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A long-standing problem in neural computation has been the problem of
connectedness, first identified by Minsky and Papert (1969). This problem
served as the cornerstone for them to establish analytically that percep-
trons are fundamentally limited in computing geometrical (topological)
properties. A solution to this problem is offered by a different class of
neural networks: oscillator networks. To solve the problem, the repre-
sentation of oscillatory correlation is employed, whereby one pattern is
represented as a synchronized block of oscillators and different patterns
are represented by distinct blocks that desynchronize from each other.
Oscillatory correlation emerges from LEGION (locally excitatory glob-
ally inhibitory oscillator network), whose architecture consists of local
excitation and global inhibition among neural oscillators. It is further
shown that these oscillator networks exhibit sensitivity to topological
structure, which may lay a neurocomputational foundation for explain-
ing the psychophysical phenomenon of topological perception.

Thirty years ago Minsky and Papert (1969), in their milestone book, pointed
out fundamental limitations of perceptrons. They proved that all except
one topologically invariant predicates are not of finite order. In particular,
the topological predicate of connectedness was used as the cornerstone in
their mathematical analysis. To understand the implications of this famous
(negative) result, let us first explain what it means.

A perceptron (Rosenblatt, 1962) may be viewed as a binary classification
device that computes a predicate. As shown in Figure 1, the class of per-
ceptrons that Minsky and Papert studied consists of a binary input layer
R (symbolizing retina), a layer of binary feature-detecting units, and a re-
sponse unit that signifies the classification outcome. The feature detectors
sense a specific area of R, and the response unit is a threshold unit operat-
ing on a weighted sum of all the units in the detector layer. The order of a
predicate is the smallest number k for which one can compute the predicate
with feature detectors that sense no more than k units of R. The Minsky-
Papert connectedness theorem states that to tell whether an input pattern
is connected requires arbitrarily large orders as R grows in size. In fact, the
order increases at least as fast as |R|1/2. Note that for any fixed R, the theo-
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Figure 1: Diagram of a perceptron. A feature detector senses a specific area of
the input layer, R, and the response unit computes whether the weighted sum
of all the detectors is above a certain threshold.

rem does not prevent a theoretical solution to the problem by a perceptron.
With a discrete R, there are a finite (but exponentially high except for one-
dimensional R)1 number of connected patterns, and one can trivially find
a perceptron whose feature detectors detect individual connected patterns.
However, problems that are not of finite order require nonlocal (global) fea-
ture detectors, and too many of them to be feasible (Minsky & Papert, 1969).
In a sense, their result is a negative statement on the scalability of machinery.

Perceptrons are best known for their amazing ability to learn. What is
powerful about the Minsky-Papert theory is that it identifies limitations on
the kinds of patterns that perceptrons are capable of recognizing, regardless
of whatever learning rule is employed. Much of the Minsky-Papert anal-
ysis is about single-layer (simple) perceptrons, and the following critical
question arises: Is the limitation applicable to multilayer perceptrons with
backpropagation learning, which represents the most influential develop-
ment of modern neural networks? General analytical statements are not
available. As far as connectedness is concerned, Minsky and Papert (1988,
p. 52) claimed that multilayer perceptrons are no more powerful. For mul-
tilayer perceptrons, order is of less concern because hidden units in typical
architecture receive input from all of the input units. The central questions
are, How many hidden units are required? and How long is the training
process? If the number or the duration increase very quickly as R grows
in size, one must consider the problem not solvable in practice. For two-
dimensional (2D) R, the number of connected patterns grows exponentially
with respect to |R|. Thus, for R not too small, a practical training process

1 I am grateful to N. Robertson for discussions that led to this conclusion.
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can employ only a tiny percentage of all possible training samples, and it
is hard to expect that a multilayer perceptron can successfully generalize
from relatively so few training samples. Given this consideration and that
no success has been reported on recognizing connectedness, it is reasonable
to project, based on the result on simple perceptrons, that the limitation
exists for multilayer perceptrons (see also Minsky & Papert, 1988).

Here we point out that a new class of neural networks—neural oscillator
networks—provides a solution to the problem of connectedness. The basic
unit of an oscillator network is a neural oscillator, and with an additional de-
gree of freedom—the phase of an oscillator—one can speak of synchroniza-
tion and desynchronization in an oscillator network. In particular, Terman
and Wang (1995; Wang & Terman, 1997) proposed and analyzed LEGION
(locally excitatory globally inhibitory oscillator network). Representation in
these networks is based on oscillatory correlation, a special form of von der
Malsburg’s temporal correlation theory (von der Malsburg, 1981; von der
Malsburg & Schneider, 1986). More specifically, a pattern is represented by a
synchronized group of oscillators, and different patterns are represented by
distinct oscillator groups that desynchronize from each other. A LEGION
network consists of three parts: (1) its basic unit, a relaxation oscillator with
two time scales; (2) oscillators coupled with local excitation, which leads
to rapid synchronization within a group corresponding to one pattern; and
(3) a global inhibitor, which desynchronizes different groups of oscillators.

Formally, a single oscillator i in LEGION is defined by a pair of exci-
tatory variable xi and inhibitory variable yi. Oscillator i receives external
stimulation Ii, and overall coupling Si from the network. The definition of
oscillator i includes a relaxation parameter ε, which induces two time scales
that characterize typical relaxation oscillations. The limit cycle for a relax-
ation oscillation quickly alternates (or jumps) between an active phase of
relatively high x values and a silent phase of relatively low x values. To
study connectedness, we employ a 2D LEGION with four nearest-neighbor
coupling and the global inhibitor z. (See Terman & Wang, 1995, and Wang
& Terman, 1997, for precise definitions of LEGION.)

Given Terman-Wang analysis on LEGION, it is not difficult to use LE-
GION to detect connectedness. Before describing how to do it, we show the
response of a 30×30 LEGION network to two figures: one connected and
one disconnected. The connected figure is a cup shown in Figure 2A, while
the disconnected one is the image of the word cup shown in Figure 2B. The
LEGION network is solved using a Runge-Kutta method. The oscillators
of the network start with random phases. Figure 2C displays the temporal
activity of all the stimulated oscillators (Ii > 0) for the connected cup image.
Unstimulated oscillators (Ii < 0) are omitted from the display because they
do not oscillate. The oscillators corresponding to each pattern are combined
in the display and thus appear as a single oscillator when they are in syn-
chrony. The upper panel shows the oscillator block corresponding to the
cup, and the middle panel shows the activity of the global inhibitor. Syn-
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chrony occurs in the first cycle of oscillations. The case for the disconnected
cup is shown in Figure 2D, where the upper three traces show the three
blocks corresponding to the three patterns, respectively. From Figure 2D,
it is clear that synchronization within each block and desynchronization
between different blocks are achieved in the first two cycles.

These simulations illustrate clearly that after a few cycles, all the oscil-
lators corresponding to one (connected) pattern are synchronized, whereas
those corresponding to different patterns are desynchronized. When a syn-
chronized block jumps to the active phase, the global inhibitor is triggered
and approaches from 0 to 1 on the fast timescale. Within an oscillation pe-
riod, the global inhibitor is triggered as many times as is the number of
patterns in the input figure. Thus, one can find how many patterns are in
the input image by comparing the response of any stimulated oscillator and
that of the global inhibitor. If their frequencies of oscillations are the same,
then the input figure contains one pattern, and thus the figure is connected.
Otherwise the input figure contains more than one pattern and the figure
is disconnected. More specifically, we compute the accumulated activity of
the global inhibitor over an oscillation period τ by

∫ T
T−τ z dt, where T de-

notes the current time. The corresponding average accumulated activity of
a stimulated oscillator is given by∑

i

∫ T
T−τ H(xi − θx) dt∑

i
H(Ii)

.

Here H stands for the Heaviside step function, and θx is chosen between
x values that correspond to the silent phase and those to the active phase.
Note that the denominator indicates how many oscillators are stimulated.

Regarding the period τ of a stimulated oscillator, in the singular limit
ε → 0, it can be precisely expressed in terms of the parameters of a single

Figure 2: Facing page. (A) A connected cup image as mapped to a 30×30 LEGION.
(B) A disconnected image with three patterns forming the word cup as mapped
to a 30×30 network. (C) Results for the connected cup image. (D) Results for
the disconnected cup image. In C and D, the upper traces give the combined x
activities of the oscillator blocks indicated by their respective labels. The next-
to-bottom trace gives the activity of the global inhibitor, and the bottom one
shows the temporal activity of the RHS of equation 1, together with θ . The
oscillator activity is normalized in the figure. The simulation in each case takes
7500 integration steps. The parameter values are (see Wang & Terman, 1997,
for the meanings of these parameters): ε = 0.02, β = 0.1, γ = 6.0, ρ = 0.02,
θx = −0.5, θz = 0.1, φ = 3.0, Wz = 1.0, and WT = 8.0 (weights are identical
before dynamic normalization). I = 0.2 for a stimulated oscillator and I = −0.02
otherwise.
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oscillator (see equation 10 in Linsay & Wang, 1998). When ε > 0 as in the
previous simulations, the calculated period is not precise. But as will be clear
later, we do not need precise values of τ in order to detect connectedness.

To summarize, the connectedness predicate is calculated by

∫ T

T−τ
z dt

/
∑

i

∫ T
T−τ H(xi − θx) dt∑

i
H(Ii)

 < θ. (1)

The threshold θ should be chosen between 1 and 2 for the following reason.
Given a positive ε and system noise, synchrony within each pattern is not
perfect (see Figure 2). Since z is triggered as long as a single oscillator jumps
to the active phase, the width of the active phase of the inhibitor is slightly
wider than a stimulated oscillator. Thus, for a connected figure, the right-
hand side (RHS) of equation 1 is slightly greater than 1 but certainly less
than 2.

The two bottom traces in Figures 2C and 2D show the RHS value of equa-
tion 1 for these two cases. For the parameter values used in the simulations,
τ = 5.27. A threshold θ = 1.6 is used in Figure 2, and this is sufficient to
detect connectedness. Beyond a short beginning duration corresponding to
the process of synchronization and desynchronization, equation 1 correctly
reveals the connectedness predicate.

More generally, the RHS of equation 1 reveals the number of connected
components in the input figure. With this formula, the LEGION network
can be used to count how many patterns are in a picture.

Note that equation 1 does not consider the degenerate case of no stim-
ulus. What if there are numerous patterns in a picture? As analyzed in
Wang and Terman (1997), for a fixed set of parameters, the LEGION net-
work exhibits a fixed capacity in segmentation. If the number of patterns
in an input picture exceeds the capacity, the network separates the picture
into as many segments as the capacity. This observation, together with the
result on the speed of synchronization and desynchronization (Terman &
Wang, 1995; Wang & Terman, 1997), suggests that no matter how numer-
ous patterns are in the input, one needs to wait for at most as many cycles
as the capacity before connectedness can be correctly detected. With any
capacity greater than 1, the connectedness predicate of equation 1 is not
affected when numerous patterns appear in the input, because it is an as-
sertion of whether the figure contains just one pattern. Thus, we obtain an
upper bound on how long the system takes to compute the connectedness
predicate. We emphasize that this detection of connectedness is analytically
established, regardless of specific shapes, sizes, or arrangements of patterns
in a picture.

Connectedness is not only computationally interesting, but also of funda-
mental significance to perception. It is one of the basic perceptual grouping
principles (Rock & Palmer, 1990). According to Palmer and Rock (1994),
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Figure 3: Three pairs of stimuli used in Chen’s experiments (adapted from Chen,
1982).

connectedness accounts for the first-level organization. Furthermore, based
on a series of psychophysical experiments Chen (1982, 1989) observed that
the human visual system is sensitive to topological properties of stimuli,
and topological perception constitutes a basic and early part of perceptual
organization. Figure 3 illustrates a typical experiment with three pairs of
stimuli, which manifest topological perception. Chen found that humans
are more accurate in discriminating the annulus-disk pair under rapid dis-
play conditions. Note that the pairs in Figures 3A and 3B are topologically
equivalent, whereas the annulus-disk pair is topologically distinct. Based
on the difficulty of neural networks on connectedness, he challenged that
topological perception remains a mystery for current neural network mod-
els (Chen, 1989).

Given that all six patterns in Figure 3 are connected, connectedness alone
cannot explain the experimental result. However, we observe that although
every pattern has an open “outside,” only the annulus has an inside hole.
With this observation, we can assume that a hole is a perceptually distinct
pattern. Thus, the annulus consists of two connected patterns (or three, if
one considers the open outside as a separate region), whereas the other five
stimuli contain one pattern. When the stimuli in Figure 3 are presented to
a LEGION network, all of them result in one segment, except for the annu-
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lus that results in two segments.2 The qualitative difference in the number
of segmented patterns emerging from LEGION provides a foundation for
explaining topological perception. Our explanation applies equally well to
cases involving more than one hole (Chen, 1990).

The fact that LEGION exhibits a fixed segmentation capacity results in
the following novel and testable prediction: topology-based discrimination
occurs only up to a certain number of holes. This prediction differs from that
of Chen’s (1990) topological hypothesis, rooted in mathematical topology.

To conclude, we have found a solution to the problem of detecting con-
nectedness. The solution is given by a class of neural oscillator networks,
which differ fundamentally from layered perceptrons. These networks are
a kind of recurrent neural network and a dynamical system due to their
continuous-time definitions. As such, oscillators in a network are effectively
of unbounded order, which provides a necessary means to address the prob-
lem of connectedness. Furthermore, with their ability to exhibit sensitivity
to topological structure, these oscillator networks provide a foundation for
explaining psychophysical data of topological perception, and therefore
have answered another challenge to neural networks. With their success in
solving these difficult problems as well as their unique capability in scene
analysis (Wang & Terman, 1997) and biological plausibility (Singer & Gray,
1995), oscillator networks may suggest a promising direction for future re-
search in neural computation.
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