaxation oscillators, Terman and Wang [52] conducted an extensive
analysis on LEGION networks. They showed that LEGION exhibits the mech-
anism of selective gating as follows. When an oscillator jumps to the active
phase, its activity spreads to its neighboring oscillators, their neighbors, and
so on. This leads to fast synchronization within the oscillator assembly that
contains the oscillator. In addition, the oscillator activates the global inhibitor
which prevents the oscillators of different assemblies from jumping up. This
leads to desynchronization among different oscillator assemblies. They proved
the following theorem: A LEGION network can reach both synchronization
within each assembly and desynchronization between different assemblies, and
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Fig. 3. Diagram of a perceptron. R denotes the input layer, which projects to a layer
of feature detectors. The response unit takes a weighted sum of the responses of all
the detectors, and outputs 1 if the sum passes a certain threshold and 0 otherwise.

does so in no greater than m cycles of oscillations, where m is the number
of the oscillator assemblies. In other words, both synchronization and desyn-
chronization are achieved rapidly.

The selective gating mechanism of LEGION successfully meets the three
computational requirements stated at the beginning of this section. Subse-
quent research has shown that rapid synchronization and desynchronization
can also be achieved using other types of oscillators, such as Wilson-Cowan
and spike (integrate-and-fire) oscillators, although conclusions are typically
drawn from numerical simulations. See [65] for a broad review on this topic.

As a concrete application of LEGION dynamics, I describe a solution to a
classic problem in neural computation - the connectedness problem [64]. The
connectedness problem, first described by Minsky and Papert in 1969, is the
centerpiece of their consequential critique on perceptrons [33]. The connect-
edness predicate is innocuously simple: To classify whether an input pattern
is connected or not. To appreciate the significance of this predicate, I need to
give some context on perceptron theory. Rosenblatt’s perceptrons [46, 47] are
classification networks. A typical perceptron, illustrated in Figure 3, computes
a predicate. It consists of a binary input layer R, which symbolizes retina, a
layer of binary feature detectors, and a response unit that signals the result
of a binary classification. A feature detector is activated if and only if all the
pixels within the area of R sensed by the detector are black. The response unit
outputs 1 if a weighted sum of all the feature detectors exceeds a threshold,
and outputs 0 otherwise.

Minsky and Papert [33] define the order of a predicate as the smallest
number of pixels in R that must be sensed by some feature detector in order
to compute the predicate. With this notion, they prove that the order of the
connectedness predicate increases at least as fast as |R|'/2. That is, the order
of this predicate is unbounded. What does this result mean? It means that,
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to compute a predicate of an unbounded order requires feature detectors with
too large receptive fields (relative to R) and too many of detectors to be com-
putationally feasible [33]. It is important to understand that the result is not
about computability, or whether a perceptron exists to solve the problem. With
a finite size of R, the number of connected patterns is finite, and we can sim-
ply find a perceptron to solve the problem, in which each connected pattern
is sensed by a single feature detector. However, the number of connected pat-
terns grows exponentially except for one-dimensional R [65], and this way of
computing the connectedness predicate is computationally intractable. Hence,
their result is about the scalability or computational complexity.

Thanks to recurrent connectivity and oscillatory dynamics, LEGION
solves the connectedness problem in general form [64]. To explain the solution,
Figure 4 shows the response of a two-dimensional (2-D) LEGION network to
two binary images: The first one is a connected figure showing a cup (Fig. 4A)
and the second one is a disconnected figure showing the word ‘CUP’ (Fig. 4D).
To ensure that the network has no binding preference, we randomize oscillator
phases at the beginning. The random initial conditions are illustrated in Fig.
4B, where the diameter of a circle represents the x activity of the correspond-
ing oscillator. A snapshot of the network activity shortly after the beginning
is shown in Fig. 4C where the oscillator assembly representing the cup is syn-
chronized and other oscillators are in the excitable state. The response of the
same network to ‘CUP’ is depicted in Figures 4E-G at different times. In this
case, the network forms three assemblies corresponding to each of the three
letters. Figure H shows the temporal activity of all the enabled oscillators for
the connected cup image, where excitable oscillators are omitted. The upper
panel of Fig. 4H shows the combined activity of the assembly representing the
cup, and the middle panel shows the activity of the global inhibitor. Despite
randomized phases to begin with, the assembly reaches synchrony in the first
oscillation cycle. The temporal response to the disconnected ‘CUP’ is shown
in Fig. 41, where synchrony within each of the three assemblies and desyn-
chrony between them are both achieved in the first two cycles. As illustrated
in Figs. 4H and 41, every time an assembly jumps to the active phase the
global inhibitor is triggered. Thus, how many assemblies - or put differently
how many connected patterns in the input image - is revealed by the ratio
of the response frequency of the global inhibitor to the oscillation frequency
of an enabled oscillator. A ratio of 1 indicates there is one pattern in the
input figure, and thus the figure is connected. A ratio greater than 1 indicates
there are more than one pattern in the input figure, and thus the figure is
disconnected. Hence the solution to the predicate is given by a simple test of
whether the ratio exceeds a threshold 6, chosen in the range 2 > 6 > 1. The
bottom traces of Fig. 4H and Fig. 41 show the ratios, where 6 is chosen to
be 1.6. As shown in the figure, the connectedness predicate is correctly com-
puted beyond a beginning period that corresponds to the process of assembly
formation.
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Fig. 4. Oscillatory correlation solution to the connectedness problem (from [64]).
A. An input image with 30x30 binary pixels showing a connected cup figure. B.
A snapshot from corresponding LEGION network showing the initial conditions of
the network. C. A subsequent snapshot of the network activity. D. Another input
image depicting three connected patterns forming the word ‘CUP’. E.-G. Snapshots
of the LEGION network at three different times. H. The upper trace shows the
temporal activity of the oscillator assembly representing the connected cup image,
the middle trace the activity of the global inhibitor, and the bottom trace the ratio
of the global inhibitor’s frequency to that of enabled oscillators. The threshold is
indicated by the dash line. I. The upper three traces show the temporal activities for
the three assemblies representing the three connected patterns in the disconnected
‘CUP’ image, the next-to-bottom trace the activity of the global inhibitor, and the
bottom one the ratio of the global inhibitor’s frequency to that of enabled oscillators
along with.



174 DeLiang Wang

The oscillatory correlation theory provides a general framework to address
the computational scene analysis problem. The following two sections deal
with visual and auditory scene analysis respectively.

5 Visual Scene Analysis

For computational scene analysis, some measure of similarity between features
is necessary. What determines if local sensory elements should be grouped
into the same object or separated apart? This is the main subject of Gestalt
psychology [27, 71]. Major Gestalt grouping principles are summarized below
[40]:

e Proximity. Sensory elements that are located closely in space tend to be
grouped.

e Similarity. Elements with similar attributes, such as color, depth, or tex-
ture, tend to group.

e Common fate. Elements that move together, or show common motion,
likely belong to the same object. Common fate is an instance of similarity
in a sense, and it is listed separately to emphasize the importance of visual
dynamics in perceptual organization.

e (Good continuity. Elements that form smooth continuations of each other
tend to be bound together.

e (Connectedness and common region. Connected elements or elements inside
the same connected region have the tendency to group.

e Familiarity. Elements that belong to the same memorized pattern tend to

group.

To apply the above grouping principles requires a process of feature extrac-
tion, which may be a complex operation for certain features such as motion
and texture. With extracted features, oscillatory correlation represents a gen-
eral approach to visual scene analysis. In this approach, an oscillator typically
corresponds to a spatial location and connection weights between neighbor-
ing oscillators are determined by feature extraction. The oscillator network
then evolves autonomously. After assembly formation takes place, different
assemblies representing different objects will pop out from the network at
different times. It is segmentation in time that is unique of this approach to
scene analysis. As a result, such segmentation gives rise to the notion of a
segmentation capacity [69] - at least for networks of relaxation oscillators with
a non-instantaneous active phase - that refers to a limited number of oscillator
assemblies that may be formed. The segmentation capacity corresponds to the
integer ratio of the oscillation period to the duration of the active phase for
relaxation oscillators.

The first application of the oscillatory correlation approach to real image
segmentation was made by Wang and Terman [69]. Their segmentation system
is based on LEGION dynamics. Unlike synthetic images, real images are often



Computational Scene Analysis 175

Fig. 5. Extraction of hydrographic regions (from [10]). A. Input satellite image
consisting of 640x606 pixels. B. Extraction result, where segmented waterbodies are
indicated by white. C. Corresponding 1:24,000 topographic map.

noisy. Image noise may result in many fragments and deteriorate the result
of oscillatory correlation. To address the problem of fragmentation, a lateral
potential is introduced for each oscillator in order to distinguish between ma-
jor assemblies and noisy fragments. A major assembly should contain at least
one oscillator that lies at the center of a sizable homogeneous region. Such
an oscillator, called a leader, has a high lateral potential because it receives a
large amount of lateral excitation from its neighborhood. On the other hand,
a fragment does not have a leader. All fragments, forming a background, will
cease oscillating after a few periods. Another issue that has to be addressed is
computing time required for integrating a large oscillator network. To alleviate
the computational burden, Wang and Terman abstracted an algorithm from
oscillatory dynamics that retains key features of LEGION dynamics, such as
jumping and rapid spread of excitation and inhibition. The abstracted al-
gorithm has the option to eliminate the segmentation capacity in order to
segment a large number of regions. In the Wang-Terman system, each oscil-
lator is mutually connected with its 8-nearest neighbors, and the connection
weight between oscillators ¢ and j is set proportional to 1/(1 + ‘Ii + 1)),
where I; and I; represent the corresponding pixel intensities. W, in (2) is a
key parameter that controls the granularity of segmentation, whereby smaller
values of W, produce fewer and larger segments.

In a subsequent study, Chen et al. [10] suggested the idea of weight adap-
tation to perform feature-preserving smoothing before segmentation. In ad-
dition, they proposed to add a logarithmic normalization factor in excitatory
coupling (cf. (2)):

g — ZkeN(i) WirH (zr, — 02)
i ng(ZkGN(i) H(zp —02) +1)
The resulting algorithm produces robust segmentation results. An example

is given in Figure 5, where the task is to extract hydrographic objects from
satellite images from the United States Geological Survey (USGS). Figure

—-W.H(z—140,) (4)
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Fig. 6. Motion segmentation (from [8]). A. A frame of a motion sequence. B. Esti-
mated optic flow. C. Result of segmentation.

5A gives the original image containing water bodies, and Figure 5B shows
the corresponding extraction results, where the extracted waterbodies are
displayed as white and overlaid on the original image. For reference, Figure
5C provides the corresponding map from the USGS. A careful comparison
should reveal that the extracted waterbodies match the image better than
the map, since the latter is often not up to date.

Cesmeli and Wang [8] applied LEGION to motion-based segmentation
that considers motion as well as intensity for analyzing image sequences (see
also [75]). In their system, two pathways perform an initial optic flow esti-
mation and intensity-based segmentation in parallel. A subsequent network
combines the two to refine local motion estimates. Motion analysis and in-
tensity analysis complement each other since the former tends to be reliable
for inhomogeneous, textured regions while the latter is most effective for ho-
mogeneous regions. The use of LEGION for segmentation allows for multiple
motions at the same location, as in the case of motion transparency. The re-
sulting system significantly reduces erroneous motion estimates and improves
boundary localization. A typical example is given in Figure 6. A frame of a
motion sequence is shown in Fig. 6A, where a motorcycle rider jumps to a
dry canal with his motorcycle while the camera is tracking him. Due to the
camera motion, the rider and his motorcycle have a downward motion with a
small rightward component and the image background has an upright diago-
nal motion. Figure 6B shows the estimated optic flow after integrating motion
and brightness analyses, and it is largely correct. The rider with his motorcy-
cle is then segmented from the image background as depicted in Figure 6C.
Their oscillator model has been favorably compared with a number of motion
segregation algorithms including the one by Black and Anandan [5] based on
robust statistics.
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A large number of studies have applied the oscillatory correlation approach
to visual scene analysis tasks, including segmentation of range and texture
images, extraction of object contours, and selection of salient objects. See [65]
for a recent review on this subject.

6 Auditory Scene Analysis

What grouping principles govern auditory scene analysis? Bregman system-
atically addresses this question in a comprehensive book [6]. According to
Bregman, grouping principles analogous to Gestalt laws revealed in the visual
domain are responsible for the segregation of auditory input into streams.
Displaying the acoustic input in a 2-D time-frequency (T-F) representation
such as a spectrogram, major grouping principles for auditory scene analysis
(ASA) are given below [6, 13]:

e Proxzimity in frequency and time. Two tones that are close in frequency or
time tend to be grouped into the same stream (an auditory object).
Periodicity. Harmonically related frequency components tend to grouped.
Onset and offset. Frequency components that onset or offset at the same
time tend to be organized into the same stream.

o  Amplitude and frequency modulation. Frequency components that have
common temporal modulation tend to be grouped together. This principle
applies to both amplitude modulation and frequency modulation.

e Continuous/smooth transition. Tones that form a continuous, or discon-
tinuous but smooth, trajectory tend to be fused.

o Familiarity. Sound components belonging to the same learned pattern,
such as a syllable, have the tendency to group.

Auditory scene analysis takes place in two stages in the brain according
to Bregman [6]. The first stage, known as the segmentation stage [66], decom-
poses the acoustic mixture reaching the ears into a collection of time-frequency
segments, each corresponding to a contiguous region in a T-F representation.
The second stage groups the segments into streams.

The first study on auditory segregation using oscillatory correlation was
made by von der Malsburg and Schneider [61]. As discussed in Section 3,
their segregation is based on common onsets. However, their model relies on
global connectivity to achieve synchronization among the oscillators that are
stimulated at the same time. Desynchronization is obtained with a global
inhibitor. Subsequently Wang [63] studied stream segregation by employing a
2-D LEGION network, where one dimension represents time and another one
represents frequency. With appropriate connectivity, the LEGION network
exhibits a set of psychophysical phenomena, such as dependency of stream
segregation on spectrotemporal proximity and competition among different
perceptual organizations (see [9, 38] for recent extensions).
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Wang and Brown [66] studied a more complex problem: Segregation of
voiced speech from its acoustic interference. After feature extraction using a
model of auditory periphery that comprises cochlear filtering and mechanical
to neural transduction, they compute a number of mid-level representations
from peripheral responses, including a correlogram (autocorrelation) and a
summary correlogram. The core of their model is an oscillator network with
two layers performing auditory segmentation and grouping, respectively. The
two-layer structure is designed to embody Bregman’s two-stage notion. Audi-
tory segmentation is based on cross-channel correlation in the frequency do-
main and temporal continuity in the time domain. Specifically, the first layer
is a LEGION network where each oscillator is connected with its four nearest
neighbors in time and frequency. The connection weight along the frequency
axis is set to one if the corresponding cross-channel correlation exceeds a cer-
tain threshold and zero otherwise. The connection weight along the time axis
is set to one uniformly. In response to an input mixture, the segmentation
layer produces oscillator assemblies, representing regions of acoustic energy
such as harmonics or formants. The second layer groups the segments that
emerge from the first layer. Specifically, this layer contains lateral connections
with both excitation and inhibition but no global inhibitor. Grouping in this
layer is based on the dominant pitch extracted from the summary correlogram
within each time frame. The extracted dominant pitch is used to divide the
oscillators of the frame into two classes: One is consistent with the pitch fre-
quency and the other is not. Then excitatory connections are formed between
the oscillators of the same class and inhibitory connections are formed be-
tween the two classes. This pattern of connectivity within the grouping layer
promotes synchronization among a group of segments that have common pe-
riodicity.

Figure 7 gives an example of segregating a mixture of a male utterance and
telephone ringing. Figure TA displays the peripheral response to the mixture.
The 2-D response is generated by a filterbank with 128 channels over 150 time
frames. Figure 7B shows a snapshot of the grouping layer, where active oscilla-
tors, indicated by white pixels, primarily correspond to the speech utterance.
Figure 7C shows another snapshot of the grouping layer taken at a different
time. At this time, active oscillators mostly correspond to the background,
i.e. the telephone ringing.

Wrigley and Brown [72] recently proposed an oscillator network to model
auditory selective attention. Their model first performs peripheral processing
and then auditory segmentation. A unique part of model is an interactive
loop between an oscillator layer that performs stream segregation and a leaky
integrator that simulates the attentional process. The weights of the con-
nections between the oscillator layer and the leaky integrator are subject to
modulation by the attentional interest of the model. Through this interaction,
the attentional leaky integrator selects one dominant stream from the stream
segregation layer. Their network successfully simulates a number of auditory
grouping phenomena, including two-tone streaming with distracted attention
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Fig. 7. Segregation of voiced speech from telephone ringing (from [66]). A. Periph-
eral response to an auditory stimulus consisting of a male utterance mixed with
telephone ringing. A bank of 128 filters having center frequencies ranging from 80
Hz to 5 kHz is employed in peripheral processing. B. A snapshot of the group-
ing layer. Here, white pixels denote active oscillators that represent the segregated
speech stream. C. Another snapshot showing the segregated background.



180 DeLiang Wang

and sequential capturing. At a conceptual level, a major difference between
this model and Wang’s model [63] concerns whether attention can be directed
to more than one stream: In the Wrigley and Brown model only one stream
may be attended to at a time whereas in Wang’s model attention may be
divided by more than one stream. This issue will be revisited in Sect. 7.1.

7 Challenging Issues

7.1 Attention

The importance of attention for scene analysis can hardly be overstated. In a
way, to perceive is to attend.

The issues of binding and attention are related. It has been frequently
suggested that selective attention plays the role of binding. According to the
popular feature integration theory of Treisman and Gelade [57], the visual
system first analyzes a scene in parallel by separate retinotopic feature maps
and focal attention then integrates the analyses within different feature maps
to produce a coherent percept. In other words, attention provides a ‘spotlight’
on the location map to bind and select an object [55]. Arguing from the
neurobiological perspective, Reynolds and Desimone [43] also suggested that
attention provides a solution to the binding problem. An alternative view -
object-based theories of attention [41, 42] - claims that selective attention
operates on the result of binding. So the key question is whether attention
precedes or succeeds binding.

A visual object can have an arbitrary shape and size. This consideration
creates the following dilemma for the feature integration theory. On the one
hand, it is a location-based theory of attention that binds at the same location
individual analyses from different feature maps. On the other hand, to select
an object, attention spotlight must also have arbitrary shape and size, adapt-
ing to a specific object and thus object-based. Without a binding process,
what produces such an adaptive spotlight? This is an intrinsic difficulty if
focal attention, rather than perceptual organization, is to bind features across
different locations. The difficulty is illustrated by the finding of Field et al. [18]
that a path of curvilinearly aligned (snake-like) orientation elements embed-
ded in a background of randomly oriented elements can be readily detected
by observers, whereas other paths cannot. This is illustrated in Fig. 8, which
shows a snake-like pattern (left panel) in a cluttered background (right panel).
Note that there are virtually an infinite number of snake patterns that can
be constructed from orientation elements. Grouping seems to be required to
yield organized patterns for attentional spotlight.

This difficulty, however, does not occur in object-based theories, in which
binding provides multiple segments for focal attention to perform sequential
analysis. Though sometimes difficult to tear object-based attention apart from
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Fig. 8. Detection of snake-like patterns (from [18] with permission). Human ob-
servers can easily detect the occurrence of a snake-like pattern - shown on the left
- that is embedded in a background of random orientation elements shown on the
right. The snake pattern consists of 12 aligned orientation elements.

location-based attention, since the former implicitly provides the informa-
tion for the latter, psychophysical and neurobiological studies show increasing
support for the object-based view [15, 31, 37]. For example, a recent study
demonstrates that the visual search for a target item in the presence of many
distractors is very efficient if the distractors can be organized into a small
number of groups on the basis of feature similarity, suggesting that visual at-
tention examines organized groups rather than individual items [67]. Indeed,
the Field et al. results have been successfully simulated by the oscillation
model of Yen and Finkel [74].

The notion of a segmentation capacity (see Sect. 5) is a basic character-
istic of the oscillatory correlation theory. A limited capacity naturally arises
from relaxation oscillations because of their non-instantaneous active phase.
On the other hand, networks of spiking neurons [7] or chaotic maps [76] do
not exhibit a limited capacity. Although such a capacity is sometimes treated
as a computational weakness [14, 70, 76], capacity limitation is a fundamen-
tal property of attention. Also it has been argued that a limited capacity is
advantageous for information processing (e.g. [25, 29]).

Assuming a limited capacity, a related question is: Can we attend to more
than one object at a time? A direct answer was offered by Cowan [12] af-
ter reviewing a large body of literature. His answer is that the attentional
capacity is about four. Furthermore, the attentional capacity underlies the
well-documented capacity in short-term memory. How to reconcile between a
capacity limit of more than one and the phenomenological impression that we
can focus on only one thing at a time? A capacity limit represents an upper
bound on the number of items held by attention, and it does not necessarily
mean that the attention span is constantly full. It may be possible for a sub-
ject to selectively attend to one thing in order to extract information from it.
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Even in the case of selective attention, however, unselected items still receive
some analysis. In the classic experiment of Cherry [11], for example, listeners
can detect the change of the speaker gender from the ‘unattended’ ear.

Another important question regarding attention is what to attend when
faced with a myriad of stimuli? This decision can be a matter of survival for
an animal. Attention can be either goal-driven or stimulus-driven [73]. When
the perceiver seeks to find something, e.g. when it looks for a pen in an office,
its attention is goal-driven (also called active attention). In contrast, when the
perceiver’s attention is captured by some salient stimulus in the input scene,
such as a red pen on a gray desk, attention is said to be stimulus-driven (or
passive attention). It is important to realize that these two modes of attention
likely occur simultaneously in a given act of attention. Goal-driven attention
is controlled by the perceiver’s intentions at the moment. Stimulus-driven at-
tention, on the other hand, can be studied by varying stimulus properties of
the input scene. Perceptual studies [42, 73] suggest that stimuli that differ
from the rest of the scene in one or more feature dimensions, e.g. color, depth,
and motion for vision, tend to capture attention. In other words, salient ob-
jects draw attention. The saliency of a stimulus has two aspects. The first
is the difference between the stimulus and its surround and the second is
the homogeneity of the surround [16]; a stimulus is highly salient when it is
different from its surrounding stimuli that are similar to each other. Visual
feature dimensions include luminance, color, orientation, motion, and depth.
Auditory feature dimensions include loudness, pitch, temporal modulation,
and location. In addition to feature saliency, abrupt changes to the scene tend
to capture attention [73], including the onset of a new stimulus in the scene
and the abrupt change in a feature dimension of an existing stimulus. In other
words, novel objects draw attention.

7.2 Feature-based Analysis versus Model-based Analysis

Scene analysis can be performed on the basis of the features of the objects
in the input scene or the models of the objects in the memory. Feature-based
versus model-based analysis is also metaphorically characterized as bottom-up
versus top-down analysis. Familiarity has been acknowledged as an organiz-
ing principle in scene analysis so the issue is not whether memorized objects
influence scene analysis. What’s at issue is how much model-based analysis
contributes to scene analysis, or whether binding should be part of a recogni-
tion process.

According to some, binding is a byproduct of recognition, which is typically
coupled with some selection mechanism that brings the pattern of interest into
focus, and there is really no binding problem so to speak [44]. For example,
Fukushima and Imagawa [20] proposed a model that performs recognition
and segmentation simultaneously by employing a search controller that se-
lects a small area of the input image for processing. Their model is based on
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Fukushima’s neocognitron model for pattern recognition, which is a hierar-
chical multilayer network. The neocognitron model is a prominent example
of the hierarchical coding approach to the binding problem. The model con-
tains a cascade of layers with both forward and backward connections. The
forward path performs pattern recognition that is robust to a range of vari-
ations in position and size, and the last layer stores learned patterns. When
a scene of multiple patterns is presented, a rough area selection is performed
based on feature density of the input, and further competition in the last
layer leads to a winner. The winning unit of the last layer, through back-
ward connections, reinforces the pattern of the input image that is consistent
with the stored template. This, in a way, segments that part of the input
image from its background. After a while, the network switches to another
area of high feature density and continues the analysis process. Their model
has been evaluated on binary images of connected characters. Olshausen et al.
[39] proposed a model that also combines pattern recognition and a model of
selective attention. Their attention model is implemented by a shifting circuit
that routes information in a hierarchical network while preserving spatial re-
lations between visual features, and recognition is based on a Hopfield model
of associative memory. The location and size of an attention blob are deter-
mined by competition in a feature saliency map, producing potential regions
of interest on an image. This model is highlighted by Shadlen and Movshon
[50] as an alternative to the temporal correlation theory. The model is eval-
uated on binary images with well-separated patterns. A later model along a
similar line was proposed by Riesenhuber and Poggio [44], and it uses a hier-
archical architecture similar to the neocognitron. Their model has been tested
on two-object scenes: One is a stored pattern and another is a distractor.

In my opinion, model-based analysis has clear limits. Perceiving an object,
e.g. a frog, with all its vivid details such as location, shape, color, orientation,
and size, is more than simply recognizing that the object is a frog [24, 56].
Indeed, if feature analysis played no role in scene analysis, camouflage would
not have emerged from animal evolution as a universal strategy of blending
with the environment. This point is illustrated in Figure 9 which shows two
frogs in a pond. It is effortful to spot a frog in its natural habitat even for an
experienced observer. Also, perception operates on both familiar and unfamil-
iar objects, and model-based analysis is not applicable to the latter objects.
Besides these and other conceptual difficulties with the hierarchical coding
discussed in Section 3, it is unclear how the above model-based systems can
be extended to analyze scenes where complex objects are arranged in arbi-
trary ways. As mentioned in Sect. 7.1, the number of possible snake patterns
(see Fig. 8) seems too large to search in a top-down manner.

7.3 Learning versus Representation

Learning - both supervised and unsupervised - is central to neural networks
(and computational intelligence in general). The development of neural net-



184 DeLiang Wang

Fig. 9. A natural image that contains two frogs in their natural habitat.

works can be characterized, to a large extent, by the development of learning
algorithms. Nowadays, much activity in neural networks is popularly called
machine learning. There is also increasing interest in the research community
to apply machine learning techniques to scene analysis. Some even argue that
data-driven learning can do away with the need to search for appropriate
representations for computational scene analysis.

While certain regularities of input data can be discovered by a learning
system, the applicability of learning-based approaches to computational scene
analysis is likely bounded. As pointed out by Konen and von der Malsburg
[28], such approaches tend to be plagued by the problem of combinatorial ex-
plosion when dealing with realistically complex scenes. It is perhaps revealing
to consider the connectedness problem in this context. The failure of percep-
trons to solve this problem is rooted in the lack of a proper representation,
not the lack of a powerful learning method. According to Minsky and Papert
[34], “no machine can learn to recognize X unless it possesses, at least poten-
tially, some scheme for representing X.” (p. xiii). Indeed, modern multilayer
perceptrons with the powerful backpropagation algorithm fare no better on
the connectedness problem [65]. No learning machine, to my knowledge, has
succeeded in solving this problem. The cause, as discussed in Sect. 4, is com-
putational complexity - learning the connectedness predicate would require far
too many training samples and too much learning time. The success of LE-
GION stems from the oscillatory correlation representation and the network
structure.
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The brain of a newborn possesses genetic knowledge resulting from mil-
lions of years of evolution. It is relevant to note that success is quite limited
in teaching chimpanzees, the closest relatives of humans, basic language or
arithmetic despite considerable effort by animal behaviorists. While in the-
ory all is learnable, including genetic knowledge, evolution operates at much
greater time scales. Even if evolutionary computing someday succeeded in
uncovering the computational principles of evolution, the challenge would be
insurmountable of simulating billions of years of environmental change that
resulted in the flourishing of life on the earth. Furthermore, even if major
evolutionary processes were totally reproducible on a computer there would
still be no assurance that the result will a human rather than an amoeba.

Computational complexity should be of principal concern in computational
intelligence. The essence of intelligence is the efficiency of information process-
ing. Although stunning progress in computer speed and memory has enabled
the execution of very complex algorithms, we should keep in mind that a
slower algorithm will always be slower no matter how fast the computer is.

For those who are concerned with biological plausibility, the speed of hu-
man scene analysis has strong implications on the kind of processing employed.
For visual analysis, it has been empirically shown that object identification
in a visual scene takes less than 150 ms [4, 54]. Interestingly, the visual sys-
tem categorizes novel scenes just as fast as highly familiar ones [17]. After
estimation of processing time at various stages of the visual pathway, Thorpe
and Fabre-Thorpe [53] conclude that such analysis must be based primarily
on feedforward processing as there is little time left for iterative feedback. Co-
incidentally, a comprehensive analysis on noise robustness, time course, and
language context led Allen [1] to essentially the same conclusion, that is, hu-
man speech analysis is primarily a bottom-up process. These results challenge
the biological validity of the contemporary emphasis on statistical, model-
based approaches [26] that typically boil down to a time-consuming search in
a large probability space.

A major distinction between perception and reasoning is that the process
of perception is rapid and automatic, whereas the process of reasoning is
consciously deliberative and generally slow. Even when faced with certain
ambiguous figures that permit multiple interpretations, such as the famous
Necker cube shown in Fig. 10, perception seems to quickly dwell on one of the
plausible interpretations and would require a slow, conscious effort to switch
to a competing interpretation. This is not to say that perception never involves
conscious deliberations. We do, on occasion, debate in our head how to make
of an input scene. But such an experience is more of the exception rather
than the rule. From an ecological point of view, perception needs to figure
out what is out there quickly as the scene changes constantly due to both
environmental change and locomotion. The speed of perception is critical to
the survival of an organism.

The emphasis on representations contrasts that on learning. A representa-
tion is a formal system that encodes certain types of information. Marr’s pio-
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Fig. 10. Necker cube. This figure can be seen as a cube that is viewed either from
above or from below.

neering study on computational vision exemplifies representational approaches
to scene analysis [30]. In my view, the Marrian framework for computational
perception provides the most promising roadmap for understanding scene
analysis. Appropriate representations embody key insights and constraints in
an information processing domain. How information is represented can pro-
foundly affect how information is processed. For instance, the cepstral repre-
sentation® separates voice excitation from vocal tract filtering [22], and the
discovery of this representation pays a huge dividend to speech processing
tasks including automatic speech recognition where cepstral features are an
indispensable part of any state-of-the-art system.

Since a good representation often captures the current state of scientific un-
derstanding on human perception, it does not seem to make sense to let a com-
puter program ‘discover’ it through machine learning. For example, cochlear
processing of the acoustic information is well understood and amounts to an
elaborate filterbank. Why not codify such understanding, which is nontrivial
to figure out from scratch, in a representation of auditory periphery?

The above discussion makes it plain that the investigation of computa-
tional scene analysis can be characterized in large part as the pursuit of appro-
priate representations. This vision implies that the research in computational
scene analysis is an interdisciplinary enterprise, as psychophysics as well as
cognitive neuroscience contributes to uncovering effective representations.

So what is the role of learning in computational scene analysis? A rep-
resentation provides a framework, a skeleton, but it is by no means all that
is needed to solve the computational scene analysis problem. Learning plays
an important role within a representational framework to adjust parameter
values and precisely model the distribution of input data in relation to the
system. A recent study by Roman et al. [45] offers an example in this regard.
Their binaural system for speech segregation builds on an auditory peripheral
model and the notion of binary time-frequency masks for speech separation,
and computes the binaural cues of interaural time difference and interaural
intensity difference which are known to be employed by the auditory system.
However, their use of supervised training is responsible for high-quality es-
timates of binary masks, which in turn lead to good segregation results. In
other words, effective learning can substantially enhance system performance.

3 A cepstrum corresponds to the logarithm of the magnitude spectrum.
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8 Concluding Remarks

In this chapter I have made an effort to define the goal of computational
scene analysis explicitly. The challenges facing Rosenblatt’s perceptrons are
fundamentally related to the binding problem. Temporal correlation provides
a biologically plausible framework to address the binding problem. Advances
in understanding oscillatory dynamics lead to the development of the oscil-
latory correlation approach to computational scene analysis with promising
results.

Perhaps the most important characteristic of natural intelligence compared
to artificial intelligence is its versatility. Natural intelligence ranges from sen-
sation, perceptual organization, language, motor control, to decision making
and long-term planning. The substrate for all these functions is a brain - an
immense network of neurons - whose structure is largely fixed after develop-
ment. I have argued recently that time provides a necessary dimension to the
versatility of brain function [65]. Temporal structure is shared by neuronal
responses in all parts of the brain, and the time dimension is flexible and
infinitely extensible.

Computational scene analysis is an extremely challenging problem. The
bewildering complexity of perception makes it necessary to adopt a compass
to guide the way forward and avoid many pitfalls along the way. I strongly
recommend Marr’s posthumous book to anyone who is attempted by the chal-
lenge.
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