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NEURAL NETWORK RESEARCH
has grown explosively in the last decade, in
areas ranging from the microscopic func-
tioning of a single synapse to the macro-
scopic essence of consciousness, from solv-
ing the simple Exclusive Or mapping to
intractable problems of weather forecast-
ing. But across all problem domains, the
greatest potential for neural net models is
in pattern recognition, which causes little
difficulty for people or even animals but is
a staggering challenge to modern technol-
ogy. Unlike a von Neumann machine, which
sequentially executes a set of instructions,
neural nets provide a new paradigm of
computation based on networking many
basic units and performing local computa-
tions in a massively parallel way, thus
offering high hopes for pattern recognition.
The basic techniques of neural networks !
have been covered widely.!"* Instead of
attempting a thorough review, this article
focuses on four representative architec-
tures with a unique thread: their ability to
generalize. In my view, achieving proper
generalization, or invariance, is the most
challenging problem in pattern recogni-
tion, since mechanical template-matching
techniques can easily produce stiff recog-
nition.* Generalization over Hamming dis-
tance, a common approach, neglects the
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MoST NEURAL NETWORKS SHARE THE SAME STRENGTH AND
WEAKNESS: GENERALIZATION OVER HAMMING DISTANCE.
WHILE BREAKTHROUGHS IN PATTERN RECOGNITION CAN BE
EXPECTED FROM NEURAL NET RESEARCH, THE KEY TO FUTURE
SUCCESS WILL BE PROPER REPRESENTATIONS OF OBJECT
STRUCTURE, NOT POWERFUL LEARNING ALGORITHMS. A New

APPROACH, THE DYNAMIC LINK ARCHITECTURE, MAY HELP.

internal structures of objects to be recog-
nized, thus severely limiting applications
of most neural net models to invariant
pattern recognition. The dynamic link ar-

chitecture is a new approach, promising to :

overcome some of the difficulties facing
classical neural net models. Representa-
tion and invariance are two key issues for
all such models doing pattern recognition.

Associative memories

Associative (or content-addressable)
memories have been a key area of neural net
research.’’ The correspondence between
associative memory and pattern recogni-
tion is evident. Associative memory mod-
els can be classified into autoassociative
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and heteroassociative. The major feature
of autoassociative models is pattern com-
pletion, that is. the ability to recall a stored
pattern (template) when a similar pattern is
presented. Heteroassociative models build
associations between pairs of patterns. This
article focuses on one type of autoassociate
model. the Hoptield model, which is wide-
ly regarded as a major impetus to the cur-
rent resurgence of interest in neural net-
works. In terms of pattern recognition,
heteroassociative models resemble the
mapping network reviewed later.

The basic idea. Hoptield nets use an
intuitive idea: They store each pattern (tem-
plate) as connections between components.
When a new input pattern is presented, the
associative memory activates (recalls) the
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stored pattern that most closely resembles the

input. Due to the positive and negative con-

nections, the network can recall an entire pat-
tern on the basis of a sufficient subpart.

System architecture. The Hopfield ar-

chitecture is simple: a single-layer net- :
work with recurrent connections (see Fig-

ure 1).7 A network has N units of V; (i = 0,
..., N=1). V; takes a binary value (Hopfield
specified —1/1 values, but it is easy to
convert a 0/1 binary-valued x into —1/1
value by 2x—1). As an important constraint,
connection weights must be symmetrical;
that is, the same weight is assigned to both
directions between two units. Each unit
connects to all other units in the network.
Each stored pattern P" (r= 1, ..., M) relates

to a vector of N binary (—1/1) components, -

corresponding to a state of the network.
Algorithm. The algorithm for Hopfield

nets is as follows:

(1) Assign connection weights:

M

P

r=1

Wi = 0<ij<N-I

0, i=j (H

where wy; is the connection from unit; '

to unit i. The weight assignment is
done only once as the patterns are stored,
and no synaptic modification occurs as
the network computes.

(2) Present an input pattern I by assigning
the initial state of the network as the
input pattern: V,(0) = I;.

(3) To compute the network, update the states
of the network units asynchronously:

N-1
Vit +1)=sgn| Y wiVi(0)
j=1

0]

where the function sgn(x)=1if x 20, or
-lifx<0.

(4) Repeat updating by going to step 3 until
equilibrium is reached, that is, until no
V;changes between iterations. Atequi-

recalled by input I.
(5) To continue with the next input pattern,
2o to step 2.

H:-%Z»»vi,\/,vj 3)
ij

and emphasized the idea of viewing stored
patterns as dynamical attractors (minima
of the energy function).” On the basis of the
energy function, he showed that the net-
work converges when the units are updated
asynchronously using Equation 2, and also
converges with analog unit values instead
of binary values.® Later, Hopfield and Tank
used the energy function to solve small
versions of the NP-complete Traveling
Salesman Problem,’ triggering a great deal
of optimization research.

The Hopfield model has two major limi-
tations. First, its capacity (the number of

patterns that can be stored and accurately :

recalled) is severely limited. An optimistic

estimate of the maximum capacity is only !
© about 0.138N for random patterns, far less

than the number of possible states 2V, Sec-
ond, overlapping between stored patterns
can cause the network to reach an equilib-
rium not corresponding to any stored pat-
tern. This phenomenon is called the spuri-
ous local minimum problem. Boltzmann
Machine networks can overcome this prob-
lem using a simulated annealing procedure
governed by Boltzmann statistics.'® Im-

Figure 1. Hopfield net for associative
memory. Each unit connects to all other units
in the network.

is one of the most important advances in
the past decade of neural computation. The
description here follows the widely known
version by Rumelhart, Hinton, and Wil-
liams,'? although it is not considered the
first version. The backpropagation network
is a multilayer feedforward network that
uses the backpropagation training algorithm.
It is often called a multilayer perceptron
because it represents a significant exten-
sion to the classic perceptron model by
Rosenblatt,!* whose learning rule applies
only to a single-layer network, and whose
samples to be classified must be linearly
separable. For example, the simple percep-
tron model cannot compute the Exclusive

- Or of two binary inputs. Although people

posing constraints on the stored patterns, '

such as orthogonalization, might also alle-
viate the problems of capacity and spuri-
ous local minima.

Relation to pattern recognition. When
the Hopfield model is used as a recognizer,
the network activity after convergence is
compared with stored templates, and the
template that best matches the output is
selected. This template is the result of rec-
ognition if it sufficiently matches the net-
work output; otherwise, a “no match” re-

sult occurs. Because associative memory

models can be used for pattern completion,
the Hopfield net can generalize over Ham-
ming distance (the number of different bits

! orpixels between two binary patterns) when
librium, the vector of V;’s is the pattern .

Related results. In the same paper, 3

Hopfield introduced the idea of an energy
function (generally known as the Lyapunov
function in dynamical systems theory), de-
fined as

used as a pattern recognizer. That s, in the
ideal situation, the model recalls the stored
template that has the smallest Hamming
distance with a given input pattern.

Backpropagation

The backpropagation algorithm had a
colorful beginning.'' and its development
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realized that adding more layers could en-
hance capacity, appropriate learning rules
were absent for multilayer perceptrons until
backpropagation was invented. By intro-
ducing a hidden layer between the input
and output layers (see Figure 2), the back-
propagation network provides a powerful
learning algorithm that has been applied to
a wide variety of applications.

The basic idea. Backpropagation typi-
fies supervised learning, where the task is
to learn to map input vectors to desired
output vectors. The backpropagation learn-
ing algorithm modifies feedforward con-
nections between the input and the hidden
units, and the hidden and output units, so
that when an input vector is presented to
the input layer, the output layer’s response
is the desired output vector. During train-
ing, the error caused by the difference
between the desired output vector and the
output layer’s response to an input vector
propagates back through connections be-
tween layers and adjusts appropriate con-
nection weights (credit assignments) so as
to minimize the error.

System architecture. The three-layer

53




Figure 2. Diagram of a three-layer feedforward network.

network shown in Figure 2 is typical. The
learning algorithm works for any M+1-
layer network, thanks to the chain rule of
differentiation. V/" represents the output of
the ith unit of layer m, and takes analog
values usually generated by a sigmoid func-
tion of the form

S0 = !

[+e—(x-6)
with 6 as the bias or threshold for the unit.

4

Algorithm. The backpropagation algo-
rithm is as follows:

(1) Setall weights to small random values.

(2) Present an input vector I and a desired
output vector O. Apply I to the input
layer (m = 0) so that V® = I.

(3) For other layers, namely m=1,..., M,
perform forward computation:

V[_m =f ngzvjm—l (5)
)

where w" represents the connection
weight from V! to V.
(4) Compute the errors for the output layer:

B =vM(1-vM)o-v) )

(5) Compute the backpropagated errors for
preceding layers M—1. ..., I:

Slr_nf] - V,-m_l(l— V)’"—l )Z H'}'I-I‘O‘.'/?' (7)
J
(6) Adjust all weights:
wi(+ 1) =wi(n+ndmym-! (8)
where 1 is a gain parameter. Thresh-
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olds are adjusted in a way similar to
weights,
(7) Repeat by going to step 2.

The algorithm continues until the overall
error. which is the mean square difference
between the desired and the actual outputs
for all training patterns. is reduced to an
acceptable level.

Related work. The lcarning rule in this
algorithm reduces the overall error func-
tion E by gradient descent. (This method
reduces E by moditying a weight along the
reverse direction of the slope of E with
respectto the weight: namely. A W, is pro-
portional to —dE/dW,;. which is the sum of
the squared distance between the actual
output response to an input and the desired
output. See Equation 18. given later, for an
example.) Gradient-descent methods. such
as backpropagation. are plagued by the
local-minima problem. However. for rea-
sons that are not really understood. the
scheme has not suffered much from local
minima, as shown in many simulations. It
has also been proven that one hidden layer
(Figure 2) is sufficient to approximate any
mapping function.'* although with an ex-
cruciatingly large number of hidden units.
Otherresearchers have extended backprop-
agation (o train recurrent networks in con-
tinuous time.'3-t6

Besides the practical concern that train-
ing is generally slow (more on this short-
ly). one of the algorithm’s major theoreti-
cal obstacles is that formal analysis has
been difficult, if notimpossible. For exam-
ple. why does the hidden layer develop

“sensible™ internal representations, cru-
cial to the success of training? Nonethe-
less. this network model has enjoyed great
success in solving various problems.

Relation to pattern recognition. When
the backpropagation network is used for
pattern recognition, nodes in the output
layer usually correspond to stored tem-
plates. Different from the associative mem-
ory models where patterns are directly
assigned to a network, the backpropaga-
tion architecture needs an extensive train-
ing session to establish stored templates.
Afterwards, the network can be tested on
the training as well as on new examples.
For instance. the algorithm has been ap-
plied to recognizing handwritten zip code
digits: 7.291 examples were used as the
training set, and another 2,007 were used
for testing generalizations.!” The correct
percentage on the test set was 95 percent,
an impressive result,

During training, the high-dimensional
input space is divided into category re-
gions. each of which forms the same clas-
sification decision. The significant contri-
bution of the backpropagation algorithm is
that it can form arbitrarily complex deci-
sion regions, which is not a property of the
simple perceptron. A category region is
formed based on extrapolation of its train-
ing examples, and it by itself need not be a
connected region. Thus, if training is suc-
cesstul. the category region will include all
examples belonging to the category but no
example belonging to any other category.
New patterns are classified based on which
category region they fall in. Since the for-
mation of a decision region is based on
extrapolation in the input space, where the
distance between two points can be mea-
sured as the Hamming distance, the gener-
alization ability of backpropagation is to a
certain extent also based on the Hamming
distance between the input pattern to be
classified and the training examples. Rough-
ly speaking. the input pattern is classified
into the same category as its neighbors in
the example space. if they are sufficiently
close.

The ART architecture

Carpenter and Grossberg developed a
neural architecture for pattern recognition,
called the adaptive resonance theory, ART
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has gone through three stages: ART 1,!8
ART 2, and ART 3.2° Although each later
version enhances ART capabilities in cer-
tain ways, this review will only consider
ART 1, since it possesses the architec-
ture’s basic design philosophy.

The basicidea. ART is a type of compet-
itive learning network, and suitable for both
category (pattern) formation and recall
(recognition). When an input pattern is suf-
ficiently similar to (“resonates” with) one
of the stored categories (represented by sin-

gle units), ART recognizes the pattern as .
belonging to the category, and modifies the :

category itself to accommodate new fea- |

tures of the current input pattern. When an | s

input pattern is not sufficiently similar to -

any stored category, pattern formation oc-
curs: ART selects an uncommitted unit to
code the current input. If no more uncom-
mitted nodes are left, the current input re-

sults in no response. Thus, stored categories
remain stable to irrelevant input events, and :

yet are sensitive to novel features of inputs.
That is, ART makes a satistactory trade-off
between stability and plasticity.

System architecture. Figure 3 shows a

simplified version of ART 1. Itis anetwork

of two layers, F; and F,, which are fully |
connected in both directions. The forward

and backward connections between F; and
F, contain memory traces. F, also contains
category units that connect with each oth-
er, implementing the winner-take-all func-
tion (maximum selector). Each category
unit can be enabled or disabled. The input
component /;, the backward weight z;, as
well as units U, V], A, and R all take binary
0/1 values. Unit A enables F, to distinguish
between a top-down recalled template and
the bottom-up input. Unit R resets the ac-
tive F, unit if mismatch occurs between the
stored pattern and the input.

Algorithm. The following algorithm
implements the basic idea of ART:

(1) At time O, set z,-j(O) =1 and wj-,(()) =
1/(e+N), where 0 <i<N-land0<j <
M-1. The small € breaks ties. Enable
all units in F,, and set the vigilance
threshold p, which determines how
close an input pattern must be matched
to a stored template.

(2) Apply a new input vector 1.

(3) Find the unit that is best activated by
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the current input. This is done by com-
paring the inner product Iw; (0 <j <
M-1) of all the enabled units of F. The
winner V; has the greatest value I-w;.
This is implemented by the winner-
take-all network built in F,. The over-
all outcome is V; = 1, V; =0 for j # J.
To match I and the recalled template
z.)(the vigilance test), compute the ratio

_ Zilizij
Z,‘Ii

If r2 p, there is resonance; go to step 5.
Otherwise, disable V, and repeat the
process of finding an appropriate cate-
gory by going to step 3.

Adjust the winning vector z.; by per-
forming a logical And operation. This
deletes any bits in it that are not also in

(4

N

r

(9)

-

I (weight w; is a normalized version of |

z.;, and thus is

Tylt+l) = (0 « 1
:rJ(I+1)
€+2i;,v‘,(r+l)

(6) Repeat by going to step 1.

(10)

wy(t+1)= (an

Steps 3 and 4 of this algorithm form the
search process. In particular, let’s look at
how auxiliary units A and R achieve their
functions in a desirable way. The units U;
are designed so that

I if no V; is on
Ui= I mzj:,-j\/_,- otherwise  (12)

~ Since only one unit can be activated at a
time in F,, the second part of Equation 12,
which is used for the vigilance test, takes

only binary values. The choice here can be
achieved with unit A, which is triggered
when there is an input but no unit
in F, is activated. Thus, A is equal to
[3;1; - N Z;V;]*, where the step function

adjusted too): !

Figure 3. Diagram of the ART 1 architecture.
The thick arrows represent connections
between all units U;in F, and all units V;in F,.

Related work. While ART 1 is designed
for binary inputs, ART 2 can take either
analog (continuous-valued) or binary in-
puts.'® Also, in ART 1, a stored template
will gradually diminish by the And opera-
tion of Equation 10 if elements of input
patterns are missing due to noise. ART 2
has overcome this gradual diminishing prob-
lem by replacing the And operation with a
gradual tuning that adjusts the stored tem-
plate to the current input pattern. By intro-
ducing plausible neurotransmitter modu-
lation, ART 3 justifies the disabling process
in ART 1 and 2 that is due to a mismatch
(see Figure 3). Also, previous asymmetry
between layers F, and F, is no longer nec-
essary in ART 3,%0 thus allowing a hierar-
chy of layers. One potential problem with
ART networks is the serial search time,
which in the worst case is proportional to
the entire capacity of long-term memory.

¢ When storing a large number of items, this
' problem is a serious concern.

[x]* = 1 if x > 0, or O otherwise. Let U; .

receive the input

hi=T+ Yz + A (13)

and U, = (h—1.5]*. This formation of U, is
equivalent to Equation 12, and is referred
to as the 2/3 rule, since two out of the three
inputs I, ¥; z;V;, and A must be on to
activate U,.

ated when r in Equation 9 is less than p.
This is equivalent to letting R=[p X ;-
%LUl

Relation to pattern recognition. Pri-
marily designed for pattern recognition,
ART has been applied to such problems as
visual pattern recognition, speech percep-
tion, and radar classification.?! For exam-
ple, when ART 2 was used to classify
analog curves, the network classified 50
patterns into 34 categories,!® and results
appeared very reasonable. As clearly shown
in Equation 9, ART classifies patterns on
the basis of Hamming distance, and thus
bases generalization on the same measure-
ment used by the other models already
discussed.

- Dynamic link architecture
The disabling signal (Figure 3) is gener-

The idea of dynamic links was first pro-
posed by von der Malsburg in 1981 as a
theory of brain function,?? which he later
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Figure 4. Dynamic link architecture. Only the connections between relevant units that are

occupied by some pattern are shown (in black).

condensed into a paper.?> He challenged a
fundamental doctrine of neurobiology and
neural network research: that neurons (units)
code features, while connections between
neurons code memory. Neuron activities
are updated rapidly, corresponding to fea-
ture onset and offset, but connection weights
are modified slowly, corresponding to long-
term memory. All three neural net frame-
works reviewed earlier adopt this view.

According to the doctrine, the presenta-
tion of a green A activates two units corre-
sponding to features “green” and “A.” Thus,
if a green A and ared B are presented at the
same time, four units corresponding to
“green,” “red,” “A,” and “B” are all acti-
vated. Now the question is, how can the
brain distinguish “green A” and “red B” as
actually presented versus “green B” and
“red A”? There is no way to avoid this
confusion by looking at the activities of the
four units. To get out of this difficulty,
many models introduce high-level units
that code combinations of features, leading
to the notion of grandmother cells. Besides
other problems such as reliability, this
scheme would result in a formidable unit
population, since two units are required to
code both the smiling grandmother and the
crying grandmother.

To solve this problem, von der Malsburg
proposed dynamic links, in which, in addi-
tion to unit activity, connections between
units are also rapidly modified, correspond-
ing to the onset and offset of patterns.
Thus, there are two connection weights
between any two units for coding memo-
ries: the temporary link for fast changes,
and the permanent link for slow changes.
Back to the previous example, when the
green A and the red B are presented at the

same time, the link between features “green”
and “A” and the link between “red” and
“B” are also activated. This regulates the
activity of the four feature units so that
there is correlation of firing between units
“green” and “A,” and between “red” and
“B.” (One way to implement this is to use
phase locking between firing impulses, as
shown in Figure 5 later.)

The basic idea. I will skip the theory’s
biological implications and concentrate on
the dynamic link architecture for pattern
recognition. Pattern recognition must be
invariant under various transformations;
for visual pattern recognition, this includes
translation, dilation, rotation, and distortion
(possibly due to changes in viewing per-
spectives). To achieve invariant pattern rec-
ognition, a network must explicitly encode
neighborhood or topological relations be-
tween a pattern’s features. Dynamic links
do just that: they are activated, like neurons,
in response to the occurrence of specific
topological relations. Therefore, instead of
having neuronal dynamics, we now have
connection dynamics. Recognition corre-
sponds to a graph-matching process: Input
patterns and stored patterns are viewed as
graphs, rather than sets of unit onsets.

System architecture. Different versions
of the dynamic link architecture for invari-
ant pattern recognition have been proposed
in the last few years. I will describe a
simplified version of earlier work:2*2% The
architecture consists of two layers, an in-
put layer A and a memory layer B (see
Figure 4). The memory layer consists of
identical M subnets B,,...,By, each of which
holds one stored pattern. Layers A and B,

(r=1, ...,M) are 2D grids of units, and A
fully connects to each B,. Within all grids,
each unit V;; connects only to its three
neighbors Vi, i, Viyj and Vi, 54, and
the subnets in B are not connected to each
other. The connection from node Vj; to
node V;; is described by two types of
weights: a permanent binary 1/0 link w;; 4,
and a temporary link z;; that satisfies
0<zjm Swyu (14)
Assume that each stored pattern P’ (r =
1,...,M) is a matrix of binary components.

Algorithm. The algorithm for the dy-
namic link architecture is as follows:

(1) Assign permanent weights. Each pat-
tern P” to be stored is assigned to sub-
net B” such that

PPy ifi=k+1j=1-1,,0rl+1
W. 0, =
0 otherwise (15)

The long-term weight assignment in B
is done only once as the patterns are
stored. In addition, wy; ;= 1if V;€ B
and Vi, € A.

(2) Present an input pattern I to A by as-
signing temporary links within A:

iy ifi=k+1, j=1-1 1 orl+1

Giw =10 otherwise (16)
After this is done, the temporary links
in A are fixed (clamped) until the
recognition process is finished. Also,
initialize z;;y = € wy;, for V;; € B and
Vi €A or B, where € is arandom value
between 0 and 1.

(3) Match an input graph with a stored one
by minimizing this energy function:

H(z) =- ZZ,-jz,yz,-kzkl +
i,jeBik,lecA
2
YZ[ Y 2 —1] +
ieB\keA

a7

2z

keA\ieB

Then minimize H(z) using gradient
descent:

a w
zij(!+1)={z'j(t)—n%} (18)
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where []¥ means that z;(++1) is con-
fined to the interval [0, w;;]. Atequilib-
rium, H(z) is minimized, and the con-
nection pattern on layer B represents
the pattern recalled by input L.

(4) Repeat by going to step 2.

By minimizing the energy function in
Equation 17, the algorithm retrieves a spe-
cific stored pattern that is similar in struc-
ture to the current input pattern. The first
term in Equation 17 plays the role of map-
ping the edges of the graph corresponding
to the input pattern on layer A onto graphs
stored in the subnets of layer B. Since the
subnets of layer B are not linked, this term

favors neighborhood correlation between

the input pattern and each stored pattern on
a subnet. The second and third terms pro-
vide constraints on the number of links for
the mapping from A to B: Each node in A
should map to one and only one node in B.
Taken together, in low-energy states, 1-to-
1 mapping from A to B will be established.

Related work. Pattern recognition by

graph matching is essentially equivalent to

the problem of finding graph isomorphism,
in general an NP-complete problem.?
However, von der Malsburg argued that
problems arising from planar graphs that
are used mostly for practical 2D pattern
recognition are computationally tractable.”
As shown elsewhere,?* pattern recognition
in this scheme achieves translation invari-
ance and moderate distortion invariance. A
certain amount of overlapping in layer B is
also tolerable, such that the number of
patterns stored in B can be smaller than the

number of subnets. Gradient descent as
used in Equation 18 is a heuristic method, |

and can be replaced by other techniques
such as simulated annealing.?’

The major restriction of this architecture
is that rigorous formal analysis is not avail-
able. For example, no proof is given whether

the network system always converges, and if -

so, whether the energy minimum is a global
one. Many other practical questions, such as
the speed of convergence and storage effi-
ciency, remain unanswered. The lack of
formal treatment clouds the assessment of
the dynamic link architecture’s usefulness.

Relation to pattern recognition. Like
the Hopfield model, when the dynamic link
architecture is used as a recognizer, the
{z;;}; /e pafter convergenceis compared with
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templates stored in B (thatis, {wy}; c 5),and |
the best-matched template is selected. If !
this template is sufficiently close to the
current connection pattern on B, the tem-
plate is the output of the recognition pro-
cess; otherwise, “no match” is the output.
Researchers are applying this approach
to human-face recognition.?®? A portrait !
gallery of 87 face images was stored, and
patterns resulting from different facial ex-
pressions, viewing perspectives, and sizes
of stored templates were used as the test set.
The overall error was less than 15 percent.?®

Invariant pattern recognition is the mo-
tivation behind the dynamic link architec-
ture. The algorithm provides translation
invariance, since the connections from A to
B are not specific to locations of layer A.
Also, pattern recognition is to a certain !
degree invariant to systematic (as opposed
to random) distortions such as changes in
perspective, size, and so on. Distortion can .
change a pattern drastically in terms of |
Hamming distance, but the change appears '
much less drastic it viewed from the per- °
spective of connection patterns; neighbor-
ing nodes in a graph still tend to be neigh-
bors after systematic distortions. In other
words, the algorithm demonstrates certain
invariance to “rubber-sheet” transforma-
tions. This is because pattern recognition is
based on image structures (graph isomor-
phism) rather than eidetic images (Ham-
ming distance).

Other architectures

As stated in the beginning. I have not |
tried to give an extensive review, thus
necessarily overlooking many other neural
net architectures. For instance, in Ko-
honen’s self-organizing map,*’ trained units |
spatially near each other in an output layer
recognize similar input patterns. This unique
feature enables the network to perform
wellin noisy data. Butagain, this approach.
like ART, measures similarities between
patterns by Hamming distance.

Representation and
invariance

The neural net approach provides a non-
traditional way of formulating and solving
problems, and most popular neural net-
works perform as well as traditional pattern ;

recognition approaches.®® However, it is too
early to say that current techniques provided
by neural networks have outperformed tra-
ditional algorithms. As mentioned earlier,
pattern recognition in most neural networks
generalize over Hamming distance, a prop-
erty achieved long ago.* Although networks
possess a capacity for learning, if learning
cannot augment performance, its value in-
evitably will be depreciated. We could ar-
gue that neural algorithms are inherently
parallel; however, most traditional pattern
recognition algorithms are also parallel, so
both will exhibit increased performance on
parallel machines. To strengthen its posi-
tion in the toolbox of pattern recognition
designers, the field of neural networks will
eventually need to demonstrate better per-
formances than traditional approaches.

These comments are not intended to
downplay other important contributions of
neural networks. For example, neural com-
putation has an important characteristic:
its uniform structure is composed of only
units and connections. With the backing of
massively parallel VLSI technology, this
uniform structure might allow neural net-
works to become a new-generation non-
von Neumann computing architecture.?
Another important feature of the neural net
approach is its robustness to noise. This is
due partly to distributed representation and
ample interconnections built naturally into
the network. Also, the methodology of
neural computation appeals to neuroscien-
tists. In this respect, biological plausibility
becomes the top assessment criterion of a
model. To enhance understanding of brain
functions, neural models must explain ob-
served data and predict new phenomena
subject to experimental testing (an exam-
ple study can be found elsewhere??).

Invariance and Hamming distance.
Invariance is a fundamental property of
pattern recognition. However, basic types
of invariance such as translation, rotation,
scale, and various distortions are beyond
generalization over Hamming distance.
Thus, neural networks that use this mea-
sure to generalize can deal only with very
limited invariance. We might argue that a
backpropagation network can be trained to
discriminate a triangle and a circle without
reference to their positions, given suffi-
cient training examples. The nature of su-
pervised learning is example-based, and
the failure of performance can always be
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Figure 5. Segmentation of connected images: (a) the Cup image and the Desk Lamp image are
Eresented to o 15x15 grid of oscillators; (b) the instant activity of the oscillator grid at the

eginning of dynamic evolution (the amplitude of each oscillator’s activity is indicated by the
dircle’s diameter; only the oscillators whose activities are nonzero are shown); (c) and (d) the
network activity at two time instants after the system has evolved for a short time; (e) the
temporal activities of two typical oscillators representing the two images.

attributed to inadequate examples. But if
all possible examples are given in training,
there is no generalization at all. In addi-
tion, the number of examples needed for
learning a nontrivially few concepts would
be prohibitively large, and this is becom-
ing an increasing concern.34

Many models, such as ART, treat invari-
ance as part of preprocessing and resort to
techniques developed in computer vision.2!
Invariance over linear transformations
(translation, rotation, scale) might be achiev-
able via a Fourier transform or similar
transforms, which can be implemented by
proper neural network architectures.3S But
the invariance of distortion, for instance, a

flag swinging in the wind, can in no way be
achieved by such transforms.
Invariance, in my view, will eventually be

captured in neural networks by proper rep- |

resentations, not by powerful learning al-
gorithms. Various types of invariance re-
flect the constructions of the world and the
way we interact with it. For example, the
same object in the real world can be per-
ceived from different angles (translation),
distances (scale), and perspectives (rota-
tion); the same object might be deformed
(distortion) by nature, such as growth or
wind. Moreover, the object might be situ-

ated in a complex background with many

other objects, and it must be segregated
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from the background before it can be per-
ceived properly. The brain must recognize
these transformations to survive (to catch
prey or avoid predators, for example), and
this general-purpose ability should be in-
herited through proper representations.
Thus, a major challenge is how to encode
correct constraints into neural networks
before they are subject to learning. The
following case study illustrates this point.

Segmentation of connected images.
Segmentation is an important stage of per-
ception and a critical preprocessing step
for recognizing specific patterns. It is the
inverse of perceptual grouping: forming a
single segment. According to Gestalt psy-
chology, one of the most important princi-
ples of grouping is connectedness, the
strong tendency of the visual system to
group a connected region as one segment. 36
Perceptual grouping is largely innate. The
following network for segmenting con-
nected images is based on my recent find-
ing that the dynamics of a network of
locally coupled neural oscillators can drive
the network to reach phase synchrony.3
Segmentation is based on the idea that a
single segment is expressed by phase syn-
chrony within its constituent components
(pixels), and different objects are expressed
by different phases of oscillations.

A 2D network is constructed for this
task, with each oscillator connecting lo-
cally to its four neighbors, thus forming a
grid. Suppose we want to segment the
image of a cup from that of a desk lamp.
Figure 5a shows a grid of 15x15 units and
the images. Apparently, Cup and Desk
Lamp are both connected regions, but they
are not connected to each other. Each
oscillator i is defined as a feedback loop
between an excitatory unit x; and an inhib-
itory unit y;:

dxj/dt=—x;+ f(x;— Bys+ Si+ I+ p) (19a)
dyi/dt = Ay, + (0. x;) (19b)

where o and B are coupling parameters
between the two units, S; represents inputs
from the other oscillators, and J; represents
external stimulation. Therefore, oscillators
communicate through their excitatory units.
| A is a decay parameter, and p denotes the
‘ amplitude of a Gaussian noise term. f,(v) is
a sigmoid function as defined in Equation
4, where r € {x, y}. It has been shown that
the system defined by Equations 19a and
1 19b can produce oscillations of different
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frequency and amplitude within a wide
range of parameters, and the oscillator mode]
can be biologically interpreted as an ap-
proximation to a group of excitatory and
inhibitory neurons.’

The objects to be segmented are presented
to the network by simply setting the /;'s of
the oscillators stimulated (covered) by the
objects to a high value (see Figure 5a).
Thus the stimulated oscillators are active,
while the others keep silent. The neighbor-
hood connections within the network will
then synchronize the oscillators represent-
ing a single segment (a connected region).
Oscillator groups representing different
objects cannot be synchronized because
there are no interconnections between them.
Figure 5b through 5d display the simula-
tion results for segmenting Cup and Desk
Lamp. The phases of the active oscillators
are initially randomized. Figure 5b shows
a snapshot of the network activity shortly
after the network started to evolve accord-
ing to Equations 19a and 19b. At this time.
there was no grouping within each object.
and oscillator activities were largely ran-
dom. Figure 5c shows a snapshot after the
system evolved for a short time. We can
clearly see the effect of grouping: Oscilla-
tors belonging to the same object now have
almost the same activity. Also, the activi-
ties of the Cup oscillators are much higher
than the Lamp oscillators. Figure 5d shows
another snapshot, where the Lamp oscilla-
tors reach high activity while the Cup os-
cillators exhibitmuch less activity. To help
illustrate the entire dynamic process, Fig-
ure Se shows the temporal activities of the
two oscillators, the upper one representing
Lamp and the lower one Cup. An object is
synchronized when steady oscillations oc-
cur. Afterseveral cycles, both objects reach
phase synchrony, but Cup reaches it earlier
than Lamp, since Cup is smaller and more
uniform (Figure 5a). Figure Se also shows
that there is a “chaotic” transient before
each object reaches synchrony. I'did nottry
to make the two objects antisynchronized
in this simulation, but it is possible to do so
with an inhibitory mechanism.

Pattern segmentation is traditionally done
by detecting edges and contours, and then
labeling different regions based on closed
contours.®3 The solution provided here
operates directly on connected regions,
avoiding the detour of detecting contours
and labeling regions, which is often an
ambiguous process. Using phase synchrony
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of fast neural oscillations to symbolize
object grouping can potentially serve as a
mechanism for visual attention. whereby
multiple objects can be attended simulta-
neously. “Simultaneity” is used here in the
psychological sense: The basic perception
time unit is a multiple of oscillation cycles.
during which each object has its chance to
reach a peak activity.

Apparently. this segmentation mechanism
works regardiess of relative positions be-
tween images or their shapes. The neighbor-
hood connection pattern in the network can
be viewed as a built-in constraint for this
task. and no learning is involved. Yet. the
solution is indeed generic in the sense that
any connected image can be grouped this
way. Neighborhood connectivity is impor-
tant because it preserves the objects’ geo-
metrical structure. which is lost in a fully
connected network. If we allow lateral con-
nections beyond immediate neighbors. net-
work capability and flexibility will be en-
hanced markedly. Since lateral connection
is a general property of brain organization.
it is not hard to imagine that such a style of
network might exist in the visual system.

Of course. segmentation of real images
is more complicated than just segmenting
connected regions. Issues such as object
occlusion, intersecting segments, and noise
make the problem more difficult. The ex-
ample provided here illustrates a new ap-
proach to tackling the problem of object
segmentation by emphasizing emergent
properties from local feature similarities.
which I believe will play a fundamental
role in any successful system of real image
segmentation.

,NVARIANT PATTERN RECOGNI-
tion will be a problem facing neural net-
works for some time, and the challenge is
to overcome the limitation of Hamming
distance generalization. Translation invari-
ance would be easiest to achieve, and there
are already networks such as the dynamic
link architecture that can handle it quite
successfully. Scale and rotation invariance
would be harder. but a satisfactory solution
can be expected in the ncar future. The
most difficult one is invariance of distor-
tion, which maintains topological struc-
tures. Distortion itself contains a variety of
transformations. Again, the dynamic link
architecture is one of the few networks that

directly attack the problem. Proper repre-
sentation of the object structure will prob-
ably be the key to the solution.

In many cases. a visual scene is not
recognized as a single pattern. Imagine
that when you walk into a classroom, a
typical scene is composed of students, a
blackboard. desks. and chairs. Before the
entire scene is understood, it is first seg-
mented into components (so called preat-
tentive processing), each of which is then
recognized. and the entire scene is recog-
nized as a synthesis of its components (in
general. segmentation and recognition
should be an interactive process in percep-
tion). Before such segmentation takes place.
no meaningful recognition can be obtained,
even with invariant pattern recognition.
Pattern segmentation can be based on ei-
ther input coherency (Gestaltlaws) or prior
knowledge. The example in Figure 5 dem-
onstrates how segmentation can be accom-
plished based on features of sensory inputs
(connectedness): another neural model*’
has demonstrated segmentation based on
stored patterns (prior knowledge). Neural
segmentation will be an important topic for
future research, and its solution largely
depends on how to discover global coher-
ency based on local information and mem-
ory, and how to simultaneously represent
multiple patterns. Scene analysis can only
be addressed after an appropriate segmen-
tation algorithm is in place.

So far, I have only discussed pattern
recognition based on spatial features; in
addition. time provides another framework
for organizing patterns in hearing and vi-
sion. Temporal patterns have often been
handled as spatial patterns with delay units™!
or temporal decays,**? but these models
lack a proper treatment of time. Thus, prob-
lems such as speed and distortion invari-
ance remain unsolved. I predict that time
will be treated as an independent and major
dimension, instead of being secondary to
spatial dimensions. Since time is also fun-
damental for segmentation (for instance,
segmentation by motion) and for causal
reasoning. temporal information process-
ing will be a major focus in future study.

Neural networks will eventually achieve
great success in pattern recognition, and
the dynamic link network promises to reap
great rewards in this direction. Although
the system itself is much less specified
than standard ones, it has certainly made
progress, particularly by changing the way
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the problem is treated. For pattern recogni-
tion, generic learning machines will grad-
ually give way to neural networks that
encode proper constraints, thus capturing
the uniqueness of being a pattern.
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