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Abstract - CNN and LEGION networks have been 
extensively studied in recent years.  These two frameworks 
share many common features; both employ continuous-time 
dynamics, are nonlinear, and emphasize local connectivity.  
In addition, they both have been successfully applied to 
visual processing tasks and implemented on analog VLSI 
chips.  This paper investigates the relations between the two 
frameworks.  We present their standard versions, and 
contrast the underlying dynamics and connectivity.   We 
also describe several tasks where both CNN and LEGION 
have been applied.  The comparison reveals fundamental 
differences between them.  CNN is good for early visual 
processing, whereas LEGION is good for midlevel visual 
processing.  Furthermore, the comparison suggests that a 
combined network will likely enhance the overall 
processing capability. 

 
I. INTRODUCTION 

Two types of neural network have been extensively 
studied in recent years.  The first type is CNN (cellular 
neural network*) [6] [5], and the second type is LEGION 
(locally excitatory globally inhibitory oscillator network) 
[16] [22].  There are many common features between CNN 
and LEGION.  Chief among them are continuous-time 
dynamics and nonlinearity.  From the standpoint of network 
architecture, they are the same except that LEGION includes, 
in addition to local connectivity, a global inhibitor.  These 
features make them well suited for direct circuit 
implementation, and indeed they have been.  In addition, 
both have been successfully applied to visual processing 
tasks.  Yet, they were originated with different motivations 
and for different purposes, and their developments proceed 
along largely independent paths. The similarities between the 
two frameworks arouse interesting questions of whether 
CNN and LEGION have deeper connections between one 
another and in what ways they are similar or different.  

In an attempt to address these questions, this paper 
presents the standard versions of CNN and LEGION, and 
compares their underlying dynamics and coupling schemes. 
To further illuminate their relations, I describe several 
common tasks that both CNN and LEGION have been 

                                                 
* CNN may also stand for Cellular Nonlinear Network [4]. 

successfully applied.  Our comparative study reveals that 
there are fundamental differences between these two 
networks, and they are good for different information-
processing tasks.  Their relative strengths and weaknesses 
are contrasted with respect to visual processing. 
Furthermore, the comparison suggests that CNN is well 
suited for early visual processing whereas LEGION is well 
suited for midlevel processing, and a combination of the two 
should significantly strengthen the overall processing 
capability.  

 
II. DEFINITIONS AND BASIC PROPERTIES OF CNN AND 

LEGION 

Largely motivated by computational capabilities of 
Hopfield networks, Chua and Yang in 1988 [6] [5] proposed 
CNN to circumvent the full connectivity requirement of a 
Hopfield network, which is impractical for VLSI circuit 
implementation.  Recall that in a Hopfield network, each unit 
is connected with all the units of the network, leading to the 
so-called “curse of interconnecting wires” from the VLSI 
implementation perspective [4].  A CNN network allows 
only local connections between network units, forming a 
cellular structure in the sense of cellular automata.  

On the other hand, LEGION was originally proposed by 
Terman and Wang in 1995 [16] [22] to address the binding 
problem in both natural and artificial neural networks, which 
refers to how sensory elements organize into perceived 
objects or how the responses of local feature-detecting 
neurons in different areas of the brain are bound together to 
form global percepts.  A LEGION network is a network of 
neural oscillators with local excitatory connections between 
oscillators and global inhibition via a global inhibitor.  

The following gives detailed definitions of CNN and 
LEGION.  Here, I do not aim at mathematical generality, 
which can often be obtained by, for example, substituting 
parameters for constants.  Rather, I highlight the 
commonality between the two models. 

 
A. CNN 

The building block of CNN is a single cell Cij, where the 
subscript indexes the cell location on a two-dimensional (2-



 

D) network*.  The state variable of Cij is defined by the 
following linear differential equation: 

 

ijx&  = -xij + Iij + Akl ykl + Bkl ukl (1) 
kl ∈N(i, j)

∑
kl ∈N(i, j)

∑

 
where Iij indicates a threshold of the cell and N(i,j) represents 
the set of neighboring cells that connect to Cij, where 4 
nearest-neighbor or 8 nearest-neighbor connectivity is often 
chosen.  The output equation is given by the following 
function: 
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1
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xij ≤ −1
 (2) 

 
which is a piecewise linear function resembling a sigmoid.  
The piecewise linear output function is the origin of 
nonlinearity in CNN models.  In addition, the corresponding 
external input is denoted by uij.  The A matrix specifies the 
connectivity between cells, and is called feedback template.  
The B matrix specifies the connectivity from external input 
to network cells, and is called the control template.  The two 
matrices, together with Iij, completely define a CNN 
network.  

Chua and Yang [6] analyzed the stability of CNN 
networks, and showed that CNN cells approach stable 
equilibrium points under certain conditions, most notably 
that the A template is symmetric with respect to its center.  In 
other words, a CNN network does not oscillate or become 
chaotic under these conditions.   This symmetry requirement 
on feedback connectivity is akin to that of Hopfield networks 
in order to guarantee network stability.  Another interesting 
result is that, if the center element of A is greater than 1, the 
output value of each CNN cell will be bipolar, i.e. either 1 or 
–1, after the network reaches an equilibrium point.  
 
B.  LEGION 

The development LEGION was directly motivated by 
the discovery of coherent oscillations in the visual cortex in 
the late 1980s.   LEGION owes its conceptual foundation to 
the oscillatory correlation theory [17] [16], where feature 
detectors are represented by oscillators and binding is 
represented by synchrony within an assembly of oscillators 
and desynchrony between different assemblies. The building 
block of LEGION is a single relaxation oscillator, Oij, 
defined by an excitatory variable xij and an inhibitory 
variable yij:  
 

                                                 
* It is straightforward to extend to dimensions other than 2-D. 

ijx&  = 3xij –  + 2 – yij + uij + Sij + ρ   (3a) 

 = ε (α (1 + tanh(xij /β)) – yij)  (3b) 

xij
3

ijy&

 
Here, uij denotes external stimulation to Oij and Sij the 
overall coupling from the rest of the network.  ρ indicates a 
noise term, introduced to assist in desynchronization.  ε is a 
small positive number, and α are β parameters.  When 
coupling and noise are ignored and u is set to a constant, (3) 
defines a typical relaxation oscillator with two time scales 
induced by ε.  The x-nullcline (i.e.  = 0) is a cubic 
function and the y-nullcline is a sigmoid function; these 
represent the nonlinearity of the system.   

ijx&

If u > 0, Oij produces a stable limit cycle and is called 
enabled.  The limit cycle alternates between a phase of 
relatively high x values and a phase of relatively low x 
values, called the active and silent phase respectively.  
Within each of the two phases the oscillator exhibits near 
steady-state behavior.  In contrast to the behavior within 
each phase, the transition between the two phases takes place 
rapidly, and it is referred to as jumping.  If u < 0, no 
oscillation occurs and Oij is called excitable.   Obviously, 
whether an oscillator is enabled or excitable depends on 
external stimulation.  Hence, oscillations in (3) are stimulus-
dependent.   

For a 2-D LEGION network, the coupling term Sij in (3) 
is given by  
 

 
Sij = 

kl ∈N(i, j)
∑ Wkl H(xkl) – Wz H(z – θz)       (4) 

 
where H stands for the Heaviside step function, Wkl is the 
connection weight from oscillator Okl to Oij, and N(i,j) is as 
defined in (1).  The parameter θz is a threshold, and Wz is the 
weight of inhibition from the global inhibitor z, defined as 

 
z& = φ (σ∞ – z)                        (5) 
  

Here, φ is a parameter, and σ∞ = 1 if xij ≥ θz for at least one 
oscillator Oij and σ∞ = 0 otherwise.  If σ∞ equals 1, z → 1. 

As shown by Terman and Wang [16], a LEGION 
network exhibits the mechanism of selective gating, where 
an enabled oscillator jumping up to the active phase rapidly 
recruits the oscillators stimulated by the same pattern (a 
connected region) while preventing others from jumping up.  
They proved that, due to selective gating, the network 
rapidly achieves both synchronization within each oscillator 
assembly and desynchronization between different 
assemblies. Desynchronization between two assemblies 
means that they are never active simultaneously.   In 
addition, the overall time the system takes to achieve both 

 



 

synchronization and desynchronization is no greater than m 
cycles of oscillations, where m is the number of patterns in 
the input image.  See [19] for a tutorial exposition of the 
selective gating mechanism and other related properties of 
relaxation oscillators and their networks.   
 

III. EXAMPLE APPLICATIONS 

In order to illustrate similarities and differences between 
CNN and LEGION processing, I review several information-
processing tasks where CNN and LEGION have been 
applied.  
 
A. Early Visual Processing 

CNN has been applied to a number of local visual 
processing tasks, such as edge detection, corner detection, 
image translation from one position to another, etc., by 
taking advantage of single cell computation and local activity 
propagation due to the use of a feedback template [4] [8].   
Though such tasks have not been explicitly addressed in the 
LEGION framework, it should be straightforward to apply 
LEGION to them.  

A more interesting task CNN can perform is image 
smoothing: Removing noise on an image and preserving 
major image features [14].  Perona and Malik [13] showed 
that one can perform smoothing by anisotropic diffusion, 
which is a task naturally suited for the CNN framework 
because a CNN system essentially realizes a reaction-
diffusion process.  The diffusion process through local 
feedback connectivity can propagate information globally 
through time.  This is similar to image smoothing via a 
Gaussian kernel.  But, as pointed out by Perona and Malik, 
diffusion via a dynamical system can achieve image 
smoothing at multiple scales in a scale space, whereas a 
spatial filter (such as a Gaussian kernel) performs image 
smoothing at a fixed scale.     

Image smoothing has also been studied in the LEGION 
framework by Chen et al. [3].  They use weight adaptation to 
accomplish feature-preserving smoothing, and demonstrate 
that their nonlinear smoothing technique overcomes several 
difficulties in other smoothing methods, including anisotripic 
diffusion.  One such difficulty is the so-called termination 
problem: When does the system stop the diffusion process, 
since the process, unstopped, eventually leads to a constant-
intensity image?  Due to the intrinsic connection to 
anisotropic diffusion, CNN networks suffer from similar 
difficulties.  

Strictly speaking, the weight adaptation technique 
proposed by Chen et al. [3] is not an intrinsic part of 
LEGION.  On the other hand, locally-coupled spike 
oscillator networks have been successfully applied to image 
smoothing [9] [10].  The basic unit of such a network is a 
spike oscillator, or a spiking neuron model, which has an 
instantaneous active phase in comparison with a relaxation 
oscillator.  Campbell et al. [1] recently showed that the basic 

relaxation oscillator equation of (3) can exhibit qualitatively 
different kinds of oscillation, including spike oscillation and 
sinusoidal oscillation, through appropriate parameter 
choices.  This implies that a LEGION network can perform 
image smoothing in the same way as a spike oscillator 
network.  Another way of relating LEGION to CNN is 
through the use of sinusoidal oscillations, where oscillators 
communicate with each other directly in oscillation phase, a 
continuous variable.  Sinusoidal (phase) oscillator networks 
have not been studied for image smoothing, but the above 
connections suggest that they hold strong promise for such 
visual processing. 
 
B. Connectedness Detection 

A classic problem in neural networks is the Minsky and 
Papert connectedness problem: How to tell whether an input 
figure is connected [12].  They showed that this problem 
cannot be solved by simple or multilayer perceptrons, which 
are feedforward networks.  Both CNN and LEGION have 
been shown to be able to solve this problem. 

When a binary input figure is presented to a CNN 
network, where each pixel is mapped to a single cell, the 
network can solve the connectedness problem in the 
following way [4].  First, a cell triggered by any given black 
pixel (high input) deactivates itself and its neighboring cells, 
which further deactivate themselves and their neighbors, and 
so on.  The propagation of deactivation ultimately 
deactivates an entire connected pattern.  If the figure 
contains a single connected pattern, or is connected, then the 
entire network will be deactivated after the propagation.  
Otherwise, the input figure is disconnected, or it contains 
more than one connected pattern. 

LEGION solves the connectedness problem in a 
different way [20].  The selective gating mechanism ensures 
that all the oscillators representing a single connected pattern 
are synchronized while those representing different 
connected patterns are desynchronized.   The global inhibitor 
oscillates with a frequency that is as many times that of 
single enabled oscillators as the number of connected 
patterns in the input figure.  Thus, how many patterns are in 
the input figure is revealed by the ratio of the frequency of 
the global inhibitor to the oscillation frequency of an enabled 
oscillator [20].  A ratio of 1 indicates that the input figure 
contains one pattern, and thus the figure is connected.  A 
ratio greater than 1 indicates that the input contains more 
than one pattern and therefore the figure is disconnected.  

Besides computing the connectedness predicate, the 
LEGION solution also counts how many connected patterns 
are in the input figure.  This counting function is not easily 
done by a CNN network, although one could apply the 
deactivation process iteratively.  Such an operation, 
however, seems to require processing external to CNN 
computing. 
 
 
 

 



 

C. Image Segmentation 
Unlike early visual processing that can be performed 

primarily via local operations, image segmentation, or 
perceptual organization, belongs to midlevel processing 
which takes into consideration of global image structure.  
Nonetheless, CNN has been applied to image segmentation.   

Stoffel et al. [14] studied CNN-based image 
segmentation.  Their method decomposes the problem into 
multiple processing stages, each of which is implemented by 
a CNN network tailored for the task.  These stages include 
image smoothing, edge detection, and major feature 
extraction through simple morphological operations.  After 
these stages are performed, the segmentation network then 
performs contour extraction and hollow filling in order to fill 
in small fragments and merge them with major regions.  The 
result of segmentation is a collection of closed contours.  
Their method has been applied to intensity- and motion-
based segmentation.  Subsequent work has also addressed 
texture image segmentation [15]. 

Since a direct motivation for inventing LEGION is to 
address the binding problem, which is essentially the 
segmentation problem, it is not surprising that LEGION has 
been applied to a variety of image segmentation tasks.  To 
deal with real-world images, a LEGION network needs to 
encode a measure of similarity between local image 
elements, which may be pixel values for intensity images or 
statistical features that characterize a textural pattern.  The 
basic approach to image segmentation by LEGION is the 
following.  After a scene is presented, feature extraction first 
takes place, and extracted features form the basis for 
determining connection weights between oscillators.  The 
oscillator network then evolves autonomously.  After a 
number of oscillation cycles required for the synchronization 
and desynchronization process, oscillator assemblies are 
formed and they represent resulting segments.  Different 
segments emerge from the network at different times, and it 
is segmentation in time that distinguishes this approach from 
others.  LEGION has been successfully applied to intensity, 
range, motion, and texture images (see [21] for a review). 

Because the encoding of an image in a LEGION 
network and the LEGION segmentation mechanism have a 
higher degree of flexibility, and segmentation results by 
LEGION are better than those by CNN.  For instance, a same 
image (“Claire”) has been used in both CNN [14] and 
LEGION motion segmentation [23] (see also [2]), and the 
latter produces significantly better results (e.g. the whole 
face is segmented as a single region).  On the other hand, 
added flexibility in LEGION segmentation may complicate 
VLSI implementation (see Sect. IV.D). 
 

IV. GENERAL COMPARISONS 
 

A. Unit Dynamics 
The most basic difference between CNN and LEGION 

lies in the dynamics of single units.  In CNN, unit dynamics 

is equilibrium dynamics like that of its predecessor – the 
Hopfield network.  In contrast, LEGION dynamics is 
oscillatory dynamics; LEGION was proposed for the 
purpose of overcoming limitations of equilibrium dynamics.  
Oscillations offer an extra degree of freedom: phase, in 
comparison to steady states. The oscillatory correlation 
theory employs oscillation phase to encode the binding 
relationship between feature detectors.  Note that, in addition 
to phase an oscillator can represent its overall level of 
activity by oscillation frequency, analogous to neuronal 
activity. 

Lacking the dimension of phase seems a fundamental 
limitation of CNN.  Because of this limitation, CNN 
networks have trouble representing multiple objects on an 
image simultaneously.  This is hinted in Sect. III.B, where 
solutions to the connectedness problem are discussed.  CNN 
has no trouble representing the binary state of whether a 
figure is connected, but has difficulty in representing the 
number of connected patterns in a figure.  This difficulty 
persists when it is applied to segmenting multiple regions of 
an image.  Even if one could imagine a CNN network that 
produces graded output levels instead of (2), how to read 
such outputs is likely a tricky issue (see related discussions 
in [21]). 

 
B. Connectivity 

Both CNN and LEGION possess local feedback 
connections.  Additionally LEGION has global inhibition via 
connections between individual oscillators and the global 
inhibitor.  The role of the global inhibitor is to desynchronize 
multiple oscillator assemblies.  It is also a vehicle for global 
communication in a LEGION network.  Such global 
interaction is, for example, important for counting the 
number of connected patterns (Sect. III.B) and for object-
level attentional selection.  

The motivation for CNN local connectivity is to 
facilitate circuit implementation, or to combat the curse of 
interconnecting wires.  The local connectivity in CNN has 
turned out to be very fruitful for circuit implementation  (see 
Sect. IV.D).  LEGION is primarily locally connected; the 
number of connections caused by the global inhibitor is only 
a fraction of that of local connections between oscillators.  
Hence in terms of circuit implementation, such connections 
do not seem to constitute a major issue.  
 
C. Visual Processing 

As discussed in Sect. III.B, CNN is suited for local 
operations on an input image, and such operations 
correspond to early visual processing.  CNN has also been 
applied to computing individual processing stages for 
midlevel processing tasks such as image segmentation.  
Decomposing a complex task into component tasks is a 
sensible information-processing strategy.  But the 
decomposition process inevitably introduces human 
intervention.  If the goal is to perform autonomous 

 



 

computation, CNN networks are likely limited in performing 
larger, challenging tasks autonomously.  

On the other hand, LEGION has been mainly applied to 
midlevel scene segmentation tasks.  Such a task is generally 
preceded by a local feature extraction stage, which analyzes 
color, motion, depth, texture, etc.  Though such feature 
extraction has been addressed in conjunction with LEGION 
image segmentation, feature extraction should be viewed as 
separate from grouping and segmentation by oscillatory 
correlation; feature extraction belongs to the realm of early 
visual processing. 

The above analysis logically suggests that CNN is better 
suited for early visual processing and LEGION is better 
suited for midlevel visual processing.  For a visual analysis 
task, early and midlevel, as well as high-level processing all 
take place in the visual system to accomplish the task.  This 
points to synergy between CNN and LEGION processing, 
and combining them in performing the same challenging task 
should enhance the overall performance.  

 
D. VLSI Implementation 

Circuit implementation is the principal motivation of 
CNN networks, hence, not surprisingly, many successful 
attempts have been made in VLSI implementation of CNN 
networks.  Direct VLSI implementation has the advantages 
of higher processing speed, less power consumption, and less 
(silicon) area occupation [4], in comparison to 
implementation or simulation on a general-purpose digital 
computer.   Many tasks have been processed on CNN chips; 
most of them perform local image processing.  Several 
studies also attempt to implement image segmentation tasks, 
which generally need a hybrid of analog circuits and digital 
operations.  For example, a recent study implements texture 
classification and segmentation on a 64x64 chip [15].   

Much less effort has been made on circuit 
implementation of LEGION, partly because much of VLSI 
work is currently focussed on early visual processing tasks.  
Another reason is that nonlinear relaxation oscillators are 
more difficult to implement.  Nonetheless, several studies 
have attempted to implement LEGION network on VLSI 
chips. For example, a recent study by Cosp and Madrenas [7] 
employs a hysteresis current comparator and a damped 
integrator to implement a single relaxation oscillator.  On the 
basis of this, they successfully fabricated a chip 
implementing a 16x16 LEGION network using CMOS 
technology, and evaluated the chip on a number of 
segmentation tasks.  

  
V. DISCUSSION 

In 1982 Marr [11] proposed the revelational three-level 
analysis of complex information processing, in particular 
visual processing, namely, computational-theory level, 
representation/algorithm level, and implementation level.  
According to this approach, one must first perform the 

computational-theory analysis of a particular task before 
embarking on algorithm design and hardware 
implementation.  Computational theory analysis is to clarify 
the goals of the computation, analyze the appropriateness of 
the goals, and decide on general strategies for reaching the 
goals.  In a sentence, computational-theory analysis is to 
understand the character of the task.  For complex tasks, this 
analysis is extremely important. 

In essence, CNN is an implementation theory; a CNN 
model directly lends itself to circuit implementation.  On the 
other hand, CNN studies do not get at computational theory 
analysis, nor do they get at the representation/algorithm 
level, at least not in a direct sense.  A clear example is 
offered by image smoothing using anisotropic diffusion, 
which was proposed as an algorithm prior to its CNN 
implementation (see Sect. III.A).  Although LEGION is 
motivated by representational and algorithmic 
considerations, it too is largely an implementation theory.  
Realizing this helps to clarify their roles in overall 
information processing.  This suggests that, although CNN 
and LEGION studies are an integral part of modeling visual 
processing, they are no substitute for research at the 
computational-theory and algorithm levels.  

The boundary between the algorithm level and 
implementation level becomes uniquely fuzzy in the neural 
networks field.  Clearly one can come up with new 
algorithms while designing a new network for solving a 
particular problem.  One may also treat neural network 
solutions as a different kind of algorithm - the parallel and 
distributed processing kind.  LEGION image segmentation 
exemplifies such a situation.  Indeed many researchers in 
neural networks unconsciously carry out both algorithm and 
implementation analyses together. Despite this, Marr’s 
distinction remains a key guide for analyzing an information-
processing task.  

Building on the CNN successes, Chua proposed the 
concept of local activity and elevated it to the philosophical 
level [4].  It claims that broad phenomena of complexity, 
such as cooperative and competitive phenomena, far-from-
thermodynamic equilibrium phenomena, and edge of chaos, 
cannot emerge unless the medium is locally active.  The 
argument is established by contrasting locally active and 
locally passive media.  Unfortunately, it says little about the 
sufficiency of local activity.  There is no doubt that locally 
coupled networks can perform a wide variety of tasks.  Are 
they adequate, say, for visual processing?  Probably not.  A 
task alluded to earlier is attentional processing, where all the 
neural models proposed so far employ some form of global 
connectivity (see [18]).  Global connections also exist in the 
brain; for example, part of the thalamus connects with the 
cortex in a global way.  

To conclude, I have compared CNN and LEGION 
networks.  This comparison shows that the two frameworks 
are similar in many ways.  Their main differences lie in the 
underlying unit dynamics and whether global connectivity is 
allowed.   The comparison also suggests that CNN is better 

 



 

suited for early visual processing whereas LEGION is better 
suited for midlevel visual processing.  Due to their 
synergistic relationship an appropriate combination of CNN 
and LEGION will likely produce significantly enhanced 
performance.  
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