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Emergent Synchrony in Locally
Coupled Neural Oscillators

DeLiang Wang, Member, IEEE

Abstract—The discovery of long range synchronous oscillations
in the visual cortex has triggered much interest in understanding
the underlying neural mechanisms and in exploring possible
applications of neural oscillations. Many neural meodels thus
proposed end up relying on global connections, leading to the
question of whether lateral connections alone can produce remote
synchronization. With a formulation different from frequently
used phase models, we find that locally coupled neural oscillators
can yield global synchrony. The model employs a previously sug-
gested mechanism that the efficacy of the connections is allowed
to change on a fast time scale. Based on the known connectivity
of the visual cortex, the model outputs closely resemble the
experimental findings. Furthermore, we illustrate the potential of
locally connected oscillator networks in perceptual grouping and
pattern segmentation, which seems missing in globally connected
ones.

1. INTRODUCTION

fundamental aspect of perception is to bind spatially sep-

arate sensory features to form coherent objects, essential
for object identification, segmentation of different objects, and
figure/ground segregation. Theoretical considerations point to
the temporal correlation of feature detectors as a binding
mechanism [1]-[3]. The temporal correlation theory [1] as-
serts that in the brain remote cells coding different sensory
features are bound together if their temporal activities (such as
firing patterns) show strong correlation. Thus, an object may
be analyzed and represented by cell groups across different
brain regions, generally consistent with known neurobiological
findings [4]. As shown in von der Malsburg and Schneider
[3], neural oscillations provide a natural way of implementing
temporal correlation, whereby synchronized oscillators form
an oscillator group to represent the common object, and
groups desynchronized from each other represent different
objects. More recently it was demonstrated that the cat visual
cortex exhibits 40-60 Hz stimulus-dependent oscillations, and
synchronization exists in spatially remote columns (up to
7 mm) which reflects global stimulus properties [5], [6].
Later experiments further show that phase-locking can occur
between the striate cortex and the extrastriate cortex [7],
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between the two striate cortices of the two brain hemispheres
[8], and across the sensorimotor cortex [9].

Since the discovery of stimulus-driven oscillations and long-
range synchronization in the visual cortex, many theoretical at-
tempts have been made to interpret the phenomenon of global
phase locking with no phase shift (to be called phase locking
hereafter) [10]-[14]. Others have employed computational
characteristics of temporal oscillations for solving problems
of pattern segmentation and figure/ground segregation [3],
[15]-[18], and associative memory [19], [20]. Most of these
models rely on a globally connected oscillator network to reach
synchronization (phase entrainment) across the network. A
frequently used scheme is the phase model [11], {12], [15]
which represents each oscillator by a sole phase variable and
describes mutual coupling by an odd periodic function such as
sine. The simplest form of the phase model can be defined as

do; .
7 =wi+;sm(6‘j -0, (1)

where 6; is the phase of oscillator i and w; represents the
internal frequency and/or the external input. Characteristics of
the systems of coupled phase models have been extensively
analyzed in mathematics and theoretical physics (known as
the X-Y models) literature [21]-[26]. While global coupling
readily yields phase locking, a system with only local coupling
does not seem to be able to generate global synchrony in the
presence of noise.

Although Sporns et al. [10] and Chawanya et al. [14] used
local connections in simulating the experimental data, their
simulations only demonstrated correlation of a few oscillators
and their models do not seem to be capable of producing
long-range synchrony. An exception is the model by Konig
and Schillen [13] who simulated global synchrony with local
connections. Their model is based on delays between an
excitatory unit and an inhibitory unit to generate oscillations.
In particular, the model requires an assumption that the delay
from the excitatory unit of an oscillator X to the inhibitory unit
of X is on the same order as the delay between the coupled
oscillators, namely the delay from the excitatory unit of X to
the inhibitory units of all local oscillators that X projects to.

We consider it critically important to form synchrony using
only local connections, to support useful computations, partic-
ularly pattern segmentation, by neural oscillations. The reason
is that long-range, all-to-all connections lose geometrical rela-
tionships among oscillators, important for perceptual grouping,
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Fig. 1. (a) Basic oscillator model formed by a feedback loop between an
excitatory unit z; and an inhibitory unit ;. o and § are mutual connection
strengths. (b) A chain of N oscillators. Small triangles indicate excitatory
connections, and small circles inhibitory connections.

thus leading to indiscriminate synchronization. This point will
be emphasized in Section IV. This paper reports a new model
that can demonstrate stable long-range synchrony based on
only local coupling in a network of neural oscillators. Based
on plausible neural mechanisms, we use the model to simulate
the experimental data of synchronous oscillations in the visual
cortex. Also, we illustrate how such a network may be used
to solve the engineering problem of pattern segmentation. A
preliminary version of this work has been presented previously
[271.

II. MODEL DESCRIPTION

As the building block, the model of a single oscillator is
defined in the simplest form as a feedback loop between an
excitatory unit and an inhibitory unit [Fig. 1(a)]

dx;
= it ge(m - Byt Sit Litp) ()
dy;
d—yt = — vy + gy(az;) (2b)
1
gr(v) = ,r € {z,y} (20

T+ exp—(v — 6.)/T]

where o and 3 are positive parameters describing the coupling
between the two units. Adding an inhibitory feedback to the
inhibitory unit as in [17] and [19] does not seem to change
the qualitative behavior. S; represents the inputs from other
oscillators and I; represents external stimulation. A is a decay
parameter, and p denotes the amplitude of a Gaussian noise
term. gr, ) is a sigmoid gain function with threshold f,., where
r € {x,y}, and parameter 7.

Equation (2) is essentially a simplification of the system
proposed by Wilson and Cowan [28], and it has been shown
that the system produces oscillations within a wide range
of parameters [19], [28], [29]. Fig. 2 shows a typical limit
cycle drawn on the z-y plane, as exhibited by a single
oscillator. The two nullclines split the z-y plane into four
regions. Within each region, dz/dt and dy/dt have unique
signs. For example, dz/di <0 and dy/dt <0 in the upper-
left region (where the starting point lies in). Thus, both = and
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Fig. 2. Nuliclines and limit cycle trajectory of a single oscillator as shown in
the phase plane. The z-nullcline (dz/dt = 0) is shown by the dashed curve
and the y-nullcline (dy/dt = 0) is shown by the dotted curve. The oscillator
started from a randomly generated point, the end point near (0.3, 0.5), and it
quickly fell in the trajectory of a limit cycle. The parameters for this simulation
are a = 0.3.b=25,r =0.01,6, =0.2,6, =0.15,T = 0.025,1 = 1.0,
and I = 0.2. 2000 integration steps.

y decrease in this region until the trajectory intersects with
the z-nullcline. After the intersection, the trajectory moves
into the lower-left region where dz/dt >0 and thus z starts
to increase. Following this type of qualitative analysis, one
can see why (2) gives rise to oscillations. As in the following
simulations, the equations were numerically solved with the
simple Fuler method, where At = 0.01. The results were
also confirmed using the fourth-order Runge-Kutta method.
The oscillator model can be biologically interpreted as a mean
field approximation to a network of excitatory and inhibitory
neurons [10], [30], [31].

To see the detailed behavior of an isolated single oscillator,
Fig. 3 presents the simulation of the system with different
parameters. Fig. 3(a) shows that if the external input is very
small, the oscillator will be silent; but if the input is very
high, the system reaches a saturation point. Oscillations (limit
cycles) occur between the two extremes. In other words,
oscillations are driven by input, as opposed to the phase model
where oscillation is built into the system. Fig. 3(b) shows
that ~ controls the frequency of oscillations, and Fig. 3(c)
demonstrates that o has a major influence on the amplitude
of oscillations.

Weak coupling between oscillators (S; is relatively small)
does not disrupt the oscillatory behaviors of individual oscil-
lators. To study the properties of a network of oscillators, first
a chain of N oscillators is constructed with only neighboring
coupling between excitatory units, as shown in Fig. 1(b). We
define the coupling as

W(.’L’i_1+$i+1) ifi<i<N
S; =< 2Wzy ifi=1 3)
2Warn_1 ifi=N

where W is a connection weight. Note that the weights
connecting to the two end oscillators 1 and N double those
of the connections to the other interior ones in the chain. We
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Fig. 3. Behavior of a single oscillator. (a) Effect of varying external input.
Solid thick, I = 0.0; solid thin, I = 0.2; dashed thick, / = 0.4; dashed
thin, I = 0.8; dotted, I = 1.6. A = 1.0 and @ = 0.2. (b) Effect of
varying A. Solid thick, A = 0.2; solid thin, A\ = 0.4; dashed thick, A = 0.8;
dashed thin, A = 1.6. I = 0.2 and o = 0.2. (c) Effect of varying «. Solid
thick, o = 0.15; solid thin, a = 0.3; dashed thick, a = 0.45; dashed thin,
a = 0.6. I = 0.2 and A = 1.0. The other parameters are the same as in
Fig. 2. 2000 integration steps.

found, remarkably, with uniform external input and random
values for z; and y; (namely random phases) initially, that
the chain with coupling (3) is synchronized after an initial
period of rapid phase transitions.! The synchronization is
absent, however, if the connections to the end oscillators
are equally strong as to the interior ones. Instead we found
phase shifts across the chain. Fig. 4 presents a simulation with
N = 30. Note that there were small phase differences when

! Independent of my study (see [27] and also [32]), Somers and Kopell [33]
demonstrated phase synchrony in a ring of oscillators. Their oscillators differ
from ours in the use of two time scales for the excitatory and inhibitory units
of an oscillators (so-called relaxation oscillators).
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Fig. 4. Synchrony in a chain of oscillators. The input I; = 0.8, and the
initial values z;(0) and y;(0) were randomly generated within the range [0,
0.8]. The height of the ordinate of each oscillator is one. W = 0.6 and
N = 30. The parameters o = 0.2,8, = 0.6, and the remaining ones are
the same as in Fig. 2. 8000 integration steps. Vertical lines are drawn to help
identify phase relations among the oscillators.

TAVANTANVAY

nearly stable limit cycles started to occur, but the differences
diminished as time went on.

A chain of oscillators using the phase model has been
extensively studied for modeling swimming behaviors in fish
[21], [22]. Cohen et al. [21] noted that phase-locking with
no phase shift can be reached with a chain of identical
oscillators. Phase-locking, however, cannot be produced if
there is inhomogeneous input to a chain, contradicting the
experimental conditions of Gray et al. [6], where synchrony
can occur even if two stimulus bars are not connected (more
discussion in the next section). For this reason, the chain model
was considered not proper for modeling the phase locking
experiments [11]. But, as will be clear later, our model does
not suffer from this problem.

Equation (3) is not a necessary condition for phase-locking.
Let us call an oscillator active if it receives an external
stimulus. We observed that in a system defined by (2), as long
as the overall (sum of) weights of the connections converging
on every active oscillator from all other active oscillators are
kept constant, phase-locking occurs. This condition is called
the equal weight condition. Equation (3) is a special case of
this condition. It is easy to show that without noise (p = 0)
homogeneous inputs lead to the solution of synchronized
oscillations to (2). When the system is in synchrony, z; = z;,
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fori,j = 1,---, N. With the equal weight condition, we have
S; = S, and thus dz;/dt = dz;/dt, and dy;/dt = dy;/dt,
for i,5 = 1,---,N. Therefore, the system will keep the
synchrony in its evolution. We are presently unable to prove
the stability of the synchronized solution. Extensive numerical
simulations have been conducted however, and we found that
the system is stable with respect to perturbations by noise
once it reaches synchronous oscillations.? Intuitively, positive
coupling between neighboring oscillators serves to drive the
oscillators close to each other in phase and it can also correct
small discrepancies among the phases of the oscillators. We
have tested one dimensional chains of up to 256 oscillators and
two dimensional grids of up to 100 by 100, and synchrony in
such systems is stable. So even the conclusion concerning long
range synchrony might not be established when the size of the
network tends to infinity, the significance of the system studied
here does not vanish because almost all practical applications
of oscillator networks, such as image analysis (see Section
IV), require only limited sizes.

The equal weight condition is easily achieved if one allows
connection weights to be dynamically modified on a fast
time scale, an idea first introduced by von der Malsburg [1].
In this scheme, there is a pair of connection weights from
oscillator j to i, one permanent T;;, and another dynamic
J;; (so called Malsburg synapses, see [35]). Permanent links
reflect the hardwired structure of a network, while dynamic
links quickly change from time to time. In computations,
though, only dynamic links formed on the basis of permanent
links play an effective role. The equal weight condition
can be naturally realized by a modification rule of dynamic
links which combines a Hebbian rule [36] that emphasizes
coactivation of oscillators 7 and j and a normalization of all
incoming connections to an oscillator. More specifically, it can
be implemented by a two-step procedure: First update dynamic
links and then normalization

AJi]' = 6szh($1,)h($]) (4&)
Jij =v(Jij + AJij)/ {5 + Z(Jzk + AJik)] (4b)

k

where § and ~ are positive parameters, and function h(z)
measures whether x is active. It is here simply defined as
h(z) = 1 if (z) is greater than a constant and h(z) = 0
otherwise, where the angular bracket (z) stands for temporal
averaging of the activity z.e(e < 1) is introduced to prevent
division by zero. Note that weight normalization of this form
is commonly used in neural network models for competitive
learning [37], [38].

2We note that this result appears in contradiction with the well-known
theorem of Mermin and Wagner [34] in statistical mechanics. The theorem
states that no long-range order (synchrony) exists in one- or two-dimensional
isotropic Heisenberg models (X-Y models). The fact that our system (2) is not
an equilibrium statistical mechanical system and it is not isotropic (see Figs. 2
and 3) makes it not subject to the theorem. On the other hand, sinusoidal
oscillators, such as the one defined in (1), tend to be isotropic and are probably
subject to the theorem. This might account for the qualitative difference
between nonsinusoidal and sinusoidal oscillators. (Kopell and Somers [33]
have also realized the qualitative difference between sinusoidal and relaxation
oscillators). The author is indebted to Drs. J. Cheyes and C. Jayaprakash who
assured him of this observation.
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With introduction of fast changing synapses, the equal
weight condition in (3) can now be reached by dynamics in
(4) from a natural condition S; = T(x;—1 +z;01),1 <i <N,
and 2o = zTyy1 = O defined for permanent links, where
T is the strength of every permanent link. In other words,
the same permanent link is established for only neighboring
oscillators, and there is no permanent connection beyond
nearest neighbors. Because of this, dynamic links can be
established for only neighboring oscillators according to (4a).
Since the entire chain is stimulated, h(x;) = 1 for1 <7 < N.
Following (4), after a very brief beginning period, J;; =y /2
if oscillators i and j are nearest neighbors and i # 1 or N.
Additionally, Ji2 = Jn,n-1 = 7. This connection pattern
of dynamic (effective) links is equivalent to (3) if one lets
W = v/2.

It should be obvious that the result concerning global
synchrony extends to oscillator networks of higher dimensions
than one—dimensional (1-D). A prototype of (two—dimensional
(2-D) network is illustrated in the next section. Also, the
result is established for lateral connections beyond nearest
neighbors. Indeed, more extensive connections can speed up
the synchronization process. In a sense, synchrony in fully
connected networks is a special case of our result based on
local coupling.

III. MODELING CORTICAL OSCILLATIONS

With the above analysis, we now simulate the experiments
of Gray et al. [6] with a two-dimensional layer of 10 x 24
oscillators. The oscillator layer is constructed such that each
oscillator laterally connects to its eight nearest neighbors, 16
second nearest neighbors, and 24 third nearest neighbors. Each
oscillator is assumed to represent a single distinct receptive
field. The permanent coupling strengths are isotropic and fall
off with distance. This kind of lateral connections is present in
the primary visual cortex in the form of horizontal connections
[39]. Proper dynamic connections are formed according to (4).
Following the experimental configurations, Fig. 5 presents the
model response to two light bars each corresponding to 2x7
oscillators separated by zero, two, and four oscillator positions.
Oscillators under the bars were uniformly stimulated while
other oscillators received no input. Cross-correlations were
computed for two oscillators within a bar and between the bars
and then normalized for each trial.> Our simulation results are
presented in the similar format as used by Konig and Schillen
[13], which illustrates the results in a way readily comparable
with the corresponding experimental results. The upper panels
of Fig. 5 show stimulus configurations, and the lower panels
present the correlograms. The cross-correlations within a bar
(dashed lines) are compared to those between bars (solid
lines). When two bars formed a single long bar {Fig. 5(a)],
the between-bar correlation was as good as the within-bar
correlation, showing that phase-locking was reached across
the entire long bar. When two bars were separated by two
oscillator positions, the between-bar correlation is a little
weaker than the within-bar correlation, but is still significant.

3The cross correlation C(7) between two time functions () and x2(t)
is C(1) = (x1(t)x2(t + 7).
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Fig. 5. Cross-correlation within and between two bars in a two-dimensional layer of locally coupled oscillators. The ratio of the coupling strengths of nearest,
second nearest, and third nearest neighbors is 2:1.6:1, respectively. The overall incoming connection strength for each oscillator was normalized to 1.25. (a)
The two bars form a single long bar. (b) The two bars are separated by two oscillator positions. (c) The two bars are separated by 4 positions. The dashed
lines are the normalized cross-correlation within (1-2, 3-4) and the solid lines between (1-3) the two bars. The average of 10 simulations is shown as in
the experiments of Gray et al. [6]. The oscillators under the bars received external input I; = 0.8, and the remaining ones received no external input. The
initial values z;(0) and y;(0) were randomly generated within the range [0, 0.5]. The rest of the parameters are the same as in Fig. 4. Cross-correlations

were computed for a time interval of 10000 integration steps after omitting the initial 3000 steps.

The correlations in Fig. 5(b), however, are weaker than in
Fig. 5(a), because the configuration in Fig. 5(b) took longer
to reach phase-locking due to weaker links between the two
bars. All these results well match the experimental data [6].
In Fig. 5(c), however, the between-bar correlation is minimal
while the within-bar correlation is almost perfect, showing that
phase-locking was readily reached within each bar but there
was no phase relationship between the two bars. Note that, in
this case, there was no direct link between the two bars. The
simulation results demonstrate that the visual cortex with its
own lateral (horizontal) connections is capable of producing
phase-locking of stimulus-driven oscillations, without resort to
a global phase coordinator [11], all-to-all connections [12}, or
fixed phase relations among oscillators [13].

In terms of the oscillator activities, the similar pattern of
Fig. 4 occurred in the two-dimensional case, i.e., a period
of rapid transitions appeared in the beginning and it then
gave way to stable oscillations with phase locking. The con-
duction delays between oscillators have been neglected in
the above modeling (there is always one discretization step
delay in numerical integration), because the delays resulting
from neighboring projections are generally much smaller than
the periods of the oscillators. Introducing some delays in the
horizontal connections does not necessarily yield phase shifts,
as one might expect, since neighboring oscillators are mutually
connected and they receive external input simultaneously.
Our preliminary observations show that up to 0.5 ms delay
(assuming 40 Hz oscillations) between neighboring oscilla-
tors does not prevent the chain from reaching synchronous
oscillations.

IV. WHY LocAL CONNECTIONS?

Temporal correlation promises to provide a conceptual
framework for object segmentation and figure/ground segre-
gation [1], [3], [15]-[18], a tremendous problem facing the
current technology of general pattern recognition [40]. There
is an outstanding obstacle to this idea, however, if synchrony
can only be produced with long-range connections as in
associative memory models or with a global phase coordinator
(they are computationally equivalent). A network with long-
range connections is dimensionless, and loses the critical
information of geometry. Thus it would lead to indiscriminate
synchronization among all object features, contrary to Gestalt
laws of perceptual grouping that emphasizes spatial and
temporal relationships of the objects [41], [42]. This point
can be clearly illustrated in Fig. 6(a), where two objects,
a desk lamp and a cup, are placed on a two-dimensional
15 x 15 grid. One can easily segment them solely on the
basis of connectedness, which turns out to be one of the most
important Gestalt grouping principles [42]. If the oscillators
on the grid are fully connected, however, there would be
no way to segment the two, since an active oscillator, say,
triggered by the cup image, projects indiscriminately to the
other oscillators activated by the cup as well as the ones
activated by the desk lamp. This is the case even we take into
account the orientation sensitivity, so that only the oscillators
triggered by the same orientation are fully connected as used
in [12] and [15].

We believe that the mechanism elucidated here provides
a way out of this predicament. Sensory segmentation can
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Fig. 6. Pattern segmentation based on local coupling of neural oscillators.
() The two images, representing a “cup” and a “desk lamp,” are presented to
a 15 x 15 matrix of oscillators with nearest neighbor connections (See also
[38]). (b) A snapshot of the activities of the oscillator grid at the beginning
of dynamic evolution. (c). A snapshot of the activities of the oscillator matrix
several cycles after the beginning. (d) Another snapshot taken shortly after (c)
In these displays, the z activity of an oscillator is denoted by the radius of the
corresponding circle, and only the oscillators with nonzero activity are shown.
(e) The upper trace shows the combined temporal activities of the oscillators
representing the cup image, and the lower trace shows those representing the
desk lamp image. The height of each ordinate is one. Stimulated oscillators
received external input I; = 0.7, and J; = 0 for the remaining ones. The
initial values x;(0) and y;(0) were randomly generated within the range [0,
0.8]. The parameters for a single oscillator are the same as in Fig. 2 except
that o = 0.6; 6, = 0.7. The overall incoming connection strength for each
oscillator was normalized to 1.5. 7000 integration steps.

now be accomplished based on general architectures with
connections only in neighboring units. The two-dimensional
matrix of Fig. 5 can readily serve for segmentation based
on connectedness and proximity, known to be essential for
perceptual grouping. Let us demonstrate it by solving the
segmentation problem of Fig. 6(a). Each cross point in the
grid is represented by an oscillator defined in Section II, and
each oscillator is only connected to its four nearest neighbors
except boundary ones where we assume no wrap-around. The
objects are presented to the model simply by setting the
inputs to the oscillators covered by the objects to a high
value. Thus, the stimulated oscillators are activated, while
the others are inactive. The phases of the activated oscillators
were initially randomized. With the dynamic links in place, the

[EEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 6, NO. 4, JULY 1995

oscillators belonging to the same connected region are quickly
entrained. That is, the oscillators constituting the cup image
are synchronized, and the same is true for those constituting
the desk lamp image. But since there is no interconnections
between the two objects, their oscillations are not correlated.
The rest of Fig. 6 shows the simulation results. Fig. 6(b)
shows a snapshot (instant activity) of the oscillator network
shortly after the images were applied to the network. As is
clear from the figure, the phases of the oscillators were fairly
random. But, just a few cycles later, the oscillators representing
each object were synchronized, which can be seen by the
same amplitudes of oscillations exhibited by those oscillators.
Fig. 6(c) and 6(d) show two other snapshots after synchrony
across each image was established, where in Fig. 6(c) the desk
lamp image dominates and in Fig. 6(d) the cup dominates. The
entire temporal process of reaching synchrony within each
object is shown in Fig. 6(e), where the two traces represent
the combined oscillatory activities of the oscillators belonging
to the two objects respectively. The synchronized oscillations
within each object are clearly shown just a few cycles after
the beginning of dynamic evolution.

In the above simulation, no attempt was made to desyn-
chronize the oscillators belonging to different objects, which
should be included in a full system of pattern segmentation.
We can achieve desynchronization by introducing a global
inhibitor that receives inputs from the entire network and
inhibits back. Equivalently, the global inhibitor can be replaced
by long-range weak mutual inhibitions (see [19] for such an
example). Desynchronization among different patterns will be
dealt with in a different paper. It now suffices to mention that
we can separate the phases of several patterns by using a global
inhibitor to an oscillator network discussed in this paper.

V. DISCUSSION

This paper provides a mechanism for reaching emergent
synchrony in a network of oscillators by only local connec-
tions. There are two main parts to this mechanism: 1) a more
detailed, possibly more plausible, oscillator model is used and
2) the dynamic normalization principle (4) to ensure the equal
weight condition for the communication among the oscillators.
Dynamic normalization provides a quantitative procedure for
the idea of dynamic links, which has been argued to be neurally
plausible (see [1] and [35]). Based on this mechanism, the
simulation results of synchronous oscillations in the visual
cortex well match the corresponding experimental results.
We note that the models of Sporns ef al. [10], Konig and
Schillen [13], and Chawanya et al. [14] can also simulate
the experimental results based on local coupling. Our model
differs from Sporns et al. [10] and Chawanya et al. {14]
in that we provide a general mechanism of reaching global
synchronization based on local connections. As stated in the
introduction, the model of Kénig and Schillen [13] relies on
specific delay relations to obtain phase synchronization, while
ours does not.

Perhaps more importantly, we consider that synchronous
oscillations based on local connections represent a significant
step towards solving engineering problems of pattern segmen-
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tation and figure/ground segregation. Although a number of
attempts have been made to use neural oscillations for solving
the problem of sensory segmentation [3], [12], [15], [17], [18],
the progress in general is very limited and does not meet
people’s expectations (see [1]). We think that the lack of a
local mechanism has been one of the major difficulties to be
overcome before neural oscillations can play a significant role
in machine pattern analysis.

The network architecture illustrated in Section IV lays a
ground for a novel approach to neural pattern segmentation.
The permanent connection pattern [T;;’s of (4)] of the network
defines the innate architecture, which is simple and sufficiently
general. Dynamic connections (J;;’s) are formed on the basis
of the permanent connections and current input patterns. Syn-
chronous oscillations make the result of segmentation readily
utilizable—a simple threshold function would do the job. The
neighborhood connectivity pattern preserves the geometrical
structures of the objects. If one allows lateral connections
beyond nearest neighbors or adds more layered structures of
the network, both the capability and the flexibility of pattern
segmentation should be markedly enhanced. These features are
very attractive compared to the traditional approach of image
segmentation, where edge detection is followed by contour
detection and then a process of labeling different regions based
on closed contours, among other heuristics [43], [44]. The
approach offered here directly operates on objects, without the
detour of detecting contours from regions and then forming
regions based on contours, often an ambiguous process.

Of course, pattern segmentation involves many issues other
than the separation of connected regions, such as segmentation
based on depth (see [18] for an interesting handling by
synchronous oscillations), object occlusion, segment inter-
section, and so on. Although its eventual applicability to
pattern segmentation must be judged by future research, the
basic principle of the approach introduced here, namely, the
emergent properties from local communications, will be, we
believe, a fundamental part of a successful system of real-time
image understanding.
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