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Abstract

One of the classical topics in neural networks is winner-take-all (WTA), which has been widely used in unsupervised (competitive)
learning, cortical processing, and attentional control. Owing to global connectivity, WTA networks, however, do not encode spatial relations
in the input, and thus cannot support sensory and perceptual processing where spatial relations are important. We propose a new architecture
that maintains spatial relations between input features. This selection network builds on Locally Excitatory Globally Inhibitory Oscillator
Networks (LEGION) dynamics and slow inhibition. In an input scene with many objects (patterns), the network selects the largest object.
This system can be easily adjusted to select several largest objects, which then alternate in time. We analyze the speed of selection, and
further show that a two-stage selection network gains efficiency by combining selection with parallel removal of noisy regions. The network
is applied to select the most salient object in gray-level images. As a special case, the selection network without local excitation gives rise to a
new form of oscillatory WTA.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Winner-take-all or maximum selector networks consti-
tute a basic and large class of neural networks (see among
others, Didday, 1970; Grossberg, 1976; Amari & Arbib,
1977; Koch & Ullman, 1985; Rumelhart & Zipser, 1986;
Lippmann, 1987; Ermentrout, 1992; Yuille & Geiger,
1995). The WTA network in response to an input pattern
produces only one active neuron with a highest input. The
WTA dynamics is based on mutual inhibition, which can be
implemented either by a global inhibitory unit or by mutual
inhibitory connections. WTA networks have been applied to
a variety of tasks, such as unsupervised (competitive) learn-
ing, pattern recognition, cortical processing, and selective
visual attention.

The candidates in WTA competition are single neurons,
corresponding to local representations. In contrast, the
perceptual environment consists of patterned stimuli,
which correspond to object structures, and objects seem to
be the basic units of perception. Experimental data suggest
that objects act as wholes in competition (Desimone &
Duncan, 1995). Unless one adopts the view of local repre-
sentations, whereby objects are represented by individual
neurons (thegrandmother-cell representation), existing

WTA networks are limited in addressing sensory and
perceptual information processing. This is because, in
distributed representations, each object is represented by
an assembly of neurons encoding various features of the
object, and such representations call for an assembly-level
processing. One of the fundamental debates in neuroscience
is whether objects are represented locally or distributedly.
Here it suffices to point out that local representations face
major theoretical and neurobiological problems (von der
Malsburg, 1981; Abeles, 1991; Singer, 1993).

Take selective visual attention as an example. Roughly
speaking, this refers to the phenomenon that attention is
directed to one object (region) among many in a visual
scene (for recent reviews see Desimone & Duncan, 1995;
Neumann & Sanders, 1996; Egeth & Yantis, 1997). The so-
called spotlight metaphor of attention speaks of a visual
region under the attentional spotlight, the region that corre-
sponds to the winning object. Because selective attention
can be naturally viewed as a competitive process, WTA
has played a major role in neural network theories of selec-
tive visual attention (see among others, Koch & Ullman,
1985; Niebur, Koch & Rosin, 1993; Niebur & Koch,
1996). Although these models exhibit selection due to
WTA, they do not capture object-level selection required
in selective attention as WTA provides only a winningpixel
(or location), not a winningobject. Also, it has been argued
that selection mechanisms are indispensable for complex
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visual computations such as image analysis (Tsotsos, 1995).
Here again, selection must be at the object level in order to
aid image analysis. In fact, it is generally assumed that the
task of grouping pixels into regions or objects is performed
before selective attention is involved (preattentive), by
perceptual organization or Gestalt grouping principles
(Palmer & Rock, 1994; Julesz, 1995; Desimone & Duncan,
1995). This view is consistent with recent claims that visual
attention is surface (region) based (Nakayama, He &
Shimojo, 1995; Mattingley, Davis & Driver, 1997).

It is conceivable that once a winning pixel is selected by
WTA, a winning region may be extracted by some region-
growing or filling-in process from that pixel. In this
approach, a boundary detection mechanism needs to be in
place so that the region growing is bounded to an appropri-
ate region. The detection of closed boundaries in real
images is a non-trivial computational problem. Even with
successful closed boundary detection, objects, as recovered
posteriorly, do notparticipate in the competition process,
but rather pixels do and they would determine the outcome
of object selection. One can imagine a hierarchical or multi-
scale scheme where patches of pixels instead of individual
pixels participate in the competition process so that selec-
tion takes place at a more abstract level.

Recently Terman and Wang proposed a neural architec-
ture for dealing with the problem of perceptual organization
and image segmentation (Wang & Terman, 1995; Terman &
Wang, 1995). They studied a class of locally excitatory
globally inhibitory oscillator networks (LEGION), whereby
the building blocks are relaxation oscillators.LEGION is
based on the representation ofoscillatory correlation,
whereby each object is represented by a synchronized oscil-
lator group corresponding to the object and different objects
in an image are represented by different oscillator groups
which are desynchronized from each other. Oscillatory
correlation is a special form oftemporal correlation
(Milner, 1974; von der Malsburg, 1981). Terman and
Wang (1995) proved that global synchronization with
local coupling is a robust property of relaxation oscillator
networks and further such networks with a global inhibitory
mechanism produce rapid desynchronization among differ-
ent oscillator groups. More recently, the network has been

applied to segmenting gray-level images, giving rise to a
number of major regions and a background comprising the
rest of an image (Wang & Terman, 1997). To our knowl-
edge,LEGION is the only oscillator network that has been
rigorously shown to be capable of both rapid synchroniza-
tion and desynchronization.

In this article, we study object-level selection using
LEGION dynamics in object formation, i.e. the ability to
group similar pixels into an object and segregate dissimilar
regions into different objects. By introducing a new variable
into each relaxation oscillator and a slow inhibitory
mechanism, we show that the resulting network exhibits
object selection. In response to a scene, this new selection
network inhibits all the regions but the largest. If desired,
the system can easily produce several largest objects by
adjusting one parameter. We analyze the time the system
takes to select the largest object, and based on this analysis
we argue that the stage of perceptual organization, as
performed byLEGION for example, is essential for efficient
image analysis. A two-stage architecture is given that
combines aLEGION layer and the selection layer, consis-
tent with multistage theories of visual perception. Our inte-
grated network is applied to identify the most salient regions
in gray-level images. Finally, we give a new form of oscil-
latory WTA as a special case of the selection network.

2. Model description

We first describe the network architecture for object
selection, which is called theselection network. Fig. 1
shows a typical 2-D selection network, with the simplest
form of local connectivity; an oscillator is coupled only
with its four immediate neighbors except on the boundaries
where no wrap-around is used. In addition to the local
connectivity, there are two global inhibitors, denoted byzf

andzs for fast andslow inhibitors, respectively. Each inhi-
bitor receives excitation from every oscillator of the 2-D
grid and in turn inhibits each oscillator.

The building block of the selection network is a single
oscillatori, which is defined as a feedback loop between an
excitatory elementxi and an inhibitory elementyi:

_xi � 3xi 2 x3
i 1 2 2 yi 1 IiH�ri 2 Czs�1 Si 1 r �1a�

_yi � 1�a�1 1 tanh�xi =b��2 yi� �1b�
whereIi represents external stimulation to the oscillator, and
H stands for the Heaviside function, defined asH�v� � 1 if
v $ 0 andH�v� � 0 if v , 0. Within the Heaviside function,
the variableri, to be defined later, indicates the size of the
synchronized oscillator group that containsi at a particular
time, andC is a system parameter.Si represents the overall
input from other oscillators in the network. The parameterr
denotes the amplitude of Gaussian noise, which is intro-
duced to test the robustness of the system and to assist in
segregating different patterns. We note that the product of
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Fig. 1. Diagram of a 2-D selection network. An oscillator is indicated by an
open circle, which connects with its four nearest neighbors with no wrap-
around on the boundary. Two global inhibitors are indicated by the filled
circles, and they connect mutually with each oscillator of the network.



external stimulation and the Heaviside function may be
replaced by a sum, the details of which can be found in
Wang and Terman, (1997, the technical report version in
particular) who discussed a similar replacement in a differ-
ent context.

The parameter1 is chosen to be a small positive
number. Thus, if we ignore coupling and noise and
set I to a constant, Eq. (1) defines a typical relaxation
oscillator, similar to the van der Pol oscillator (van der
Pol, 1926). The small parameter1 induces two time
scales: a fast one dictated by thex variable and a
slow one by they variable. Thex-nullcline of Eq. (1)
is a cubic and they-nullcline is a sigmoid. IfI . 0 and
H � 1, these nullclines intersect only at a point along
the middle branch of the cubic withb small (see Fig.
2(A)). In this case, the oscillator produces stable oscil-
lations for all sufficiently small values of1 , and it is

referred to asenabled. The periodic orbit alternates
between silent and active phases of near steady-state
behavior. As shown in Fig. 2(A), the silent and the
active phases correspond to the left branch (LB) and
the right branch (RB) of the cubic, respectively. The
transitions between the two phases take place on the
fast time scale, and they are thus referred to asjumping.
The parametera determines the ratio of the times the
periodic solution spends in these two phases: a largera
results in a relatively shorter time in the active phase.
In contrast, if I·H , 0 the two nullclines of Eq. (1)
intersect at a stable fixed point,PI, along the left branch
of the cubic (see Fig. 2(B)), and no oscillation occurs.
In this case, the oscillator is referred to asexcitable,
meaning that it can be induced to oscillate by excitatory
stimulation. We call an oscillatorstimulated if I . 0,
and unstimulated if I , 0. The dependency onI to
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Fig. 2. Nullclines and trajectories of a single oscillator. (A) Trajectory of an enabled oscillator. The limit cycle trajectory is shown with a bold curve, and its
direction of motion is indicated by arrowheads. LB and RB denote the left branch and the right branch of the cubic, respectively, and LK denotes the leftknee of
the cubic. (B) Trajectory of an excitable oscillator. The oscillator approaches the stable fixed pointPI.



oscillate makes the oscillatorstimulus-dependent. The
parameterb controls the steepness of the sigmoid func-
tion, and is chosen to be small so that the sigmoid is
close to a binary function (see Fig. 2).

Except for the introduction of the Heaviside function, Eq.
(1) is the same as defined in the Terman and Wang oscillator
model (Terman & Wang, 1995). It is this Heaviside term
that allows the network to exhibit object selection. The
coupling termSi in Eq. (1a) is given by

Si �
X

k[N�i�
WikH�xk 2 ux�2 WzH�zf 2 uz� �2�

whereWik is the connection weight from the oscillatork to
oscillator i. N(i), called the neighborhood ofi, is the set of
neighboring oscillators that connect toi. For the 2-D grid
shown in Fig. 1,N(i) are four nearest neighbors ofi with no
boundary wrap-around. The parameterux is a threshold
above which an oscillator can affect others in the network.
Its value lies between LB and RB so thatxi . ux when
oscillator i is on RB andxi , ux when i is on LB. Wz is
the weight of inhibition from the fast inhibitorzf, whose
activity is defined as

_zf � f
X

k

H�xk 2 uz�2 zf

 !
�3�

wheref determines the rate at which the inhibitor reacts to
stimulation, and it is chosen to be on the order of 1 resulting
in fast dynamics1. u z is another threshold, and likeu x it is
chosen between LB and RB. We setu z . u x and 1. u z . 0
(see Terman and Wang, 1995, for the justification in choos-
ing the threshold). It is clear from Eq. (3) thatzf approaches
the number of oscillators in the active phase on the fast time
scale.

In the following implementation connection weights to an
oscillator are assumed to be normalized according to the
mechanism of dynamic normalization (Wang, 1995).
Dynamic normalization ensures that the weights of all
connections to any stimulated oscillator quickly settle to a
constant,WT. Wang and Terman (1997) provided differen-
tial equations to realize such normalization. It is worth
noting, however, that weight normalization is not a neces-
sary condition for LEGION to work (Terman & Wang,
1995). Normalized weights serve the useful purpose of
improving the quality of synchronization.

Coming back to the Heaviside term in Eq. (1a),ri is
defined as

_r i � l�zf 2 ri�2H�xi 2 ux�v�_zf ; d� �4�
Here the function�v�2 � v if v , 0 and�v�2 � 0 otherwise,
and the window functionv�v;d� � 1 if uvu # d and 0 other-
wise. The window function, within whichd is a small posi-
tive parameter, ensures thatri does not change whenzf

transiently increases or decreases. The parameterl is

chosen on the order of 1. Notice that the rate of change in
zf is used in the definition ofri dynamics. Such a rate change
is easily detected in the nervous system by an onset or offset
detector, and we directly use_zf in Eq. (4) for the sake of
simplicity. It is easy to see from Eq. (4) thatri changes its
value only when both the Heaviside and the window func-
tions are 1. These two conditions together assure that the
oscillator group thati belongs to is in the active phase. More
discussions are given in Section 3 when the network beha-
vior is analyzed. Whenri is ready to change, it approaches,
or reduces to, the value of the fast inhibitor on the fast time
scale whenri . _zf , otherwise it remains unchanged. Thus,ri

records the number of oscillators that are in the active phase
wheni is in the active phase, and for this reasonri is called
the residual potential.

The activity of the slow inhibitor is defined as

_zs � c
X

k

H�xk 2 uzx�2 zs

" #1

2m1zs: �5�

Here the function [v]1 � v if v $ 0 and [v]1 � 0 otherwise.
Both parametersc andm are on the order of 1, which, due to
1 , result in quick rise and slow decay for the slow inhibitor.

Let n be the total number of the oscillators in the network.
It is easy to see from (5) that the maximum value ofzs is n.
At the beginning we want all stimulated oscillators to be
enabled. This is achieved by settingri � C·nso that initially
the Heaviside in Eq. (1a) equals 1 for every oscillator.

3. Model behavior

With the Heaviside in Eq. (1a) set to 1, the system defined
above simplifies to a standard LEGION network with the
fast inhibitor only, which has been extensively analyzed by
Terman and Wang (1995). Let apattern be a connected
region, and ablock be a set of oscillators stimulated by a
pattern. With1 sufficiently small, LEGION exhibits the
mechanism ofselective gating, whereby an enabled oscilla-
tor jumping up to the active phase rapidly recruits a block of
oscillators stimulated by the same pattern, while preventing
others from jumping up. The selective gating mechanism
leads the network to rapidly achieve both synchronization
within each block and desynchronization between different
blocks. Desynchronization between two blocks means that
they are never in the active phase simultaneously. In addi-
tion, the overall time the system takes to achieve both
synchronization and desynchronization is no greater than
m cycles of oscillations, wherem is the number of patterns
in the input image. The analytical results are established
independent of the size and dimensionality of the network,
and extend to lateral connections beyond nearest-neighbor
coupling.

With the Heaviside in Eq. (1a) equal to 0 for an oscillator,
the oscillator is excitable but can be recruited to oscillate by
its neighbors through theSterm in Eq. (1a). However, if the
Heaviside is 0 for an entire block, then the block cannot
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oscillate. This is the mechanism behind object (block)
selection.

Let us assume that each block can synchronize in the first
oscillation cycle. From the analysis in Terman and Wang
(1995), the assumption is achieved by starting all the oscil-
lators on LB only in the zone from the left knee (LK) up to
the lowest LK of all the excited oscillators. In particular, the
y value of LK isI (see Fig. 2(A)). LetWmin � Mini;k[N�i�Wik.
When a single neighbor of an oscillator jumps to RB, with
Wmin . Wz; the minimum positive shift of the nullcline for
the oscillator isWmin 2 Wz. Thus, the zone�I ; I 1 Wmin 2
Wz� satisfies the assumption.

In Eq. (4), the residual potential of oscillatori throughzf

records the number of oscillators that synchronize withi. As
zf changes its activity quickly during the jumping process of
an oscillator block,ri may undesirably reduce its value in the
transient jumping process. Thev function in Eq. (4) serves

to avoid this situation. As each block synchronizes in the
first cycle, the residual potential is the same for all the
oscillators in the same block, andri equals the size of the
block if the block is segmented. The slow inhibitor through
its quick rise and slow decay maintains a level of inhibition
that must be overcome by a block if the block is to oscillate.
The central idea for object selection is that the largest block
sets the level of slow inhibition, which can then be over-
come by that block only. The key is to choose an appropriate
value forC in Eq. (1a).

When the largest block jumps to the active phase,zs

approaches the size of the block, saysM, quickly. zs decays
when the block is on LB. Recently, Linsay and Wang calcu-
lated the time that a block spends on RB and LB in the
singular limit1 ! 0 (Linsay & Wang, 1998). In particular,
the time on LB is tL � ln �IT 1 4�=I �, where
IT � I 1 WT 2 Wz. According to Eq. (5),zs decays to
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Fig. 3. (A) Input scene with five square patterns. The scene is mapped to a 15× 15 selection network. Each pattern is labeled differently in (B). The upper five
traces show the combinedx activities of the five oscillator blocks indicated by their respective labels. These activities are normalized. The lower two traces
show the normalized activities of the two global inhibitors. The simulation corresponds to the period fromt � 0 to 45.



sMexp�2mtL�. Thus, if we setC to

CM � exp�mtL� �6�
then this largest block is just able to jump after it spendstL

on LB. Since during the time when the block is in the silent
phasezs . sM, no other block can jump to the active phase.
As soon as the block jumps to RB, the above dynamics
repeats itself. Thus only the largest block can oscillate,
and all other blocks are prevented from oscillating by the
slow inhibitor. It is noted thatCM in Eq. (6) is independent
of the specific size of the block. It is also noted that, though
the external inputI is factored in Eq. (6) throughtL, CM is
independent of specific pixel intensities in an image for the
following reasons. For a binary image, the external input is
constant for all stimulated oscillators. For a gray-level
image, as implemented in Wang and Terman (1997), the
external input is set to a constant, and in this case intensity
values are embodied in connection weights between

oscillators; the same is true in Section 6 when gray-level
images are addressed. Thus, intensity values of a gray-level
image do not enter Eq. (6). The above two notes together
imply an important property: the parameterCM does not
need to be adjusted with specific input images.

The above straightforward analysis in terms of blocks
does not apply in the context of LEGION, where different
blocks may synchronize because ofrebound, i.e., with the
release of fast inhibition more than one block may jump to
the active phase simultaneously. As described in Wang and
Terman (1997), the LEGION network has a limited segmen-
tation capacity. Taken together, given an arbitrary number
of blocks the system in any cycle can produce at most as
many segments as the capacity, where a segment is a
synchronized oscillator population that desynchronizes
from any other segment. Thus blocks may be arbitrarily
grouped together, andri may have a value corresponding
to a number of blocks. Wang and Terman (1997) refer to
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Fig. 4. (A) Input scene with three patterns. The same scene was used in Terman and Wang (1995). (B) The input scene of (A) is mapped to a 50× 50 selection
network. If and only if a square is entirely covered by the input is the corresponding oscillator considered externally stimulated. (C) The initial snapshot of the
network. (D) A snapshot taken several cycles after the beginning. Only one pattern (mountain) is selected. (E) Two patterns (mountainandtree) are selected
with a reducedC. The two subsequent snapshots are taken several cycles after the beginning.



one-block segments assimple segmentsand others as
congregate segments.

Fortunately, the analysis in terms of blocks applies simi-
larly in terms of segments because each segment is synchro-
nized and to the global inhibitors there is no difference
between a block and a segment. Thus, after each cycle
only the largest segment can oscillate. We claim, based on
LEGION dynamics (Terman & Wang, 1995; Wang &
Terman, 1997), that after each cycle at least one segment
becomes a simple one. It is noted that the largest segment is
at least as large as the largest block. Thus, if the simple
segments separated in each cycle are not the largest block
they will be prevented from oscillating in the future. If the
largest block is separated as a simple segment, it may be
prevented from oscillating temporarily, for it is possible that
congregate segments are larger than the largest block. But at
most by themth cycle, the largest block will be the only
block to oscillate. Thus object selection is guaranteed to be
achieved.

The above process is illustrated in Fig. 3 with a scene
having five square blocks of different sizes. The scene is
mapped to a 15× 15 selection network shown in Fig.
3(A). Each block has a distinct label. The details of the
simulation will be discussed in Section 4; here it suffices
to point out that the setup and the parameter values used in
this simulation are exactly same as given in Section 4 when
discussing Figs. 4 and 5. Fig. 3(B) shows one possible selec-
tion process, where the oscillators corresponding to the
same block are combined in the display. The five upper
traces show the activities of the five blocks, respectively,
and the bottom two traces show the activities of the fast and
the slow inhibitor, respectively. In this case, though the
largest block,B1, is separated in the first cycle, it is tempora-
rily inhibited because the other segment separated in the first
cycle—a congregate segment consisting of the remaining
four blocks—is larger. The congregate segment formed in
the first cycle is further segregated in the next several cycles,
and by the fifth cycle no more active segment is larger than
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Fig. 5. Temporal process of selection. (A) The upper three traces show the activities of the three oscillator blocks indicated by their respective labels. The lower
two traces show the activities of the two global inhibitors. (B) The same display as in (A) but with a reducedC. See Fig. 3 legend for more explanations. Both
simulations correspond to the same period fromt � 0 to 36.



B1. ThusB1 is activated in that cycle, and becomes the only
winning block.

In the competition between blocks, it is possible that large
blocks that are separated already may jump to the active
phase together due to rebound. This intricate situation arises
becausezs may continue decreasing when a small segment is
in the active phase. During the time when the small segment
is on RB, the decrease inzs may be sufficient to allow more
than one block to overcome slow inhibition. Thus one must
be careful when analyzing the speed of selection. This
consideration motivates us to define a non-increasing resi-
dual potential, because otherwise it can undo previous
segmentation and cause a much slower selection process.
With the non-increasing potential, temporary grouping
between segmented blocks cause no harm except that it
lengthens the oscillation cycle somewhat.

As a cycle in the selection process may be longer than that
of a single oscillator, our conclusion is that in at mostO(m)
cycles only the largest block is enabled. This is summarized
in the following proposition.

Proposition 1. The parameters in systems (1)– (5) can be
chosen so that the system selects the largest block inO(m)
cycles of oscillations, wherem is the number of patterns in
the input image.

When C . CM, the above behavior remains the same.
But each cycle is longer, resulting in a slower selection
process. This is because when the largest block arrives at
LK, it cannot jump right away because the slow inhibition is
still too high to overcome. On the contrary, whenC , CM,
more than one block may survive the selection process and
oscillate. This is because when the largest block reaches LK,
only at which it can jump,zs decays to a value smaller than
sM, which may be overcome by another block. Systemati-
cally reducingC can identify the second largest block. How
smallC should be to yield two winning objects depends on
the ratio of the size of the second largest block to that of the
largest one. As a special case, if there are two largest blocks
of the same size, the network with aC value slightly smaller
thanCM will select both blocks, which oscillate desynchro-
nously.

The choice ofm in Eq. (5) also affects the speed of selec-
tion. If m is very small, the system will take a long time to
overcome the slow inhibition triggered by a large congre-
gate segment. In contrast, ifm is very large,CM must be
large and magnify slow inhibition (see Eq. (1a)) by a large
factor. This will lengthen oscillation cycles, because no
block can jump up even when a small block jumps down.

4. Computer simulation

We illustrate how object selection is performed by simu-

lating a 50× 50 selection network. We arbitrarily selected
an input scene with three objects (designated by shape as the
sun, a tree, and amountain) as shown in Fig. 4(A). The
scene is mapped to the network as shown in Fig. 4(B). In
this simulation,N(i) contains four nearest neighbors with no
boundary wrap-around. For a stimulated oscillator,I � 0.2;
otherwise,I � 2 0.02. Eqs. (1)–(5) were solved using the
singular limit method (Linsay & Wang, 1998), which is a
fast numerical method for integrating relaxation oscillator
networks in the singular limit1 ! 0. When using the singu-
lar limit method, the window function in Eq. (4) is not
needed, and neither are the detailed values for the following
parameters:1 , r , b , f , l , c , u x, u z. The following values
were used for the remaining parameters:a � 6.5, Wz �
1.5, WT � 8.0, andm � 0.125. For the above parameters,
CM� 1.6407.2 Thus, we chooseC� 1.64, to be slightly less
than CM. The following simulation results have been
confirmed by using a fourth-order Runge–Kutta method
with 1 � 0.02; the Runge–Kutta method is not used here
because integration of large-scale systems as needed in
Section 6 would be too intensive computationally.

Fig. 4(C) shows the initial instantaneous activity (snap-
shot) of the selection network. In the display, the diameter
of each circle indicates thex activity of the corresponding
oscillator. More specifically, the diameter is proportional to
�x 2 xmin�=�xmax 2 xmin�, wherexmin and xmax indicate the
minimum and the maximum ofx values of all oscillators.
Fig. 4(D) shows a snapshot after the system reaches stable
limit cycles, when the only active block is the one corre-
sponding to themountain—the largest object in the scene.
The oscillators corresponding to the other two objects are
prevented from oscillating by the slow inhibitor. To display
the entire competition process, Fig. 5(A) shows the temporal
evolution of every stimulated oscillator, where the oscilla-
tors belonging to the same block are combined in the
display. The unstimulated oscillators remain excitable for
the entire simulation, and are excluded from the display.
The three upper traces represent the activities of the three
oscillator blocks respectively, and the fourth and the fifth
ones represent the activities of the fast and the slow inhibi-
tors, respectively. It is noted that numerical integration
using the singular limit method makes an oscillator block
appear to be perfectly synchronized and look like a single
oscillator in Fig. 5. The selection process is completed after
just one cycle.

To illustrate the role ofC, the same network is simulated
with C reduced to 0.3. With the same random initial condi-
tions shown in Fig. 4(C), the selection network produces
two winning objects: themountainand thetree. This is
shown in Fig. 4(E), where two snapshots are given after
the system reaches stable limit cycles. The two active blocks
are separated from each other, and thesunblock is inhibited.
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2 Notice that in calculatingIT, I should be 0 instead of 0.2 because once a
block is in the active phase the Heaviside in Eq. (1a) is 0 for its oscillators.



Fig. 5(B) gives the corresponding temporal activities of the
network for the same duration as in Fig. 5(A).

5. LEGION as a preprocessing layer

As stated in Proposition 1, the time complexity of the
selection process isO(m). This complexity implies a very
slow process if there are many objects in a scene. To be sure,
a typical realistic scene does contain many objects due to the

richness and noise of the real world. For example, Fig. 6
shows the same input as Fig. 4(B), with 20% noise added so
that each uncovered box has a 20% chance of being covered
(stimulated). With four nearest-neighbor coupling, Fig. 6
gives rise to hundreds of oscillator blocks. Thus, even
though the selection network can eventually identify the
largest block, it takes a very long time.

As described in Wang and Terman (1997), a LEGION
network with a lateral potential for each oscillator has the
ability to remove small noisy regions. This consideration
and psychophysical theories of preattentive processing
lead us to suggest a two-stage process for object selection.
The first stage corresponds to a LEGION layer, which orga-
nizes the input scene into a number of major regions and a
background that is the rest of the scene. The second stage
corresponds to the selection layer as described in Section 2
(see Fig. 1). Fig. 7 shows the two layer network. The
connections from the LEGION layer to the selection layer
are in a one-to-one correspondence.

More specifically,Si in the selection layer includes a new
termW·H�x̂i 2 ux�; whereW indicates a uniform connection
strength and̂xi indicates thex value of oscillatori in the first
layer. In addition,Ii is set to be high if and only if the
corresponding oscillator in the first layer is enabled. Thus,
the oscillators in the selection layer corresponding to the
background of the input scene will have lowI values.
With the coupling termW·H�x̂i 2 ux�, the second layer
can synchronize with the first layer. Thus, an oscillator
block formed in the first layer transfers to the second one.
As stated in Section 3, lateral connections in the selection
layer have normalized dynamic weights, which are formed
on the basis of synchronization between neighboring oscil-
lators. Given transferred block structures it is straightfor-
ward to form such dynamic weights based on Hebbian
learning. See Wang and Terman (1997) for a specific way
of implementing dynamic normalization. Thus, after a
beginning period, non-zero dynamic connections are estab-
lished only between the oscillators of the same block.

The coupling between the two layers is designed so that
W switches to 0 after the LEGION layer completes its
segmentation process. WithW equal to 0, the selection
layer behaves on its own except for theI term that is stable
by then. Thus, the selection process takes place. Given the
fact that the blocks in the selection layer are already sepa-
rated, one more cycle is sufficient to suppress all except the
largest block. The LEGION layer completes its segmenta-
tion in no greater thanM 1 1 cycles, whereM is the number
of major image regions (Wang & Terman, 1997).3 Thus, in
at mostM 1 2 cycles, there is only one active block in the
selection layer—the one corresponding to the largest object.

A question arises from the above scheme of coupling
between the two layers: how does the selection layer
know when the LEGION layer has completed its segmenta-
tion? As analyzed in Wang and Terman (1997), out ofM 1
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Fig. 6. The input scene of Fig. 4(B) with 20% noise added.

Fig. 7. Diagram of a two-stage selection network. External input is applied
to the LEGION layer. The connections from the LEGION layer to the selec-
tion layer are one-to-one correspondence. See Fig. 2 legend for notation. 3 The technical report in particular contains the details of analysis.



1 cycles for full segmentation, small noisy regions can be
eliminated by LEGION within the first two cycles, and the
remaining cycles (if any) are for segmenting major regions.
The task of segmentation, however, can be performed by the
selection layer equally well. This suggests an alternative
scheme for coordinating the coupling; switch offW after
the first two cycles. The above conclusion on the overall
speed of selection still holds by similar analysis. That is, in
at mostM 1 2 cycles the largest block is the only one active
block in the selection layer.

For input scenes with many insignificant regions, the two-
layer network represents remarkable speedup for object
selection. The speedup comes from the fact that noisy
regions are removedin parallel by the LEGION layer.

Coming back to the scene in Fig. 6, the LEGION layer
segments it into three major regions, corresponding to the
sun, the tree, and themountain, respectively, as well as the
background corresponding to the remaining stimulated
oscillators (see Wang & Terman, 1997). After that, the
selection layer takes one more cycle to select the mountain
region, giving a similar result as Fig. 4(D). The entire
process takes five cycles, four of which are used for segmen-
tation (Wang & Terman, 1997).

6. Gray-level images

When the two-layer selection network is applied to a
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Fig. 8. (A) An MRI image consisting of 257× 257 gray-level pixels (courtesy of N. Shareef). (B) A gray map showing the segmentation result of the image in
(A) by a 257× 257 LEGION layer. (C) A snapshot of the selection layer showing the result of selection. Only one region (upper part of the brain) is selected by
the network. (D) Another MRI image consisting of 257× 257 pixels (courtesy of N. Shareef). (E) A gray map showing the segmentation result of the image in
(D) by a 257× 257 LEGION layer. (F) A snapshot of the selection layer showing the result of selection. Only one region (the brain) is selected by the network.



gray-level image, the LEGION layer segments the image
into a number of major regions, each region triggering an
oscillator block in the selection layer. The blocks thus
formed in the second layer compete with each other, and
the largest one will win the competition and become the
only block selected by the overall network. It is noticed
that the selection layer does not deal with gray-level images
directly, but with oscillatory activity from the LEGION
layer.

To relate the previous study on LEGION (Wang &
Terman, 1997), we use two images that have been processed
by LEGION to illustrate object selection. These are two
MRI (magnetic resonance imaging) images of the human
head. The first one, shown in Fig. 8(A), is a midsagittal
section with 257× 257 gray-level pixels. When presented
to the LEGION layer with a certain parameter setting, the
image is segmented to 21 regions plus a background as
shown in Fig. 8(B) (see Wang & Terman, 1997). In the
figure, we use gray levels to indicate the phases of the
oscillator blocks, resulting in agray map. The background
is indicated by scattered black areas. The salient regions
segmented include two parts of the brain: the upper part
and the brainstem with a part of the spinal cord, parts of
the extracranial tissue, parts of the bone marrow, the neck
part, the chin part, the nose part, and the vertebral segment.
Like the LEGION layer, the selection layer has eight near-
est-neighbor coupling within itself. The layer is integrated
using the singular limit method with the following para-
meter values:g � 6.5, Wz � 0.7, WT � 8.0, andm �
0.125. For these parameter values,CM � 1.6558. Thus, we
chooseC � 1.65. In the selection, we ignore the homoge-
neous background region, which is the largest (see Fig.
8(B)). Fig. 8(C) shows the output of the selection layer.
The only selected region is the upper part of the brain,
which is the largest segment from the LEGION layer.

The second MRI image is shown in Fig. 8(D), which is a
sagittal section through one eye. The image has the same
size as the one in Fig. 8(A). Again, the image is first
segmented by the LEGION layer, yielding 17 regions plus
a background. Fig. 8(E) shows the gray map of the segmen-
ted regions and the background is indicated by scattered
black regions. The salient regions segmented include the

entire brain, the eye, the sinus, parts of the bone marrow,
and parts of the extracranial tissue. The selection layer has
the same configuration and the same parameter values as for
processing the first MRI image. Again, we ignore the homo-
geneous background region. Fig. 8(F) shows the result of
selection. The brain region, which is the largest segment
from the first layer, is selected by the two-layer network.

As discussed in Wang and Terman (1997), different para-
meter settings for the LEGION layer produce different
segmentation results. For example, when the level of global
inhibition is increased, the LEGION layer can further
segment the upper part of the brain (Fig. 8(B)) into the
cerebral cortex, the cerebellum, the callosum/fornix regions
and its surrounding septum (Wang & Terman, 1997).
Regardless of parameter settings in the first layer, the selec-
tion layer works in the same way; it always selects the
largest segment generated by the first layer.

7. WTA as a special case

The selection model described above readily yields a new
WTA network based on oscillatory dynamics. To turn the
selection network of Fig. 1 to a WTA network, the following
modifications are sufficient. First, the lateral connections
between the oscillators are removed, resulting in a group
of oscillators communicating through the two global inhi-
bitors only. Thus,Si � 2WzH�zf 2 uxz�. This architecture is
shown in Fig. 9, and it is a familiar one for WTA (see among
others, Didday, 1970; Amari & Arbib, 1977; Ermentrout,
1992). Second, we let the external input to an oscillator,Ii,
gate the input of the oscillator to the two inhibitors. More
specifically, we define

_zf � f
X

k

IkH�xk 2 uzx�2 zf

 !
�7�

_zs � c
X

k

IkH�xk 2 uzx�2 zs

" #1

2m1zs �8�

Finally, theI term in Eq. (1a) is set to a constant value.
With the above modifications, each oscillator forms its

own block, the size (or saliency) of which corresponds to the
input level to the oscillator. Thus, the analysis in Section 3
applies. In particular, the dynamics for object selection
guarantees that the oscillator with the largest input will
win the competition and become the only active oscillator.
Further, Proposition 1 implies that the time complexity for
the WTA network isO(m), wherem is the number of inputs
or oscillators. It is noted that as each oscillator forms a
unique block, the window function in Eq. (4) is not needed.

8. Discussion

Our model can easily be extended to incorporate a decay
mechanism so that the selection process shifts from one
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Fig. 9. Diagram of an oscillatory WTA network. Each oscillator receives an
external input, and has mutual connections with two global inhibitors.



object to another. The idea of using a decay mechanism was
proposed by Koch and Ullman (1985) for producing atten-
tional shifting. With such mechanism in place, our network
can readily select the second largest object after the largest
one is selected, and the third largest, etc. Thus, it imple-
ments a form of shifting in object selection. This occurs
because slow inhibition decays if the slow inhibitor is not
stimulated by any active block, and eventually the next
largest block can overcome slow inhibition and oscillate.

Object selection studied so far is based on the size of an
object. Obviously size is the only one aspect of object
saliency (Treisman & Gormican, 1988; Desimone &
Duncan, 1995), and it is our intention to use size as a
concrete way of embodying the saliency, In Section 7,
stimulus strength is used as the saliency measure. In general,
saliency includes other measures such as brightness, color,
motion, texture, context, and familiarity. The selection
framework described here may be extended to include
other measures. For example, if motion should be an impor-
tant measure, we can assign moving objects higher magni-
tudes in competition much like what we did for stimulus
input in Section 7. This way, a smaller moving object can
win over a large stationary object.

The architecture of the selection network and the oscilla-
tions used are very similar to the LEGION network, whose
biological plausibility has been discussed at length else-
where (Terman & Wang, 1995; Wang & Terman, 1997).
We shall not repeat these arguments, but merely point out
that both the neural oscillations and the basic network archi-
tecture are consistent with the neurobiological data. In addi-
tion, slow inhibition, which plays an important role in this
work, is frequently used in biologically realistic models
(Wang & Rinzel, 1992; LoFaro, Kopell, Marder & Hooper,
1994; Terman & Lee, 1997).

A WTA network incorporating oscillatory dynamics has
been studied by Ermentrout (1992). In his model, a basic
unit of the network is not intrinsically oscillatory, but can
generate oscillations together with a global inhibitor that
couples with every unit. He observes stationary WTA beha-
vior with fast global inhibition and network oscillations as
inhibition slows down. Unlike his model, our basic unit is an
intrinsic oscillator, which results in very different network
dynamics. In Niebur and Koch (1996), an architecture simi-
lar to that described in Section 7 is used for producing WTA
behavior. In their model, each basic unit is an integrate-and-
fire neuron which resembles an oscillator. WTA is achieved
through strong global inhibition, resulting in that the neuron
with the highest input is the only neuron that generates
spikes. No analysis regarding the rate of competition is
given for either model. The main difference between our
selection network and these two models is that the selection
network incorporates local coupling between the oscillators,
which then leads to organization of the input image and
selection at the object level. To our knowledge, the same
distinction holds with regard to all other WTA models.

Conceptually, besides competition as used in all forms of

WTA dynamics, our selection network includes cooperation
between neighboring oscillators in the network. The coop-
eration between elements that likely form the same object
gives rise to object selection, as opposed to pixel selection.
In other words, the selection network incorporatesboth
competition through global inhibition and cooperation
through local excitation.

Oscillatory correlation is usually used as a mechanism of
binding features into objects in the presence of multiple
objects. Given that object selection usually selects only
one item, one might ask the question, why bother with
oscillatory correlation in the first place? It is true that oscil-
latory correlation as a representation is not needed for repre-
senting theresultof selection, if only one object is selected.
However, the dynamics of our model shows that theprocess
of generating the selection is intimately related to oscilla-
tory correlation. In the process, multiple organizations parti-
cipate in competition, and each organization corresponds to
a synchronized segment. Moreover, the slow inhibitor,
which plays a critical role in object selection, depends on
oscillatory recharge from the winning object in order to
prevent other organizations from being activated. As
noted above, other WTA models have not demonstrated
selection at the object level. Also, as far as we know, no
computational models have addressed object-based selec-
tion systematically. In addition, the flexibility of our
model in selecting more than one object may prove to be
a very useful property, given that it is not a clear-cut
phenomenon that attentional mechanisms select just one
organization (Neumann & Sanders, 1996).

The two-layer selection network (Fig. 7) may provide a
neurocomputational framework for addressing the issues of
selective attention and perceptual organization. The
LEGION layer may be viewed to correspond to the stage
of perceptual organization or preattentive processing. The
psychophysical studies suggest that processing in this stage
is parallel and yields multiple organizations that feed to the
subsequent attentive stage (Mack, Tang, Tuma, Kahn &
Rock, 1992; Trick & Pylyshyn, 1994; Julesz, 1995).
Because of the parallel nature of LEGION, regions or orga-
nizations appear to pop out instantaneously. The properties
of the LEGION layer are consistent with the stage of percep-
tual organization. In particular, the emphasis of LEGION on
emergent synchrony based on local connectivity, which
reflects both connectedness and proximity, is strikingly
similar to a recent theoretical account of perceptual organi-
zation by Palmer and Rock (1994). Their theory attaches
special importance to the so-called uniform connectedness,
and regards the formation of uniform and connected regions
as fundamental.

Computationally, the first layer in the selection network
performs parallel removal of small noisy regions in an
image. Given that the selection layer does not require oscil-
latory input, the LEGION layer may be replaced by alter-
native neural network models for image segmentation (for a
review see Wang & Terman, 1997), such as the model of
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Grossberg and Wyse which combines a boundary contour
module and a feature contour module (Grossberg & Wyse,
1991; Grossberg & Wyse, 1992. For more recent develop-
ments of this approach, including how to treat object occlu-
sion, the reader is referred to Grossberg (1994; 1997) and
Grossberg and McLoughlin (1997). LEGION is chosen so
that our entire selection network is based on the oscillatory
correlation framework.

The selection layer may be viewed to correspond to the
stage of selective attention. It acts on the results of the first
stage, and selects one region based on its saliency from
candidate regions provided by the first stage. That the selec-
tion layer acts directly on regions (surfaces) is well consis-
tent with psychophysical and neuropsychological evidence
suggesting that visual attention is surface-based (Nakayama
et al., 1995; Mattingley et al., 1997). The processing time in
the selection layer is a linear relation to the number of
objects, reminiscent of sequential search. All these features
of the selection network are consistent with the processing
of selective attention, which is thought to be based on
segment-by-segment scrutiny and serial shifting (Treisman,
1988; Julesz, 1995; Neumann and Sanders, 1996). Section 5
demonstrates the utility of a parallel process preceding the
selection in terms of computational complexity. We
consider the general agreement between the model and the
perceptual phenomena very encouraging. However, an in-
depth assessment of the selection network as a model of
selective attention is a topic of future research.
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