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Abstract. A critical problem in neurobiology is to explain how the central nervous system coordinates pattern 
discrimination and locus specificity in learning. This problem is investigated in anuran amphibians who demonstrate 
both locus specificity and pattern discrimination in visual habituation. A neural mechanism is proposed whereby 
neural circuitry for pattern discrimination is shared by a spatial memory system. Such learning processes are argued 
to occur in the medial pallium (MP), the anuran's homolog of mammalian hippocampus. Necessary mapping from 
the shared network to spatial memory is set up by a mechanism that forms topographical connections, with desired 
orientation determined by activity gradient in presynaptic and postsynaptic layers. The model of MP is tested on 
both locus and stimulus specific habituation, which involve short-term as well as long-term synaptic plasticity. 
Successful modeling yields a set of predictions concerning MP organization and learning properties. 

1 Introduction 

Orienting and prey-catching behavior in amphibians 
can be released by an appropriate moving visual stim- 
ulus. This prey-catching behavior is subject to various 
kinds of modulation. In particular, the amplitude of the 
behavior is gradually reduced if the stimulus is repeat- 
edly presented. Interestingly enough, visual habitua- 
tion in toads and frogs exhibits: 

(1) Locus specificity. After habituation of an orienting 
response to a certain stimulus applied at a given lo- 
cation, the animal responds again to the same stimu- 
lus applied at a different visual location (Eikmanns, 
1955; Ewert and Ingle, 1971). As shown in Fig. 1, 
habituation to a stimulus at a particular visual lo- 
cation was obtained by a series of habituation tri- 
als with an inter-trial pause of 1 min for recovery. 
Within each trial, a prey dummy was continuously 
presented until the animal's response diminished. 
A habituation series was terminated if there was no 
response at all during a single trial. After a habitu- 
ation series was completed at a specific visual loca- 
tion, the stimulus was then presented at a different 
location to start a new habituation series. After ha- 
bituation at a specific location, the toad's response 
was facilitated to the same stimulus applied at a 

(2) 

location nasal to the habituation spot, and the habit- 
uation series was prolonged (Fig. tA); whereas the 
animal's response was inhibited at a location tem- 
poral to the habituation spot, and the habituation 
series was shortened (Fig. 1B). Clearly locus speci- 
ficity in anurans involves intraocular interactions. 

Stimulus specificity. Another stimulus given at the 
same locus may "dishabituate" the animal, yield- 
ing a response at a site habituated by a previous 
stimulus. Only certain stimuli can dishabituate a 
previously habituated response. Ewert and Kehl 
(1978) showed that this dishabituation forms a hi- 
erarchy (Fig. 2A), where a stimulus can dishabituate 
the habituated responses of another stimulus if the 
latter is lower in the hierarchy or on the same level 
but to the right. This basic finding was further con- 
firmed and extended by a recent behavioral study 
conducted by Wang and Ewert (1992), who showed 
this dishabituation does not remove the prior habit- 
uation. The dishabituation hierarchy demonstrates 
that the animal has the capacity of discriminating 
similar visual patterns. This capacity distinguishes 
anuran habituation from that of invertebrates, like 
Aplysia (Kandel, 1976), where habituation does not 
seem to be independent of specific patterns used. 
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Fig. 1. Locus specific habituation of prey-catching orienting response in toads. The prey dummy was a 4 ~ x 20 ~ stripe. Five tested visual 
locations, labeled as 1, 2, 3, 4, 5, all lay to the right side of the animal, and corresponded to 30 ~ 45 ~ 60 ~ 90 ~ and 120 ~ angles, respectively. A 
Habituation series conducted from temporal to nasal locations in the order of 5-4-3-2-1. B Habituation series conducted from nasal to temporal 
locations in the order of 1-2-3-4-5. N denotes nasal and T temporal. Abscissa: habituation trial number. Ordinate: cumulated number of 
orienting turns for each trial plotted on the log-scale. Within each series, time runs from left to right (redrawn from Ewert and Ingle, 1971). 

Besides locus and stimulus specificity, the orienting 
behavior in toads and frogs also exhibits other typical 
properties of  habituation as summarized by Thompson 
and Spencer (1966). These include the exponential de- 
crease of  response intensity, spontaneous recovery, and 
both short-term and long-term habituation that last for 
different time periods (for a review see Ewert, 1984; 
Ewert et al., 1992). 

In a model of  toad's visual habituation, Lara and 
Arbib (1985) have attempted to model locus specificity 
by lateral interaction. Probably due to the lack of a 
model of long-term habituation, they were not able to 
simulate habituation series, and they provided only an 
incomplete comparison between their model outputs 
and the experimental data, which do not appear in good 

accord. 
We have previously carried out a series of compu- 

tational studies searching for the visual pathway and 
neural mechanism that underlie pattern discrimination 
and learning in anuran amphibians. In Wang and Arbib 
(1991), we demonstrated that worm pattern discrimi- 
nation can be achieved in the anterior thalamus (AT), 
a group of  AT cells responding with larger intensity 
to stimuli higher in the dishabituation hierarchy. In 
Wang and Arbib (1992), concluding from experimen- 
tal evidence from anatomical, physiological, and le- 
sion studies, we suggest that the medial pallium (MP), 

the homolog of the mammalian hippocampus Cpri- 
mordium hippocampi" by Herrick, 1933), is the brain 
region where habituation and other forms of  learning 
occur. Furthermore, we modeled one MP column, 
as shown in Fig. 2B, which consists of five types of 
neurons, three of  which (MP1, MP2 and MP3) have 
been identified physiologically (Finkenst~idt, 1989) and 
the other two (Pl and P2) were hypothesized. Using 
the MP column model, we successfully simulated de- 
tailed dishabituation relationships leading to the disha- 
bituation hierarchy. In a recent study, we addressed 
both short-term and long-term habituation of  prey- 
catching behavior by two interacting differential equa- 
tions describing synaptic plasticity underlying habitu- 
ation (Wang, 1993). Computer simulations show that 
the parsimonious description of synaptic plasticity can 
explain long-term habituation data over a period of  sev- 
eral weeks. 

The present study builds on the previous work, and 
the earlier models of the visual pathway below telen- 
cephalon serve to provide front-end input to present 
modeling. In particular, we investigate how locus 
specificity and the neural circuitry for pattern discrim- 
ination can be coordinated, given that similar pattern 
discrimination occurs at all visual locations. A straight- 
forward idea would be to duplicate the discrimination 
network for every discernible locus. Two major prob- 
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Fig. 2. A Dishabituation hierarchy for worm stimuli used in 
stimulus-specific habituation. One stimulus can dishabituate all the 
stimuli below it. On the same level the left one can slightly dishabit- 
uate the right one (redrawn from Ewert and Kehl, 1978). B Single 
MP column model. Each cell type is represented by a layer ofn cells. 
Empty triangles denote excitatory, black ones inhibitory, and filled 
ones habituation synapses (redrawn from Wang and Arbib, 1992). 

lems with this idea are its hardware inefficiency due 
to a large amount of duplication, and the potential for 
independent hardware to develop inhomogeneities due 
to idiosyncratic neural plasticity within a locus, leading 
to an undesired asymmetry for different visual loci. It 
appears that different loci sharing the same discrimi- 
nation circuitry is a superior idea. We study how this 
idea might be realized in anuran amphibians, leading 
to a neural model of MP organization. Since locus 
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specificity" involves interactions between different loci, 
simply modeling each locus independently does not 
work. This issue will be addressed when modeling 
the structure of ME As will be clear in Sect. 4, long- 
term synaptic plasticity must be modeled in order to 
simulate habituation series. With a model of synaptic 
plasticity that exhibit both short- and long-term prop- 
erties, we can now quantitatively simulate habituation 
series performed at each visual locus, and provide a full 
comparison with the quantitative experimental data of 
locus specificity. 

2 Neural Organization o f  th e  Medial Pallium 

The medial pallium in anuran amphibians is a large 
neural structure of the "nonolfactory" telencephalon, 
surrounding the telencephalic ventricle. It is the major 
integrative center for all modalities of sensory infor- 
mation. Anatomical studies reveal at least four mor- 
phologically classified cell types, and indicate that this 
region is organized in an orientation vertical to the 
telencephalic ventricle (Hoffman, 1963; Kicliter and 
Ebbesson, 1976; Northcutt and Kicliter, 1980; Neary, 
1990). Neuronal projections exist in directions both 
parallel and perpendicular to the pial surface. All 
anatomical evidence leads us to suggest that the me- 
dial pallium processes information by means of func- 
tional units of vertical columns. One functional ad- 
vantage of such columnar organization is that each 
column can naturally store a set of patterns indepen- 
dently, consistent with locus specificity of learning. 
The present work is only concerned with the MP role 
in visual processing. 

Based on connectional and neuroethological stud- 
ies, Ewert (1987) suggested two neural loops to ex- 
plain prey-catching behavior and its modulation in am- 
phibians. Loop(l)  mediates prey-catching behavior. It 
involves the tectum which is the maj or recipient of reti- 
nal efferents, the lateral anterior thalamic nucleus, the 
striatum, and the thalamic-pretectal region. Loop(2) 
starts with the retina and the tectum which send ax- 
ons to AT and from there to MR which then has a de- 
scending projection to the preoptic region (PO) and 
the hypothalamus (HYP), which in turn send effer- 
ents to the rectum ( re t ina  ~ rec tum -+ A T  --+ M P  -+ 

P O / H Y P  -+ rectum).  Loop(2) is supposed to modu- 
late prey-catching behavior initiated in the tectum. All 
data obtained to date strongly suggest that MP is the 
neural structure where various types of learning oc- 
cur. For stimulus specific habituation, MP modulates 
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Fig. 3. Diagram of the MP model. The P1 layer and the MP2 layer form an independent neural network between AT and MP columns which 
are denoted by dashed line boxes. Arrowheads represent synapses, and arrowheads projecting on connection lines or other arrowheads represent 
presynaptic synapses. See Fig. 2B for detailed types of synapses. 

prey-catching behavior via the PO/HYP pathway, in- 
hibiting tectal activities (Ewert, 1987; Wang and Arbib, 
1992). Physiological recordings have identified three 
types of visually sensitive neurons in MP which exhibit 
spontaneous firing activities (Finkenst~idt, 1989). MP1 
neurons strongly increase, MP3 neurons decrease, and 
MP2 neurons do not alter their discharge rates in re- 
sponse to repetitive stimulation by a visual moving ob- 
ject. 

Functionally, the MP column model (Fig. 2B) pre- 
viously proposed has two main parts: Layer Pl  and 
MP2, based on the cumulative shrinking mechanism, 
convert AT firing activity into a spatial distribution of 
neuronal activities in an MP2 cell group. Cumulative 
shrinking reduces the activity along one direction of a 
neural layer based on the cumulative activity from the 
other direction and normalizes the entire layer. The rest 
of the column builds the memory for visual patterns, 
and implements interactions between the memories of 
different worm-like stimuli underlying the dishabitu- 
ation hierarchy. To exhibit locus specificity, a sep- 
arate memory for each discernible visual locus must 
be present, and thus the second part of the column 
cannot be shared by different loci. However, neural 
computation of the first part may be shared by different 
loci, since it is transient. Because anurans can single 
out one visual target when facing multiple objects si- 

multaneously, possibly on the basis on circuitry in the 
tectum (Didday, 1976), there is no interference due to 
simultaneous use. To simplify discussion, we assume 
that each AT efferent to MP represents one distinct vi- 
sual location. This assumption is supported by the fact 
that AT is organized retinotopically (Montgomery and 
Fite, 1989). 

As shown in Fig. 3, we model the medial pallium as 
an array of columns with a common network consist- 
ing of P1 and MP2 layers (Fig. 2B), called the conver- 
sion network. The conversion network receives inputs 
from all AT neurons that cover the entire visual field. 
Each MP column consists of the MP3, MP1, and P2 
layers, as well as the sole output cell OUT. Each col- 
umn receives a gating input from a corresponding AT 
neuron, signaling a stimulus at a specific visual locus. 
In addition, the MP3 and P2 layers receive in register 
one-to-one inputs from the MP2 layer of the conversion 
network. Therefore, as far as one visual locus is con- 
cerned, the MP column plus the conversion network 
forms the same circuitry as the previous single column 
model of Fig. 2B. 

In the model, as well as in the physiological record- 
ings, MP3 cells decrease and MP1 cells increase their 
spontaneous activities after habituation to a visual stim- 
ulus. To address intercolumnar interactions, we hy- 
pothesize that the MP3 cells of an MP column uni- 
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laterally inhibit the P2 layers of columns to its right 
direction, and the MP1 cells unilaterally inhibit the P2 
layers of columns to its left. To map the model's topog- 
raphy to the visual field, we assume that left columns of 
Fig. 3 correspond to the temporal side of the visual field 
and right columns to the nasal side. Qualitatively, af- 
ter habituation of a specific MP column, columns to its 
right (the nasal direction) are facilitated in response to a 
visual stimulus at their corresponding visual locations 
due to reduced MP3 inhibition from the left direction, 
whereas columns to its left (the temporal direction) 
are inhibited due to increased MP1 inhibition from the 
right direction. Additionally, theMP3 cells ofacolumn 
also unilaterally project to habituation synapses from 
layer MP2 to layer MP3 via presynaptic connections 
to influence the time course of habituation. These ha- 
bituation synapses are subject to habituation based on 
presynaptic stimulation. To reduce intercolumnar con- 
nections, MP3 and MP1 projections can be integrated 
by single interneurons before leaving a column, as in- 
dicated in the figure as a single line. The quantitative 
description is presented in Sect. 4. We include only an 
array of columns instead of an entire two dimensional 
surface because there are no data available regarding 
intercolumnar interactions along the vertical direction. 
At present, one can imagine that the entire MP surface 
is an isolated row of identical MP arrays. 

It is rather strict to require that the MP2 layer of 
the conversion network project in register to the MP3 
and P2 layers of each MP column. A question natu- 
rally arises: how are these topographical connections 
formed during ontogenesis from one layer of neurons 
uniformly to some layers of neuronal columns which 
themselves are organized topographically? In the next 
section, we propose a theory about how these topo- 
graphical maps might be formed in early development. 

3 Formation of Topographical Projections 

It is reasonable to assume that before the formation of 
MP columns, the MP2 layer projects uniformly onto 
the entire surface of MP3 and P2 layers, and each as- 
cending AT fiber innervates a focal area of about the 
same size in the MP2 array. Figure 4A illustrates the 
situation with only MP3 since it is similar with P2. 
Each AT fiber activates its focal area as long as some 
visual stimulus falls in its receptive field. Since differ- 
ent AT fibers are generally activated at different times 
in early visual experience, the entire arrays of MP3 and 
P2 may be broken into independent regions, forming 

A 

M P 3  

B 

~ MP3 

Fig. 4. Formation of MP columns. A An early stage connection 
diagram from MP2 to MP3. B A later stage diagram when the MP3 
layer is broken into subregions. Vertical lines represent AT fibers. 

MP columns (Fig. 4B). This process can be explained 
by a neural coactivation rule, which binds cells within 
each column together due to coactivation by the same 
AT fiber. 

The question remains how to form a topographical 
mapping from the MP2 layer to an MP column from the 
initial all-to-all correspondence of Fig. 4B? The gen- 
eral question of forming topographical (e.g., retinotec- 
tal) maps has been studied by a number of modelers. 
Among others are the arrow model of Hope et a1.(1976), 
the neural activation model of Willshaw and yon der 
Malsburg (1976) and its extension by Amari (1980), 
the chemical marker model of vonder  Malsburg and 
Willshaw (1977), a hybrid of the arrow model and the 
chemical marker model of Overton and Arbib (1982). 
More recently, Kohonen's algorithm of self-organizing 
feature maps (1982) has been applied to form the so- 
called cortical maps which include both position and 
orientation (Durbin and Mitchison, 1990; Obermayer 
et al., 1990). Among them, the model of Willshaw 
and vonder  Malsburg and Amari's extension are the 
only models that are directly realizable by neural oper- 
ations. Both the arrow model and Kohonen's algorithm 
are algorithms, yet to be implemented neuratly. The 
chemical marker model, on the other hand, involves a 
chemical process, like chemoaffinity and diffusion. 

We seek a neurally realizable model that cau ac- 
count for topographical mapping from the MP2 layer 
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to each MP column. In addition, the model requires 
that the topographical mapping from MP2 to all MP 
columns have a single global orientation, say, the left 
end of layer MP2 to the left end of all MP columns 
as drawn in Fig. 4. Several ways have been suggested 
to determine the orientation of topography. Willshaw 
and yon der Malsburg (1976) suggested to have one 
nucleation region with some initially strong connec- 
tions that convey orientation. It was later suggested 
that the initial retinotectal connections provide a rough 
bias towards the desired orientation (vonder Malsburg 
and Willshaw, 1977; Amari, i980). Both suggestions 
rely on initial synaptic connections to determine final 
orientation. It should be clear that ultimate informa- 
tion about orientation must be provided genetically. 
Although these suggestions seem reasonable for map- 
ping one layer to another, it is unnatural to adopt them 
in the present situation, because one MP2 layer needs to 
symmetrically map on multiple columns. The scheme 
of the initial connection bias would require that con- 
nections from the MP2 layer to all MP columns have 
the same bias. But as illustrated in Fig. 4, the pro- 
jections from layer MP2 to the entire surface of MP3 
are likely to be homogeneous at the beginning, so the 
same bias would be unnatural to develop later within 
each column. 

In the following model, we hypothesize that global 
orientation is determined by neural activities in both 
presynaptic and postsynaptic layers, not by synaptic 
connections. More specifically, there is a slight gra- 
dient in firing activities of the MP2 layer, consistent 
with the model of layer MP2 (Wang and Arbib, 1992). 
In addition, there is a slight gradient in MP3 layer of 
each MP column, possibly due to innervation from an 
AT fiber. As demonstrated below, if the direction of 
the activity gradient of a postsynaptic layer is the same 
for all MP columns, the final orientation for all maps 
will be the same. This condition can be assured by 
a simple assumption that all AT fibers have the same 
innervation pattern. Due to the activity gradient, the 
presynaptic end with stronger neuronal activity has the 
best chance to first activate the postsynaptic end with 
stronger neuronal activity. A topographical map can 
thus be first developed between the stronger ends of 
both presynaptic and postsynaptic layers, and the map 
can then extend to the rest of the connections until a 
full topographical map is established. 

Let Wij be the synaptic weight from cell j in an 
array of M presynaptic cells to cell i in an array of N 
postsynaptic cells. Let m,.(j), N~(j) be the membrane 
potential and the output of cell j in the presynaptic 

layer respectively, and m~.(i), Ns(i) those of i in the 
postsynaptic layer. Then, 

-- Lm,.(i, t) + ~ Wi:N,.(j, t) 
dt ./ 

+ Z S ( k - i ) N ~ . ( k , t )  (1) 
k 

where t denotes time, and )~ is the decay constant. 
The second summation represents lateral connections 
within the postsynaptic layer, the even function S(x) 
representing the weights of lateral connections. S(x) 
is positive for small [x[ and negative for large ]x I, ex- 
hibiting the shape of a Mexican hat. The output of 
cell i 

N,.(i,t)= [ m ~ . ( i , t ) - 0 , ( i )  ifm,(i,t) >0s( i )  
�9 [ 0  otherwise 

(2) 
where O,.(i) is the threshold of cell i. To ensure that 
initial synaptic weight W/j's have no particular pref- 
erence, they are randomly chosen from a small range 
of positive values. The following procedures are taken 
for each cycle, during which the postsynaptic neurons 
are stimulated by a given set of presynaptic neurons. 

(1) A small segment of c presynaptic cells is randomly 
chosen to activate from the presynaptic layer. That 
is, those mr(j)'s are set to 1, the rest are set to 0. 
Nr(j)  is defined as 

N, (j, t) 

m r ( j , t ) - 0 r ( j )  i fmr(j, t)  >Or(j) 
(3) 

= 0 otherwise 

where Or (j) is the threshold of cell j .  The values of 
Or (j) and 0,. (i) that monotonically change with j or 
i determine the activity gradients of the presynaptic 
and postsynaptic layers respectively. 
Small segments of presynaptic cells are chosen to 
correspond to the natural stimuli present in the 
structured environment where the animal lives in. 
In general, the visual environment for toads can 
be viewed as composed of many stripes, such as 
tree leaves, grass stems, and small worms and in- 
sects (Ewert, 1984). Cell layers with systematic 
threshold changes have been identified in the ocu- 
lomotor and abducens nuclei (Schiller, 1970) and 
in the auditory periphery (Liberman, 1978). This 
property has been used in a neural network model 
by Grossberg and his colleagues to generate the 
position-threshold-slope shift map that converts dif- 
ferent input intensities to different positions in an 

dms (i, t) 



array of neurons (Grossberg and Kuperstein, 1986, 
pp. 160--167; Grossberg and Schmujuk, 1989). 

(2) Each of the N postsynaptic cells updates its mem- 
brane potential and generates an output according 
to (1) and (2) until the absolute change in membrane 
potential is less than 3% (close to equilibrium), or 
the number of updates exceeds 2000. 

(3) Synaptic weight IV/./ is changed according to a 
Hebbian rule of plasticity (Hebb, 1949) 

A Wij = rlNs(i, t)Nr(j ,  t) (4) 

where r~ controls the speed of synaptic modification. 
(4) The synaptic weights are then normalized so as to 

keep the mean strength associated with each post- 
synaptic and presynaptic cell at a constant value 
(see yon der Malsburg, 1973; Willshaw and von 
der Malsburg, 1976), 

M 

~W~, /  = M  f o r / =  1,2 . . . . .  N; 
j=l 

N 
~- -~Wi i=N f o r j  = 1 , 2 , . . . , M  (5) 
i = 1  

The above model was simulated between two layers 
of 20 cells each (M = N = 20). The activity gra- 
dient in the presynaptic layer was defined by Or(j) = 
0 .4 j /M;  and the postsynaptic gradient 0,. (i) = 3.64 + 
0.8 i /N .  The initial values of the weight matrix W/j's 
were uniformly chosen from the interval [1.0, 1.02]. 
The strengths of lateral connections within the postsy- 
naptic layer were set to the following values 

x 1 2 3 4 
S(x) 0.2 0.1 - 0 . 2  - 0 . 4  

These lateral connection strengths were chosen accord- 
ing to the difference of Gaussian distributions (DOG). 
We found that the detailed values do not matter much. 

Figure 5 shows the simulation result. Figure 5A 
shows an early stage of developing a topographical 
map after 150 cycles. It illustrates that the map started 
from the projections between the presynaptic end with 
stronger activity (smaller thresholds) and the postsy- 
naptic end also with stronger activity. Figure 5B shows 
the final stable and orderly map produced from the ini- 
tial all-to-all mapping after 3000 cycles. 

The simulation demonstrated the one-dimensional 
case, consistent with the MP model. The principle 
can be similarly applied to higher dimensional cases. 
The same process is assumed to take place from the 
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Fig. 5. Formation of topographical mapping. The connection pat- 
tern between two layers is represented by a connection matrix. A An 
early connection pattern after 150 cycles of iterations. B A map pro- 
duced after 3000 cycles�9 The parameters )~ = 0.5, c = 2, r/ = 0.2, 
and At = 0.01. 

MP2 layer to the MP3 layer and the P2 layer in every 
MP column (Fig. 4B). In the MP model, topographical 
maps thus formed are further simplified to one-to-one 
maps, as shown in Fig. 3. In a sense, the solution pro- 
vided here can be viewed as building submaps (Fig. 4B) 
within a grand map (Fig. 4A). Because of this require- 
ment, previously proposed schemes for forming the de- 
sired orientation do not seem to fit the situation. More 
discussions of this topic are provided in Sec. 5. 
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4 Formal Description and Computer Simulation 

Having discussed ontogenesis of the MP model, we 
now describe intercolumnar interactions. As shown 
in Fig. 3, the P2 layer of a column receives MP3 in- 
hibition from left columns and MP1 inhibition from 
right columns. Assume that columns from left to right 
(Fig. 3) are labeled by small to large numbers. Integrat- 
ing inhibition, the membrane potential and the output 
of the j th  P2 cell of column i, 

dmp2(i, j, t) 
dt 

-ap2(i)mp2(i, j, t) + y(i, j, t)(Nmp2(j, t) - hi) 

Bpz~(Nmpl( i ,  k, t) - C m p l )  - mp2(i, j, t) 
k>j 

• [k~<i Lk~(Nmp3(k'jt't)-Cmp3)j, 

+ ~ R k ~ ( N m p l ( k ,  j', t) - Cmp,)] (6) 
k>i j' 

Np2(i, j, t) = Max(mp2(i, j, t), 0) (7) 

where Ap2(i) is a relaxation parameter, and y(i, j, t) is 
the modifiable weight of the projection from cell MP2j 
of the same column, to be described below. Nmpz(j, t) 
represents the output of the j th MP2 cell at time t, and 
Nmp3(k, j, t) and Nmpl(k, j, t) represent the outputs 
of j th  MP3 and MP1 cells of column k respectively. 
The formal description of these variables was given in 
Wang and Arbib (1992), and is provided in the Ap- 
pendix for completeness. The term (Nmp2(j, t) - hi) 
detects external stimulation from the MP2 layer, which 
is above the level of spontaneous firing hi. Bee is the 
strength of intracolumnar left inhibition (Fig. 2B), and 
C,~pl and C m p  3 a r e  the resting activities of an MP1 
cell and an MP3 cell respectively before habituation, 
and they are given in the Appendix. The last factor 
of the above formula describes intercolumnar shunting 
inhibition (Grossberg, 1976). Multiplicative shunting 
inhibition is suggested from the data in Fig. 1 plotted 
on a log-scale (see the right two curves of Fig. 1A in 
particular). Lk is the weight of overall MP3 inhibition 
from a right column k, and Rk is the weight of overall 
MP1 inhibition from a left column k. 

The animal's prey-catching response to the stimu- 
lus is not homogeneous across the visual field. The 
response is clearly stronger when the stimulus is more 
towards the nasal direction, when one compares the re- 
markable difference between the first habituation series 

to the stimulus at the 120 ~ angle (the leftmost curve of 
Fig. 1A) and the first habituation series to the stimu- 
lus at the 30 ~ angle (the rightmost curve of Fig. 1B). 
This inhomogeneity could be caused at various visual 
centers along the pathway from retina to ME and for 
simplicity this is modeled in part by choosing different 
Ap2'S for different MP columns. After analyzing the 
data in Fig. I and numerous simulation trials, we found 
that the exponential relationship between the value of 
Ap2 and the position of an MP column best suits the 
data. The same analysis applies to choosing parameter 
values Lk's and Rk's. Finally, 

Ap2(i)  = 2(Di-30)/20; Ri = 2(120-Di)/85; 

Li = 2 (D~-30)/10 (8) 

where D i represents the visual degree that column i 
corresponds to. 

Modification of the synaptic weight y(i, j, t) is de- 
scribed as (cf. Wang and Arbib, 1992; Wang, 1993) 

dy(i, j, t) 
v = cez(i, j, t)(yo - y(i, j, t)) 

dt 
- fly(i, j, t)(Nmp2(j, t) - hi) (9) 

dz(i, j, t) 
dt 

= G(i)z(i, j, t)(z(i, j, t) - 1)Nmp2(j, t) - hi) 

( lnt-ZLkZ(Nmp3(k;j''t)-Cmp3))k<i .J' (10) 

where r is the time constant for controlling the rate of 
habituation, or reduction of y(i, j ,  t) with the initial 
value y(i, j, O) = yo. The first factor in (9) regu- 
lates recovery towards the initial value. The product 
~z(i, j, t) has an activity dependent control on the rate 
of forgetting. The second factor causes habituation by 
the input from layer MP2, parameter t3 controlling the 
speed of habituation. Equation (10), which essentially 
exhibits an inverse S-shaped curve with presynaptic 
input from the MP2 cell (ignore the intercolumnar in- 
fluence of the last term for the time being), is used to 
control the speed of forgetting of habituation. The S- 
shaped curve of z(i, j, t) has two stages of decrease: 
the first fast-decreasing stage and the second slow- 
decreasing one. The transition speed from the first 
stage to the second one is controlled by parameter G (i). 
The larger is G(i), the quicker is the transition. The 
overall speed of the decrease of z(i, j, t), however, is 
controlled by the initial value z (i, j ,  0), and the larger 
z(i, j ,  0) the slower is the speed of decrease. The two 
phases are used to model two stages of habituation: 
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Fig. 6. Simula t ion  of  a habi tuat ion series with a 1 min intert-trial 

pause.  In the s imulat ion,  the ins tantaneous  response o f  the model  

is a s sumed  to be  propor t ional  to the synapt ic  weight ,  y(t). The 

log-scale  is used for  the ordinate.  A s imulated training trial stops 

whenever  y(t) falls be low YM, and YM = 0.015.  Other  parameters  

are r = 200; ~ = 3.2; Yo = 1.0;/3 = 24. 

a short-term one with relatively large z(i, j ,  t) (see 
formula 8) and a long-term one with relatively small 
z(i, j, t). 

Can the data of  the habituation series in Fig. 1 be ex- 
plained by just a short-term memory (STM) model? 
Without a long-term memory (LTM) process (i.e., 
z(i, j, t) never changes), y(i, j ,  t) returns from YM to 
[Y0 - (Yo - y M ) e x p ( - c ~ T / r ) ]  according to (9) after 
a constant recovery pause T, where YM is the value 
of y(i, j, t) at which a habituation trial is stopped. 
Due to a saturation phenomena, a habituation trial 
is stopped during experiments before an animal's re- 
sponse reaches 0 (Ewert and Kehl, 1978; Wang and 
Ewert, 1992; cf. Fig. 9). The parameter yM is intro- 
duced to account for this phenomena. Therefore, the 
synaptic weight recovers to a constant level regardless 
of prior habituation trials. This is illustrated in Fig. 6, 
which shows a simulation of one habituation series of 
10 trials based on Eq. 9 with a 1 min inter-trial pause as 
in Fig. 1. In this simulation, z is set to constant 1. The 
presynaptic stimulation in (9) is also set to 1 for sim- 
plicity. As in the experimental data, each data point 
represents the normalized value of the overall model 
response over one trial. Clearly, after an initial decay, 
the cumulative activity during each trial is a constant, 
as opposed to the drastically decreasing curve during 
the habituation series (Fig. 1). The detailed response of 
the model is unimportant, since only relative response 
during habituation is all that matters in producing the 
figure. Thus, unlike in Wang and Arbib (1992), a STM 
model is not sufficient to simulate the data of habitua- 
tion series and LTM must be taken into consideration 
(see also Wang, 1993). 

Inhomogeneity across MP columns is embodied not 
only in the prey-catching activity of the first habitua- 
tion trial, but also in the number of trials in a habitua- 
tion series. A habituation series at nasal locations lasts 
longer than ones at temporal locations (Fig. 1). This can 
be modeled by choosing different values for G(i). In 
the following simulations, G(i) = 0.027 g 2 (Di-3~176 
consistent with (7). Thus, columns corresponding to 
temporal locations (larger Di)  have larger G( i ) ' s ,  so 
quicker transitions from STM to LTM. That is, they take 
a shorter time to reach profound long-term habituation. 
In order to model the fact that a habituation series at 
a location is much prolonged when preceded by habit- 
uation at a temporal location (Fig. 1A), intercolumnar 
interaction must change the time course of habituation 
in addition to shunting inhibition to P2 layers. The 
last term of (10) describes such a change by modifying 
z(i, j, t) by the MP3 cells of  columns to the left. This 
modification is assumed to be accomplished by presy- 
naptic modulat ion on habituation synapses, shown in 
Fig. 3. After habituation of an MP column, reduced 
MP3 spontaneous activity has the following effects on 
columns to the right (nasal locations): it reduces the 
value of the last term of (10), slows down the transition 
from STM to LTM, and thus prolongs their habitua- 
tion series. 

To compare with the quantitative data of Fig. 1, the 
above MP model was simulated. The preprocessing by 
retina, rectum, and anterior thalamus (Ewert 's loop(2)) 
to a 4 ~ x 20 ~ worm-like rectangle was carried out using 
those models developed previously (Cervantes-Pdrez 
et al., 1985; Wang and Arbib, 1991). For each ar- 
ray of an MP cell type in a column, 50 cells were in- 
cluded (n = 50, see Fig. 2B). Time was measured like 
this: a basic discretization step 0.05 corresponded to 
1 sec. Besides intercolumnar interactions and changes 
described above, a single column model followed what 
was previously given (Wang and Arbib, 1992, see Ap- 
pendix). To show intraocular influence, Fig. 7 provides 
the initial habituation trials of  the two columns corre- 
sponding to 30 ~ and 45 ~ respectively, one before and 
one after a habituation series at the other visual loca- 
tion. In the simulation, a habitation series was obtained 
using the same procedure as in the experiment (Fig. 1). 
That is, a habituation trial was stopped as long as the 
model response saturated and there was 1 min inter-trial 
pause. The model response to the stimulus presented 
at the 30 ~ angle is greatly facilitated following a habit- 
uation series at the temporal locus (45~ whereas the 
response to the stimulus at 45 ~ is suppressed following 
a habituation series at the nasal locus (30~ 
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are: Bp2 = 0.1; r = 200;  c~ = 3.2; Y0 = 1.0; fl = 24; g = 0.1; and z(i, j ,  0) = 0.9999.  

Figure 8 presents the simulation result of locus speci- 
ficity. As in the experiment, the five visual locations 
tested were 30 ~ 45 ~ 60 ~ 90 ~ and 120 ~ correspond- 
ing to Di's of (8). Computer simulations follow the 
same experimental conditions as in Fig. 1. In order to 
compare the effects of intraocular influence on habit- 
uation, Fig. 8A presents the simulation results of ha- 
bituation series conducted at each locus independently 
without any prior habituation. The figure depicts ini- 
tial inhomogeneity at different visual loci. In Fig. 8B 
and Fig. 8C, habituation series were successively con- 
ducted from temporal to nasal locations and from 
nasal to temporal locations, respectively. Compared to 
Fig. 8A, it is clear that the model response is facilitated 
following prior habituation series conducted at nasal lo- 
cations, but inhibited following prior habituation series 
at temporal locations. Furthermore, a habituation se- 
ries at a particular locus was prolonged following prior 
habituation to the temporal direction (Fig. 8B), and 
the reverse was seen following prior habituation to the 
nasal direction (Fig. 8C). These results well match the 
behavioral findings of Fig. 1. The simulation results not 
only qualitatively reproduce locus specific habituation 
as shown in Fig. 1, but also exhibit close quantita- 
tive resemblance to the behavioral data in terms of the 
number of trials and activities in each series. 

In the model, columnar interactions lead to intraocu- 
lar relationships of habituation. In particular, influence 
of lateral connections on z (see Eq. 10) results in pro- 
longing of habituation series. We found that influence 
of lateral connections on other learning parameters, 
such as c~ and/3, was unable to yield comparable results. 
This suggests changes in the time course of habituation 

series as a result of modifying long-term learning, not 
short-term learning. The oscillatory fluctuations of the 
curves in Fig. 1A do not seem to be reliable, and may 
call for additional mechanisms (see Ewert, 1984). 

Finally, we simulated dishabituation between two 
pairs of stimuli from Fig. 2A to demonstrate that this 
expanded MP structure with sharing of the conver- 
sion network and intercolumnar interaction is consis- 
tent with the previous single column model (Wang and 
Arbib, 1992) that exhibits stimulus specific habituation 
at a specific location. In this set, an isosceles triangle 
a was tested against stimuli d (a rectangle) and b (a 
triangle). In Fig. 9A, d was first presented and habit- 
uated, and a was then tested. A full new response to 
the later presentation was exhibited. When the order 
of presentation was reversed, however, no significant 
dishabituation occurred (Fig. 9B). If  b was first pre- 
sented and habituated, as shown in Fig. 8C, a was able 
to trigger a new response. But in the inverse situation 
(Fig. 9D) b was not able to dishabituate the habituated 
response to a. Figure 9E shows the corresponding ex- 
perimental results. A comparison between Fig. 9A-D 
and Fig. 9E shows that the MP model clearly repro- 
duces the experimental data. 

5 Predictions and Discussion 

The computational model of MP organization and de- 
tailed simulation of locus specificity yield a number 
of neurobiological predictions, as presented in the 
following. 

(1) Organization of the medial pallium. The model pre- 
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dicts that there is a dist inct  center  within M P  that 

receives  inputs f rom the entire set o f  AT ascend- 

ing fibers and projects  to another  structure within 

M R  Visual  process ing  in such a center  is c o m m o n  

to all visual  locations.  M P  processes  visual infor- 

mat ion in neuronal  co lumns  perpendicular  to the 
te lencephal ic  ventricle.  

(2) Locus  inhomogenei ty .  Prey-ca tching  response  and 

habituation propert ies in anurans are not  homo-  

geneous to different  visual  loci. In particular,  as 

shown in Fig. 8A, the mode l  predicts the detai led re- 

sults of  independent  habituat ion series with the prey 

d u m m y  4 ~ • 20 ~ rectangle  conducted  at 30 ~ 45 ~ 

60 ~ 90 ~ ~ 20 ~ from the an imal ' s  mid l ine  at about  
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C. E The corresponding experimental results by Ewert and Kehl (1978). 

the same elevation as the animal's.  This prediction 
can be tested using the same experimental proce- 
dures as in Ewert and Ingle (1971), but with negli- 
gible prior training influence (allowing long inter- 
trial pause is one way) when a habituation series is 
conducted. 

(3) Effects of  prior training. We found from the simula- 
tion that only the immediate preceding habituation 
series has a significant influence on a current habit- 
uation series, because the influence built from all 
other earlier series has been largely diminished due 
to forgetting. Notice that a habituation series can 
last for hours, long enough to recover even mod- 
erate long-term habituation. Thus, we predict that 

about the same behavioral results of  Fig. 1 occur 
even with only one preceding habituation series. 
That is, cumulative effects due to a number of  prior 
series is minimal. 

In this model, we propose the mechanism of shar- 
ing pattern discrimination circuitry to coordinate locus 
specificity and pattern discrimination. It seems to be 
the most parsimonious solution if an animal has the 
ability to discriminate many patterns at a specific lo- 
cation while exhibiting locus specificity. This model 
demonstrates that such a proposal is viable with appro- 
priately arranged neural projections, possibly emerging 
from early development. The mechanism is not lim- 



Modeling Vertebrate Habituation 297 

ited to anurans, since pattern discrimination and locus 
specificity are general problems that must be solved by 
higher animals. It is interesting to note that there are 
distinct neural structures in the mammalian hippocam- 
pus: the dentate gyrus and the hippocampus proper, 
and the four regions CA1-CA4 of the hippocampus 
proper (Brown and Zador, 1990). Furthermore, long- 
range synaptic connections within the hippocampus are 
generally considered feedforward, and it has been sug- 
gested that the hippocampus plays a critical role in 
both pattern recognition and spatial memory (Rolls, 
1988; O'Keefe and Nadel, 1978; O'Keefe, 1989). It 
is tempting to suggest that there are distinct regions 
in the hippocampus for performing pattern recognition 
and spatial memory, and the regions are integrated in a 
way similar to what is proposed here (Fig. 3). 

The purpose of Sect. 3 is not to add another method 
of forming a topographical mapping into many already 
in existence, but rather to address the question of form- 
ing submaps with a single global orientation within a 
grand map, as required for building this MP model. 
Due to this requirement, putting a bias into the ini- 
tial connections as suggested by vonder Malsburg and 
Willshaw (1977) and Amari (1980) does not yield a 
natural solution since it would require the same ontoge- 
netic information for each submap, quite a genetic de- 
mand. The solution proposed here, on the other hand, 
relies on the bias of activity gradients in the presynap- 
tic and postsynaptic layers. The same activity gradient 
for each sublayer can be easily realized since a bias on 
the grand layer consisting of the sublayers suffices to 
provide all sublayers the same bias. Submaps within 
a global map are common phenomena in the brain. 
For example, in the auditory system other maps exist 
in iso-frequency regions of the grand tonotopic map, 
such as the intensity map and the spatial map (Popper 
and Fay, 1992). 

Spontaneous activities as exhibited in MP1, MP2, 
and MP3 cells play an important role in the model. The 
decrease in MP3 activity and the increase in MP1 ac- 
tivity convey the after effects of long-term habituation, 
and these cells through their long-range projections 
(Fig. 3) influence other MP columns, exhibiting in- 
traocular habituation relationships. With spontaneous 
activity, cells can manifest their stable activity changes, 
beyond just responding to an external stimulus. Addi- 
tionally, cells of this type can increase or decrease their 
levels of activity, whereas cells without spontaneous 
activity can only increase their activity levels after stim- 
ulation. We suggest that spontaneous neuronal activity, 
as frequently observed in the central nervous system, 

may play the important role of manifesting long-term 
learning effects. 

Although learning series appear to be straightfor- 
ward to model, they are more intricate to simulate than 
single trials (see Fig. 9E), since learning series gen- 
erally involve LTM processes (Wang, 1993). On the 
other hand, our analysis shows that conducting learning 
series is an effective way of obtaining quantitative LTM 
data, which are very valuable for elucidating compu- 
tational mechanisms of LTM processes, a topic rarely 
treated in the literature. It is important to notice that 
when simulating habituation series, we did not change 
any parameters related to the basic model of short-term 
synaptic plasticity. Therefore, the present model is 
fully consistent with the previous model that simulates 
single habituation trials corresponding to short-term 
memory (Wang and Arbib, 1992). 

Computational studies of learning in amphibians as 
lower vertebrates may provide valuable insights into 
modeling of more complex learning behaviors in higher 
vertebrates. Although the study reported here focuses 
on habituation in toads and frogs, the question thus ad- 
dressed is a general one: to integrate locus specificity 
and pattern recognition in perception. This integration 
problem must be solved somehow by all higher ani- 
mals. For example, on the basis of a wide variety of ex- 
periments, Sokolov (1960, 1990) showed habituation 
of the orienting response in higher vertebrates is subject 
to habituation, and this habituation is both locus and 
stimulus specific. Furthermore, he proposed a com- 
parator theory to account for his observations, which 
asserts that the cortex creates a model of the stimulus 
that is continuously compared with the object currently 
presented. It was later found that cells in the rabbit 
hippocampus exhibit similar properties as typical be- 
haviors in an orienting response (Vinogradova, 1975). 
The neural model elucidated here suggests one way of 
implementing the comparator model with locus speci- 
ficity by a neural network. However, we realize that 
turning the present model into rigorous circuitry for 
such a task must await future research. 
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Appendix 

Here is the formal definition of  cell types in the MP 
model except those defined in the text. See Wang and 
Arbib (1992) for a full explanation. 

P1 Layer. The membrane potential and the output 
of the j th P1 cell are 

dmpl (j, t) 
-- A p l m p l ( j , t ) + B p l I ( t ) + p  

dt 

Npl( j , t )  = [ 0  p ' ( j ' t )  otherwiseifmp'(j't) > Oj 

where O] = 46.5j/n + 17.75, and l (t) represents 
input from AT. p is the amplitude of an uncorrelated 
white noise introduced to the AT input. 

2. MP2 Layer 

dmmp2(j, t) 

dt 
-- Amp2mmp2(j, t) 

+ (Bmp2 - mmp2(j, t ) ) I j j ( t )  

-- mmpz(j, t) Z l.ik(t) 
k>j 

l jk(t)  = WjkNpl (j,  t) 

( k - j ) / 3  i f k > j  
Wjk 

, = | 1 i fk  = j 

Nmp2(j, t) = mmp2(j) + hi 

3. MP3 Layer. For the jth MP3 cell of column i 

dmmp3(i, j, t) 
-- Amp3mmp3(i, j, t) 

dt 
+ y(i, j ,  t)Nmp2(j, t) 

Nmp3(i, j ,  t) = mmp3(i, j ,  t) 

4. MP1 Layer 

dmmpl (i, j ,  t) 
dt -- -mmpl (i, j, t) + h2 

-- BmplNmp3(i , j ,  t) 

Nmpl(i, j ,  t) = Max(mmp1(i, j, t), O) 

5, P2 Layer. Continued from (6), 

Crop1 = h2 - hlYoBmpl, Cmp3 = hlYo/Amp3. 

6. OUT Cell 

dmout(i, t) 
dt 

Aoutmout(t) 

-I- 1/n ~ Npl (i, j ,  t), 
J 

and 

Nout(i, t) : mout(i, t) 

The parameter  values used in co mp u t e r  s imulat ion 

are Apl : 1.0; Bpl : 1.0; p = 0.05; Amp 2 : 0.1; 

Bmp 2 : 1.1; hi = 0.6; Amp 3 : 1.0; h2 : 0.6; Bmp I : 
1.0; Aou t : 0.1. 
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