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1  INTRODUCTION 

In a natural environment, a target sound, such as speech, is usually mixed 
with acoustic interference. A sound separation system that removes or 
attenuates acoustic interference has many important applications, such as 
automatic speech recognition (ASR) and speaker identification in real 
acoustic environments, audio information retrieval, sound-based human 
computer interaction, and intelligent hearing aids design.  

Because of its importance, the sound separation problem has been 
extensively studied in signal processing and related fields.  Three main 
approaches are speech enhancement (Lim, 1983; O'Shaughnessy, 2000), 
spatial filtering with a microphone array (van Veen and Buckley, 1988; Krim 
and Viberg, 1996), and blind source separation using independent component 
analysis (ICA) (Lee, 1998; Hyvärinen et al., 2001).  Speech enhancement 
typically assumes certain prior knowledge of interference; for example, the 
standard spectral subtraction technique is easy to apply and works well when 
the background noise is stationary. However, the enhancement approach has 
difficulty in dealing with the unpredictable nature of general environments 
where a variety of intrusions, including nonstationary ones such as 
competing talkers, may occur.  The objective of spatial filtering, or 
beamforming, is to estimate the signal that arrives from a specific direction 
through proper array configuration, hence filtering out interfering signals 
from other directions.  With a large array spatial filtering can produce high-
fidelity separation, and at the same time attenuate much signal reverberation.  
A main limitation of spatial filtering is what I call configuration stationarity: 
It has trouble tracking a target that moves around or switches between 
different sound sources.  Closely related to spatial filtering is ICA-based 
blind source separation, which assumes statistical independence of sound 
sources and formulates the separation problem as that of estimating a 
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demixing matrix.  To make standard ICA formulation work requires a 
number of assumptions on the mixing process and the number of 
microphones (van der Kouwe et al., 2001).  ICA gives impressive separation 
results when its assumptions are met.  On the other hand, the assumptions 
also limit the scope of the applicability. For example, the stationarity 
assumption on the mixing process – similar to the configuration stationarity 
in spatial filtering – is hard to satisfy when speakers turn their heads or move 
around.  

While machine separation remains a challenge, the auditory system 
shows a remarkable capacity for sound separation, even monaurally (i.e. with 
one microphone). According to Bregman (1990), the auditory system 
organizes the acoustic input into perceptual streams, corresponding to 
different sources, in a process called auditory scene analysis (ASA).  
Bregman further asserts that ASA takes place in two stages in the auditory 
system: The first stage decomposes the acoustic mixture into a collection of 
sensory elements or segments, and the second stage selectively groups 
segments into streams.  This two-stage conception corresponds in essence to 
an analysis-synthesis strategy.  Major ASA cues include proximity in 
frequency and time, harmonicity, smooth transition, onset synchrony, 
common location, common amplitude and frequency modulation, and prior 
knowledge. 

Research in ASA has inspired a series of computational studies to model 
auditory scene analysis (Weintraub, 1985; Cooke, 1993; Brown and Cooke, 
1994; Ellis, 1996; Wang and Brown, 1999). Mirroring the above two-stage 
conception, computational auditory scene analysis (CASA) generally 
approaches sound separation in two main stages: segmentation and grouping. 
In segmentation, the acoustic input is decomposed into sensory segments, 
each of which likely originates from a single source, by analyzing 
harmonicity, onset, frequency transition, and amplitude modulation. In 
grouping, the segments that likely originate from the same source are 
grouped, based mostly on periodicity analysis.  In comparison with other 
separation approaches, the main CASA success has been in monaural 
separation with minimal assumptions.1 It also creates a new set of challenges 
and demands, such as reliable multipitch tracking and special handling of 
unvoiced speech. 

In comparison with other well-established separation approaches, CASA 
faces a somewhat distinct issue: there is no consensus on how to 
quantitatively evaluate a CASA system (Rosenthal and Okuno, 1998).  
Almost every study adopts its own evaluation criteria.  This is partly due to 
the fact that CASA is still in its infancy, but it may reflect deeper confusion 
on the computational goal of auditory scene analysis.  The lack of common 

                                                           
1 More accurately, CASA also makes a number of assumptions, but such assumptions 
tend to conform to the constraints under which the auditory system operates.  
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evaluation criteria makes it difficult to document and communicate the 
progress made in the field.  Sensible evaluation criteria can also serve as the 
guiding principle for model development.  

This chapter intends to examine the goal of CASA.  After analyzing the 
advantages and disadvantages of different computational objectives, I 
suggest ideal time-frequency (T-F) mask as the computational goal of 
auditory scene analysis.  The remainder of the chapter is organized as 
follows. The next section reviews different CASA evaluation criteria.  
Section 3 is devoted to a general discussion of the CASA goal, including an 
analysis of several alternative CASA objectives. Section 4 introduces the 
ideal binary mask, analyzes itstheir properties, and argues for itstheir use as 
the CASA goal.  Section 5 describes two models that explicitly estimate the 
ideal binary mask.  Finally, Section 6 concludes the chapter. 

 

2  CASA EVALUATION CRITERIA 

CASA criteria that have been suggested can be divided into the 
following four categories: Direct comparisons between segregated target and 
premixing target, changes in automatic speech recognition (ASR) score, 
evaluation with human listening, and fit with biological data. Each is 
described below. 

• Comparison with premixing target. Obviously this assumes the 
availability of premixing sound sources, which is not an 
unreasonable assumption for system evaluation.  The evaluation 
criterion employed in Cooke’s study (1993) is the match between a 
model-generated group of target elements and the group of elements 
in clean target speech. Brown and Cooke (1994) use a segregated 
target stream, which is a binary T-F mask, to resynthesize target 
speech and noise intrusion, and then calculate a normalized ratio 
between resynthesized speech and resynthesized noise. 
Subsequently, Wang and Brown (1999) use conventional signal-to-
noise ratio (SNR), measured in decibels, between resynthesized 
speech and resynthesized noise.  More tailored for speech, Nakatani 
and Okuno (1999) calculates spectral distortion by comparing the 
short-term spectra of segregated speech and those of clean speech.  
Bodden (1993) in his binaural model of speech segregation estimates 
a time-varying Wiener filter for each sound mixture, which consists 
of energy ratios between the target speech and the mixture within 
critical bands. 

• ASR measure. A main motivation behind research on speech 
separation is to improve ASR performance in the presence of 
acoustic interference. So it is natural to evaluate a CASA model in 
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terms of ASR score.  This measure is used in the Weintraub model 
(1985) - probably the earliest CASA study.  The evaluation metric is 
straightforward: Measuring changes in the recognition score using a 
standard ASR system before and after sound mixtures are segregated 
by the CASA model in question. Early ASR evaluations produce 
ambiguous results, partly because processing stages in CASA tend to 
distort the target signal, creating a mismatch between segregated 
signal and clean signal used ASR training. More recent attempts 
have yielded better outcomes (see, for example, Glotin, 2001). 

• Human listening. Human listeners can be involved in evaluating a 
computational model in terms of speech intelligibility on original 
mixtures and on segregated speech (Stubbs and Summerfield, 1988; 
1990). An improvement in speech intelligibility would lend support 
to the value of the model.  However, human listeners are very good 
at segregating a sound mixture, and this creates a potential confound 
for using listeners to test model output.   One practical difficulty is 
that in order to give room for a model to improve on intelligibility, 
interference must be very strong, which could be exceedingly hard 
for models to perform.  Listeners with hearing loss may be better 
suited for such evaluation as it is well-known that people with 
sensorineural impairment have greater difficulty in segregating target 
speech in a noisy environment (Moore, 1998).  Of course, if the 
objective of the model is to improve hearing of abnormal listeners or 
that of normal listeners in highly noisy environments, this evaluation 
methodology is the best choice.  Ellis (1996) made a different use of 
human listening in evaluation: His listeners were used to score the 
resemblance of segregated sounds to component sounds in the 
mixture. 

• Fit with biological data. Some CASA researchers are interested in 
modeling the human ASA process, while some others are interested 
in elucidating neurobiological mechanisms underlying ASA. For 
such models, the main evaluation criterion is how well the models 
account for known perceptual or neurobiological data.  Wang (1996) 
sought to model a number of ASA phenomena on the basis of a 
neural oscillator network (see also Norris, 2003). McCabe and 
Denham (1997) proposed a different neural network that simulates 
psychophysical results on auditory streaming. Recently, Wrigley and 
Brown (2004) put forward a neural oscillator model of auditory 
attention and used it to quantitatively simulate a set of psychological 
data. 
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3  WHAT IS THE GOAL OF CASA? 

Different evaluation criteria tend to reflect different goals of 
computational models, whether or not they are explicitly laid out. This raises 
the question of what should be the goal of CASA?  This is a very important 
question since its answers bear directly on the research agenda and determine 
whether computational efforts lead to real progress towards ultimately 
solving the CASA problem. 

To address this question, it might be helpful to put CASA in a broad 
context of perception since CASA purports to model auditory scene analysis, 
which is a major process of auditory perception.  So a larger question is, 
what is the goal of perception?  This question, raised in the most general 
form, would fall under the realm of philosophy, and indeed philosophers 
have debated this issue for centuries. What we are concerned here is the 
information processing perspective, which is shared by human and machine 
perception. From this perspective, Gibson (1966) considers perceptual 
systems as ways of seeking and extracting information about the 
environment from the sensory input. In the visual domain, Marr (1982) states 
that the purpose of vision is to produce a visual description of the 
environment for the viewer. By extrapolating Marr’s statement to the 
auditory domain, the purpose of audition would be to produce an auditory 
description of the environment for the listener.  It is worth noting, according 
to the above views, that perception is a process private to the perceiver 
despite the fact that the physical environment is common to different 
perceivers. 

According to Bregman (1990), the goal of ASA is to produce separate 
auditory streams from sound mixtures, each stream corresponding to an 
acoustic event. This would imply that the goal of CASA is to 
computationally extract individual streams from sound mixtures. To make 
this description more meaningful, however, further constraints need to be 
observed: 

• To qualify as a stream a sound must be audible on its own. In other 
words, the intensity of the sound at the eardrum must exceed a 
certain sound level, referred to as the absolute threshold (Moore, 
2003).  

• The number of streams that can be segregated at a time must be 
limited.  This limit is directly related to the capacity of auditory 
attention. In a comprehensive account, Cowan recently concluded 
that the capacity of attention is about four (Cowan, 2001).  This 
implies that the auditory system cannot segregate more than 4 
streams simultaneously. While a listener may be able to segregate up 
to 4 tones or steady vowels, in a very noisy environment such as a 
cocktail party, the attentional capacity may reduce to figure-ground 



In P. Divenyi (Ed.), “Speech Separation by Humans and Machines,” pp. 181-197, Kluwer 
Academic, Norwell MA, 2005  

186 

separation, i.e. attending to only a foreground stream with a general 
awareness of the background.  

• A fundamental fact in auditory perception is auditory masking 
(Moore, 2003). Roughly speaking, auditory masking refers to the 
phenomenon that within a critical band a stronger signal tends to 
mask a weaker one. When a sound is masked, it is eliminated from 
perception as if the sound never reached the ear. 

• ASA results depend on sound types. Say we listen to mixtures of two 
equally-loud sounds. If the sounds are two tones well separated in 
frequency or two speech utterances, we can readily segregate them. 
On the other hand, if the sounds are whitle noise and pink noise we 
are completely incapable of any segregation.   

With the above analysis in mind, we now discuss some alternative CASA 
objectives. The first objective, which might be called the gold standard, is 
simply to segregate all sound sources from a sound mixture.  If this standard 
could be reached, it would be the ideal goal of CASA, at least from an 
engineering standpoint. On the other hand, the goal is clearly beyond what 
the human listener can do; just observe for yourself how many conversations 
you can follow in a cocktail party. It is probably also an unrealistic 
computational goal if the system has just one or two microphones. 

Another alternative objective is to enhance ASR. This objective has the 
advantage that it directly relates to one of the primary motivations for CASA 
research.  The objective is also straightforward to evaluate as discussed in the 
last section. This objective has several drawbacks.   One drawback is that it is 
narrowly focused on speech. Although speech is a vital type of acoustic 
signal for humans, it is by no means the only important signal to us. What 
about music, or other environmental sounds?  For music in particular, it is 
hard to characterize music perception as a recognition process.  A deeper 
issue with recognition as the goal is that perceiving is more than recognizing 
(Treisman, 1999).  Perceiving has, in addition of recognition, all the current 
details of events, such as how they sound like, where they are, whether they 
are approaching or receding, and many other details about them.  Such 
details are crucial for the perceiver to decide how to act.  Also it is not clear 
how the ASR objective can account for the fact that new things unheard 
before can be perceived as well. 

The third alternative is to enhance human listening. A main advantage of 
this objective is the close coupling with auditory perception. Also a primary 
motivation of studying CASA is to improve hearing prosthesis for listeners 
with hearing impairment as well as hearing of normal listeners in very noisy 
environments.  However, this objective is specifically tailored to human 
listening and there are other applications that do not directly involve humans, 
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such as audio information retrieval.  There are also practical difficulties for 
computational researchers in terms of required expertise for conducting 
human experiments. 

These alternative objectives have their advantages and disadvantages.  A 
desirable objective should be generally consistent with the above analysis on 
human auditory scene analysis, and be comprehensive enough to apply to 
different types of acoustic signal and different application domains.  The 
objective should not consider just recognition performance or human 
listening, but at the same time it should be consistent with such criteria.  The 
simplicity of the objective and easiness to apply are also desirable so that a 
researcher need not wait for a long time to find out how well a provisional 
model works.   In the next section, I present the ideal time-frequency mask as 
a putative goal of CASA. 
 
4  IDEAL BINARY MASK AS THE GOAL OF CASA 

As discussed in Section 3, the gold-standard objective is probably 
unrealistic. A more realistic objective is to segregate a target signal from the 
mixture.  Then the objective becomes that of figure-ground separation.  This 
begs the question of what should be regarded as the target?  Generally 
speaking, what the target is depends on external input as well as intention; it 
is closely related to the study of attention, in particular what attracts attention 
(Pashler, 1998). From a practical standpoint, what constitutes the target is 
task-dependent and often unambiguous.  For the purpose of our discussion, 
we assume that the target is known. We also assume, for the sake of 
evaluation, the availability of premixing target signal and interference.  

A widely accepted representation in CASA is the two-dimensional time-
frequency representation where the time dimension consists of a sequence of 
time frames and the frequency dimension consists of a bank of auditory 
filters (e.g. gammatone filters).  This representation is consistent with 
accounts of human ASA and auditory physiology.  Within this 
representation, the key consideration behind the notion of the ideal binary 
mask is to retain the time-frequency regions of a target sound that are 
stronger than the interference, and discard the regions that are weaker than 
the interference.  More specifically, an ideal mask is a binary matrix, where 1 
indicates that the target energy is stronger than the interference energy within 
the corresponding T-F unit and 0 indicates otherwise.  This definition implies 
a 0-dB SNR criterion for mask generation, and other SNR criteria are 
possible too (see below).  Figure 12.1 illustrates the ideal mask for a mixture 
of a male utterance and a female utterance, where the male utterance is 
regarded as target. The overall SNR of the mixture is 0 dB. The top left panel 
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of Figure 12.1 shows the T-F representation of the target utterance, the top 
right panel the representation of the interfering utterance, and the middle left 
panel the representation of the mixture.  For this mixture, the ideal mask is 
shown in the middle right panel.  The bottom left panel of the figure shows 
the result of ideal masking on the mixture.  Compared with the original 
mixture, the masked mixture is much closer to the clean target.  Listening to 
the masked mixture one can clearly hear the target utterance while no trace of 
interference is audible. 

Binary masks have been used as an output representation in the CASA 
literature (Brown and Cooke, 1994; Wang and Brown, 1999).  Related to 
binary masks is the observation that different speech utterances tend to be 
orthogonal in a high-resolution time-frequency representation because the 

 
Figure 12.1. Illustration of the ideal binary mask. Top left: Two-dimensional T-F 
representation of the target utterance (“Primitive tribes have an upbeat attitude”).  The figure 
displays the rectified responses of the gammatone filterbank with 128 channels. Top right: 
Corresponding representation of the interfering utterance (“Only the best players enjoy 
popularity”).  Middle left: Corresponding representation of the mixture.  Middle right: Ideal 
T-F binary mask, where white pixels indicate 1 and black pixels 0. Bottom left: Masked 
mixture using the ideal binary mask. 
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energy of a single utterance tends to be sparsely distributed (Jourjine et al., 
2000; Roweis, 2001). This observation obviously does not hold when an 
acoustic background is babble noise or contains broadband intrusions.  To 
my knowledge, the papers of Hu and Wang (2001) and Roman et al. (2001) 
are the earliest studies that suggest the use of the ideal binary mask (see also 
Roman et al., 2003; Hu and Wang, 2004). Note that the definition of the ideal 
binary mask does not assume orthogonality among sound sources. 

The ideal binary mask has a number of desirable properties: 

• Flexibility. With the same mixture, the definition leads to different 
masks depending on what the target is. It is consistent with the 
perceptual observation that the same environment can be perceived 
in different ways by different perceivers.  

• Well-definedness. The ideal mask is well defined no matter how 
many intrusions are in the scene.  One may also identify multiple 
targets from the same mixture, with multiple processors that have 
different target definitions. 

• The ideal binary mask sets the ceiling performance for all binary 
masks.  

• The ideal mask is broadly consistent with ASA constraints in terms 
of audibility and segregation capacity.  In particular, it has direct 
correspondence with the auditory masking phenomenon. 

 
When a gammatone filterbank is used for generating the time-frequency 

representation, a technique introduced by Weintraub (1985) can be used to 
resynthesize a waveform signal from a binary mask (see also Brown and 
Cooke, 1994; Wang and Brown, 1999).  One can then conduct listening tests 
on resynthesized signal.  The ideal binary mask produces high quality 
resynthesized target unless the mixture SNR is very low.   

Recent research on missing-data speech recognition provides an effective 
bridge between a segregated mask and ASR (Cooke et al., 2001).  The main 
idea of missing-data recognition is to adapt the standard HMM 
recognizer so that recognition decisions are based only on reliable T-F 
units while marginalizing unreliable or missing T-F units.  Cooke et al. 
(2001) found that the a priori mask - defined according to whether the 
mixture energy is within 3 dB of the target energy - used in conjunction 
missing-data recognition yields excellent recognition performance.  
Similar performance is obtained by Roman et al. (2003) using the ideal 
binary mask.  Moreover, the study of Roman et al. (2003) found that 
deviations from the ideal binary mask lead to gradual degradation in speech 
recognition performance. 
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The ideal binary mask has been recently tested in human speech 
intelligibility experiments.  As noted earlier, the definition of the ideal mask 
uses the 0-dB SNR criterion within individual T-F units.  However, one can 
produce different ideal masks using different local SNR criteria.  Brungart et 
al. (in preparation) tested a range of local SNR criteria around 0 dB using 
ideal masking on speech mixtures involving one target talker and 1 to 3 
competing talkers.  All talkers have equal overall loudness, or the SNR 
between the target and a single competing talker is zero. Their experiments 
showed that, within the local SNR range from -5 dB to 5 dB, ideal masking 
produces intelligibility scores near 100% in all mixtures involving 2, 3, and 4 
talkers. In addition, the intelligibility score decreases systematically towards 
higher or lower SNR criteria. Note that for a fixed mixture a very high SNR 
criterion leads to a mask with very few 1’s, hence very little target energy; a 
very low SNR criterion leads to a mask close to an all-1 mask, hence very 
little segregation. Their results also show that, for mixtures with very low 
SNR, ideal masking improves speech intelligibility dramatically (see also 
Roman et al., 20031). 

Finally an analogy may be drawn between auditory binary masking and 
visual occlusion.   Figure 12.2 illustrates occlusion with a natural image of 
water lilies, where a lily in the front occludes the objects in the back. Visual 
occlusion may be considered as an instance of binary masking, in which the 
pixels of a front surface are assigined 1 in the mask and those of the occluded 
surfaces are assigned 0.  Moreover, when an observer attends to a particular 
object in an image (say the lily near the center of Figure 12.2), this process of 
attending is analogous to ideal binary masking where the pixels of the 
attended object correspond to 1’s in the mask and the remaining pixels 
correspond to 0’s.  

 

 
 

Figure 12.2. A natural image of water lilies. 
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5  ESTIMATION OF THE IDEAL BINARY MASK 
The ideal binary mask clearly quantifies the computational goal of 

CASA.  Guided by this goal, we have made conscious effort to compute the 
ideal mask. This section describes two models that explicitly estimate the 
ideal binary mask.  

5.1  Monaural segregation of voiced speech 
Voiced speech segregation has been a primary topic in CASA. For 

voiced speech, harmonicity is the essential cue for segregation. Earlier 
CASA models can segregate much of the low-frequency energy, but have 
trouble segregating high-frequency components.  It is well-known that the 
auditory system can resolve the first few harmonics, while higher harmonics 
are unresolved. Psychoacoustic research suggests that the auditory system 
may use different mechanisms to deal with resolved and unresolved 
harmonics (Carlyon and Shackleton, 1994; Bird and Darwin, 1997).  
Subsequently, Hu and Wang (2003; 2004) developed a CASA model that 
employs different mechanisms in the low- and the high-frequency range.  
The model follows the general two-stage processing (see Section 1): 
Segmentation and grouping.  Building on the output from the Wang-Brown 
model (1999) that works well in the low-frequency range, Hu and Wang 
proposed a psychoacoustically motivated method for tracking target pitch 
contours.  

With the results of target pitch tracking, the model then labels individual 
T-F units.  In the low-frequency range, a T-F unit is labeled by comparing its 
response periodicity and the extracted target pitch period.  In the high-
frequency range, wide bandwidths of auditory filters cause the filters to 
respond to multiple unresolved harmonics of voiced speech.  These responses 
are amplitude modulated due to beats and combinational tones (Helmholtz, 
1863).  Furthermore, response envelopes fluctuate at the frequency that 
corresponds to the fundamental frequency of speech.  Hence, the model 
labels a high-frequency unit by comparing its amplitude modulation (AM) 
rate with the extracted pitch frequency.  To derive AM rates Hu and Wang 
have employed a sinusoidal modeling technique; specifically, a single 
sinusoid is used to model AM within a certain range of target pitch and the 
derivation of AM rates can then be formulated as an optimization problem.  
With appropriately chosen initial values, the optimization problem can be 
solved efficiently using an iterative gradient descent technique.  With labeled 
T-F units, the model generates segments in the low-frequency range based on 
temporal continuity and cross-channel correlation between responses of 
adjacent frequency channels, and in the high-frequency range based on 
temporal continuity and common AM among adjacent filter responses.  
Segments thus formed then expand iteratively, and the resulting collection of 
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the segments with the target label gives the segregated target which is 
represented by a binary T-F mask. 

Figure 12.3 illustrates the result of ideal mask estimation for voiced 
speech segregation.  The top left panel of the figure shows the T-F 
representation of a voiced utterance which is the target. The top right panel 
shows the mixture of the utterance with a ‘cocktail party’ noise from Cooke 
(1993). The middle left panel shows the ideal binary mask for the mixture, 
and the middle right panel the estimated mask. The estimated mask is 
reasonably close to the ideal one.  The bottom left panel gives the result of 
ideal masking on the mixture, and the bottom right panel the result of 
masking using the estimated mask.  

The model of Hu and Wang (2004) produces substantially better 
performance than previous models, especially in the high-frequency range.  
In terms of systematic SNR evaluation, one may treat the resynthesized 
signal from the ideal binary mask as signal because the ideal mask represents 

 

 
Figure 12.3. Ideal mask estimation for monaural speech segregation. Top left: T-F 
representation of the target utterance (“Why were you all weary”).  Top right: T-F 
representation of the mixture of the target and the cocktail party noise.  Middle left: Ideal 
binary mask for the mixture.  Middle right: Estimated binary mask for the mixture. Bottom 
left: Masked mixture using the ideal mask. Bottom right: Masked mixture using the estimated 
mask. 
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the computational goal. The model then yields 5.2 dB improvement over the 
Wang and Brown model (1999), which had the representative performance of 
earlier CASA systems.  It also has 6.4 dB gain over the standard spectral 
subtraction method in speech enhancement.  Similar improvements are 
obtained with conventional SNR metric using premixing speech as signal.   
 
5.2  Binaural speech segregation 

It is well known that people can selectively attend to a single voice at a 
noisy cocktail party.  Spatial location is believed to play an important role in 
cocktail party processing. How to simulate this perceptual ability, known as 
the cocktail-party problem (Cherry, 1953), is a great computational 
challenge.   

Guided by the notion of the ideal binary mask, Roman et al. (2003) 
developed a new location-based approach to speech segregation. Their model 
uses the binaural cues of interaural time difference (ITD) and interaural 
intensity difference (IID) extracted from a KEMAR dummy head that 
realistically simulates the filtering process of the head, torso and external ear.  
They observe that, within a narrow frequency band, modifications to the 
relative energy of the target source to the interfering energy trigger 
systematic changes in the values of the binaural cues. For a given spatial 
configuration, this interaction produces characteristic clustering in the 
binaural feature space. Consequently, the model performs independent 
supervised learning for different spatial configurations and different 
frequency bands in the joint ITD-IID feature space.  More specifically, they 
formulate the estimation of the ideal binary mask as a binary Bayesian 
classification problem, where the hypothesis is whether the target is stronger 
than the overall interference within a single T-F unit.  Then a nonparametric 
method (kernel density estimation) is used to estimate likelihood functions in 
the ITD-IID space, which are then used in maximum a posteriori (MAP) 
decision making.  

Figure 12.4 illustrates the result of estimating the ideal binary mask for 
natural speech segregation, using the same mixture shown in Figure 12.1.  
The top right panel shows the ideal binary mask, and the bottom right panel 
the estimated mask.  The match between the two masks is excellent.  Finally, 
the bottom left panel displays the result of masking the mixture using the 
estimated mask (cf. bottom left panel of Figure 12.1). 

The resulting model was systematically evaluated in two-source and 
three-source configurations, and estimated binary masks approximate the 
ideal ones extremely well.  In terms of conventional SNR evaluation, the 
model produces large and consistent SNR improvements over original 
mixtures.  The SNR gains are as large as 13.8 dB in the two-source case and 
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11.3 dB in the three-source case.  A comparison with the Bodden model 
(1993), which estimates a Wiener filter, shows that the Roman et al. model 
produces 3.5 dB improvement in the most favorable conditions for the 
Bodden model, and in other conditions the improvement is significantly 
greater.  In addition to SNR evaluation, they performed an ASR evaluation 
by feeding estimated binary masks to a missing-data recognizer (Cooke et al., 
2001), and the model yields large ASR improvements compared to direct 
recognition of mixtures.  Also, the model was evaluated on speech 
intelligibility with human listeners.  Because people excel at ASA and 
achieve near perfect intelligibility unless interference is severe, the tests used 
three low SNR levels: 0 dB, -5 dB and -10 dB (measured at the better ear).  
The general finding is that the algorithm improves human intelligibility for 
the tested conditions, and the improvement becomes larger as the SNR 
decreases - as large as an increase from an intelligibility score of 20% to 80% 
at -10 dB.  
 
6  CONCLUSION 

In his famous treatise of computational vision, Marr (1982) makes a 
compelling argument for separating different levels of analysis in order to 
understand complex information processing.  In particular, the computational 
theory level, concerned with the goal of computation and general processing 
strategy, must be separated from the algorithm level, or the separation of 

 
Figure 12.4.  Ideal mask estimation for binaural speech segregation. Top left: the same 
mixture shown in Figure 1. Top right: Ideal binary mask for the mixture (also shown in 
Figure 1). Bottom right: Estimated binary mask. Bottom left: Masked mixture using the 
estimated mask. 
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what from how.  This chapter is an attempt at a computational-theory 
analysis of auditory scene analysis, where the main task is to understand the 
character of the CASA problem.   

My analysis results in the proposal of the ideal binary mask as a main 
goal of CASA. This goal is consistent with characteristics of human auditory 
scene analysis. The goal is also consistent with more specific objectives such 
as enhancing ASR and speech intelligibility. The resulting evaluation metric 
has the properties of simplicity and generality, and is easy to apply when the 
premixing target is available.  The goal of the ideal binary mask has led to 
effective for speech separation algorithms that attempt to explicitly estimate 
such masks. 
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