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A Neural Model of Synaptic Plasticity
Underlying Short-term and Long-term
Habituation

DeLiang Wang*
Ohio State University

It has been demonstrated that short-term habituation may be caused by a
decrease in release of presynaptic neurotransmitters and long-term habituation
seems to be caused by morphological changes of presynaptic terminals. A
parsimonious model of short-term and long-term synaptic plasticity at the
electrophysiological level is presented. This model consists of two interacting
differential equations, one describing alterations of the synaptic weight and the
other describing changes to the speed of recovery (forgetting). The latter
exhibits an inverse S-shaped curve whose high value corresponds to fast
recovery (short-term habituation) and low value corresponds to slow recovery
(long-term habituation). The model has been tested on short-term and a set of
long-term habituation data of prey-catching behavior in toads, spanning
minutes to hours to several weeks.
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Introduction 
’

It is a widely accepted view that memory has dichotomous forms: short-term mem-

ory (STM), which vanishes typically within minutes, and long-term memory (LTM),
which can last for days, weeks or longer. Memory is believed to be caused by synap-
tic plasticity, and there is a good deal of evidence from many animal models-both
vertebrates and invertebrates-suggesting that synapses can also undergo two forms
of plasticity that, in general, parallel short-term and long-term behavioral changes
(Thompson, 1986; Hawkins, Clark & Kandel, 1987; Greenough & Bailey, 1988;
Dudai, 1989; Hawkins, Kandel & Siegelbaum, 1993).

Habituation, defined as a decrease in the strength of a behavioral response to re-

peated stimulation, is probably the most elementary and ubiquitous type of learning
(Thorpe, 1956; Thompson, 1986). Indeed, it occurs in all animals. An animal learns
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by habituation to ignore the stimuli that occur repetitively but have no significance
to the animal, and thus keeps alert to novel stimuli. Habituation therefore has critical
survival values for the animal. Extensive studies have been undertaken to elucidate

habituation behaviors and to understand their neurophysiological mechanisms. To
distinguish habituation from other types of behavioral decrement (such as fatigue),
Thompson and Spencer (1966) summarized a number of criteria of habituation,
among which are (1) exponential decay of response strength with the number of
stimulus presentations, (2) spontaneous recovery with rest, (3) more rapid and pro-
nounced habituation with repeated series of habituation training, (4) generalization
of habituation to similar stimuli, and (5) rapid recovery of the habituated response
(dishabituation) on presentation of a different stimulus.
When studying habituation of prey-catching behavior in toads, Ewert (1967)

observed that recovery of the response after habituation exhibits two phases: a short-
term one that lasts for a few minutes and a long-term one that lasts for at least
6 hours (see Ewert, 1984, for a review). Several years later, Carew, Pinsker, and
Kandel (1972) reported long-term habituation of the siphon and gill withdrawal
reflex in the marine mollusk Aplysia, which can last several weeks. Similar findings
of both forms of habituation have been reported for the rat acoustic startle response
(Leaton, 1976; Leaton & Supple, 1991) and the crab escape response (Tomsic &

Maldonado, 1990). Interestingly, Koshland and his colleagues have recently observed
both short-term and long-term habituation in single neurons in culture in response
to repeated stimulation of either acetylcholine or adenosine triphosphate (McFadden
& Koshland, 1990; Cheever & Koshland, 1992).

Studies on synaptic mechanisms underlying behavioral habituation suggest that
short-term habituation generally operates on presynaptic terminals as a result of
reduced neurotransmitter release (Thompson, 1986; Greenough & Bailey, 1988;
Dudai, 1989; Hawkins, Kandel & Siegelbaum, 1993). Long-term habituation, on
the other hand, may be accompanied by structural changes of presynaptic terminals
(Bailey & Chen, 1983, 1988a; Greenough & Bailey, 1988). As demonstrated in

Aplysia, short-term and long-term habituation may share a common locus and certain
aspects of a common mechanism (Hawkins, Clark & Kandel, 1987). The idea that
both STM and LTM are coded into the same sites (synapses) receives support from the
studies of other forms of learning, such as sensitization and conditioning, and from
research on other animal species (for a review, see Hawkins, Kandel & Siegelbaum,
1993), including Hermissenda (Alkon et al., 1990), crayfish (Lnenicka, Atwood &

Marin, 1986), and frog (Herrera, Grinnell & Wolowske, 1985).
Because it is well described behaviorally in a number of animal species and its

cellular mechanisms have been revealed in simple systems, habituation has also been
studied from the modeling perspective by a number of investigators. In particular,
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short-term habituation can be described quite well by a first-order differential equa-
tion that simulates the evolution of a synaptic weight, and such models in certain

systems can fit the quantitative data very successfully (for details, see section 2). An

important theoretical question is whether the two forms of habituation can be mod-
eled simultaneously. Perhaps due to scarcity of systematic long-term habituation data
or because LTM involves long simulations (just as in the experiments), little research
has been devoted to this question. In one of few studies available, Ciaccia, Maio, and
Vacca (1992) recently proposed a mathematical model for both short- and long-term
classical conditioning. Their model, called the learning gate model, relies on biological
data drawn on the study of Aplysia conditioning. This model introduces two con-
nection weights for a single synapse, one representing long-term trace and another
short-term trace. The overall synaptic efficacy is taken to be the product of the
two (see also Gardner-Medwin, 1989). Several qualitative aspects of conditioning
have been simulated by the learning gate model, including spontaneous recovery and
second-order conditioning, but the model has not been tested on quantitative data
of conditioning.

In this article, I will address the relationship between short- and long-term ha-
bituation and provide a unified model that can be used to explain both short- and

long-term habituation data. To focus our investigation, my colleagues and I chose
toad visual habituation as the prototype. There are a number of reasons for this

choice. First, as mentioned earlier, there exist systematic behavioral data on both
short- and long-term habituation. Second, the toad visual system is relatively simple
compared to other higher vertebrates and has been a subject of extensive biological
study (for reviews, see Llinas & Precht, 1976; Ingle, 1983; Ewert, 1984; Ewert et al.,
1992). Third, toad visual habituation has served as a model of our computational
studies in the past. In particular, we have simulated short-term habituation of visually
induced prey-catching behavior (Wang & Arbib, 1992), which enables the animal to
discriminate similar visual stimuli (Wang & Arbib, 1991a). Ultimately, we will argue
that the model proposed here is not limited to toad visual habituation and that the
basic principles may be applicable to modeling other kinds of habituation as well.

Z A Model of Synaptic Plasticity

Once the intensity of a behavior (an animal’s response) can be quantitatively mea-
sured, habituation can often be quantified by changes in the intensity of the behavior.
It is thus interesting to explain the observed quantitative data by a computational or
mathematical model. The general idea behind this type of modeling is to view habit-
uation as an isolated process of synaptic plasticity and to link modification of model

synapses directly to behavioral changes (see Stanley, 1976, for a typical treatment).
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In simple systems, this type of model may be readily applied to explain cellular

processes of habituation. In more complex systems, such as prey-catching behavior
in toads, which involves many neurons in several visual nuclei, this simple way of

linking behavioral decrement to synaptic plasticity appears insufficient and perhaps
simplistic. The justification behind this approach for complex behaviors, we believe,
is that as long as synaptic weights that undergo habituating modification eventually
have a multiplicative role in determining the behavioral outcome, synaptic plasticity
directly corresponds to behavioral changes. This condition holds for many neural
models of adaptive behavior, including our model, as we will see later. In this sense,
the study of habituation as an isolated process can contribute to the understanding
of neural mechanisms underlying behavioral habituation.

Mathematically, the decrease of synaptic efficacy y that gives rise to habituation
is mostly modeled by a first-order differential equation (see, among others, Stanley,
1976; Gingrich & Byrne, 1985; Lara & Arbib, 1985; Gluck & Thompson, 1987;
Ogmen & Moussa, 1993):

where yo is the initial value of y; S(t~ represents external stimulation to the synapse; T,
the time constant, governs the rate of habituation; and ce regulates the rate of recov-

ery. This linear differential equation exhibits both exponential decrease with repeated
stimulation and exponential recovery when the stimulus is withdrawn, which can be

easily seen from the following analysis. Let S(t~ be a positive constant, denoted as S,
when the stimulus is applied. With the assumption that y(O) = yo, the solution for
Equation 1 is 

t

thus showing exponential decay with time. Here Exp symbolizes the exponential
function. When the stimulus is withdrawn-that is, S(t~ = 0-the solution of
Equation 1 becomes y(t) = yo - (yo - yi )Exp(-et tl-r), where y, is the value of y
at the time of stimulus withdrawal. Thus, the weight y exponentially recovers to its
initial value yo.

Although Equation 1 successfully describes exponential decay and recovery, the
two basic properties of habituation (Thompson & Spencer, 1966; Ewert, 1984;
Cheever & Koshland, 1992), it can model only short-term habituation (more ex-
planations follow). When simulating Aplysia’s habituation (Wang & Hsu, 1990) and
toad’s stimulus-specific habituation (Wang & Arbib, 1992), we proposed an idea to
incorporate both short- and long-term habituation by using an inverse S-shaped
curve (Fig. 1) to describe two forms of memory. Such a curve can be roughly di-

 at The University of Manchester Library on January 22, 2013adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


115

Figure 1
Ten z(t) curves of
Equation 4 with different
parameter values. to = 5,
6, 7, 8, 9, respectively, and
’Y = 0.5 for the thick
curves and 1.0 for the thin
curves (see Wang & Arbib,
1992, for a similar graph).

vided into three stages: a high-value stage, a low-value stage, and a middle transition
stage around the inflection point, during which a rapid transition from a high value
to a low value occurs. Linking to STM and LTM, the high-value and low-value
stages correspond to the two forms of memory. This idea is now adapted to a neural
model of the following form:

where y, yo, T, and cx are as described for Equation 1. The first term in Equation 3a
regulates recovery to yo, and its rate is controlled by variable z(t~, defined in Equa-
tion 3b. The second term in Equation 3a regulates habituation, with (3 controlling
the effectiveness of the presynaptic stimulus S(t), which is multiplied by y(t~ to form
the activity-gated input (see also Ogmen & Moussa, 1993), as opposed to direct input
in Equation 1. The intuition behind the activity-gated input is that a stimulus re-
duces the synaptic weight more rapidly in an early stage when the weight is relatively
large. In addition, Equation 3a naturally reflects the constraint that the weight y(t)
never goes below 0. This is because the smaller (but still positive) the value of y, the
less the second term (negative one) on the right-hand side of Equation 3a reduces
the value of y. Eventually, due to the first term of Equation 3a, an equilibrium is
reached before y reduces to 0. On the other hand, if S is too large compared to a
in Equation 1, y can reduce to a negative value, as is clearly shown in its solution of
Equation 2.
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If there is no external stimulation [S(t~ is set to 0], z(t) does not change its value. To
study the behavior of Equation 3b, let us assume without loss of generality that there
is a constant unity stimulus. Then Equation 3b becomes dz( t) / dt = 1’z( t) [z( t) - 1].
With the initial condition t = to, z(t) = 0.5, the solution to the equation is

which is a typical inverse S-shaped curve with the inflection point at t = to. The

transition speed from the high-value stage to the low-value stage is controlled by the
slope at the inflection point, which equals -~y~4. The overall speed of the decrease
of z(t) is controlled by to, and the larger is to, the slower is the speed of decrease
of z(t). Figure 1 shows two groups of z curves with different values of l’ and to.
It is clear from Equation 3a that the effect of z(t) on y(t) is to control the rate of

recovery. When z(t) is in the high-value stage, recovery is relatively fast; when z(t)
is in the low-value stage, recovery is relatively slow. These two stages of recovery are
used to model two forms of memory, STM and LTM. It should be clear that z(t)
evolves much slower than y(t~.

The idea behind the basic assumption of the inverse S-shaped curve is the fol-
lowing : As mentioned in section 1, long-term habituation appears to be caused by
structural changes of presynaptic terminals as a result of repeated presynaptic stim-
ulation. Because of the behavioral dichotomy of STM and LTM, as opposed to a
smooth transition from STM to LTM, there must be a nonlinear relation between
the amount of the structural changes and the amount of stimulation. An inverse S-

shaped curve (known as a logistic function in applied mathematics) seems to provide a
minimum model that captures this type of nonlinearity with two global states (STM
and LTM) and yet accommodates a dimension of flexibility. Figure 1 illustrates how

the parameters of Equation 3b modify the detailed shape of a curve. This kind of
flexibility is absent from simpler formulations of nonlinearity, say binary (0/1) or

polynomial functions

3 Computer Simulation of Short-term and Long-term Habituation in Toads 
’

Visually induced prey-catching orienting behavior in toads and frogs has long been
known to be habituatable. In common toads, this habituation exhibits the same

characteristics as summarized by Thompson and Spencer (1966). Ewert and his
colleagues have conducted extensive behavioral experiments on this type of visual
habituation in toads (Ewert, 1967, 1970, 1984; Ewert & Kehl, 1978), and their

systematic data form an ideal test bed for quantitative habituation models at both
time scales. Short-term habituation, particularly the data of Ewert and Kehl (1978),
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Figure 2
Visual pathway underlying habituation of
prey-catching behavior in toads. Arrowheads
indicate the direction of neural fiber

projection, and the dashed arrowhead
indicates an indirect projection. OT, optic
tectum; AT, anterior thalamus; MP, medial

pallium.

has been previously modeled by Lara and Arbib (1985) and Wang and Arbib (1992).
This article is concerned mainly with modeling long-term habituation.

Before giving simulation details, I will briefly describe the context of the following
simulations, in the hope of convincing the reader that linkage between the synaptic
plasticity model of Equation 3 and later behavioral modeling is justified. Figure 2

provides a diagram of the visual structures involved in visual pattern discrimination
in toads. The retina, after processing the stimuli of optic flow, sends its outputs to
both the optic tectum (OT) and the anterior thalamus (AT). OT is a major neural
structure for amphibian visual processing and, as one of the several efferent pathways,
OT projects to AT, which further projects ascendingly to the medial pallium (MP)
in the telencephalon. MP descendingly connects to OT indirectly, possibly via the

preoptic region (PO) or the hypothalamus (HYP), thus forming a neural loop. This

loop (tectum - AT - MP - POIHYP --4 tectum) is what Ewert (1987) called the

modulatory loop, which is supposed to modulate via learning visual prey-catching be-
havior. In particular, ample evidence suggests that MP, the homolog of mammalian

hippocampus (Herrick, 1933), is the neural structure underlying various learning
types including habituation (for review of the relevant data, see Ewert, 1987; Ewert
et al., 1992; Wang & Arbib, 1992). Based on these anatomical as well as neuro-

physiological data, Wang and Arbib (1991a,b) have previously modeled the neural
structures of retina, OT, and AT in toads and frogs (see Figure 2). To address short-
term habituation, we also modeled an MP column, corresponding to a specific visual
location (Wang & Arbib, 1992). From the habituation perspective, the MP model of

Wang and Arbib basically satisfies the condition that the habituating synaptic weights
have a multiplicative role in determining the overall behavioral output. Because, in
the following simulations, we are mainly concerned with the changes of a response
with respect to time, directly simulating Equation 3 is equivalent to presenting a vi-
sual stimulus and measuring the changes of its response after several steps of retinal,
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Figure 3
Simulation of single-session habituation and dishabituation of prey-catching orienting response m toads.

(a) The experimental results obtained by Ewert and Kehl (1978) concerning two difl~erent visual stimuli.In the left frame, the left-pointing triangle was presented first and immediately after its habituation, the
right-pointing triangle was presented and habituated. The right frame reflects the reverse order of
presentation. (b, c) The corresponding simulation results. Each data point in (b) and (c) is measured as
the relative value of the initial response of a frame that is scaled to the same value in (a). The parameter
values are: yo = 1.0; T = 200; a = 3.2; (3 = 24; ’Y = 0.1. As is clear from Equation 4, there is a
one-to-one correspondence between z(0~, the initial value of z, and t«; z(0) = 0.9999 in the
simulation. S(t) is set to 1 if the external stimulation is on, or 0 otherwise.

tectal, and thalamic processing. Of course, due to its computational advantages, the
former method was adopted in our simulations of long-term habituation that follow.
We tested the synaptic plasticity model (Equation 3) against the single-session,

short-term habituation data of Ewert and Kehl (1978). This simulation also helps
constrain the parameters of Equation 3. Figure 3a displays the data of Ewert and
Kehl concerning two stimuli, the mirror images of a triangle. After a single ses-
sion of habituation to the left-pointing triangle, the toads immediately responded to
the presentation of the right-pointing triangle and experienced similar habituation
when the latter stimulus was presented repeatedly. However, following habituation
to the right-pointing triangle, the animals hardly responded to a later presentation of
the left-pointing triangle. To model habituation to a specific stimulus, Equation 3
was embedded in the MP model (Wang & Arbib, 1992) that performs shape dis-
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crimination. The details of shape discrimination (see Wang & Ewert, 1992) are not

important here, as behavioral changes are all that matters for habituation. In the

simulation, each stimulus was presented for 60 minutes and then switched to another
stimulus, which also was presented for 60 minutes. For visualization purposes, we

present only ten data items for each session, each corresponding to a 6-minute in-
terval. In all the simulations presented in this article, time was measured as follows:
A basic discretization step 0.05 corresponds to 1 second. Figure 3b and c present
the corresponding simulation results. In Figure 3b, the left-pointing triangle was

presented first, and the model response was habituated after repeated presentation of
the stimulus for 60 minutes. Immediately afterward, the right-pointing triangle was

presented, and it triggered a new response that also was habituated after repeated pre-
sentation. The reverse order of presentation was studied in Figure 3c, and apparently
no new response was demonstrated when the left-pointing triangle was presented
after habituation to the right-pointing triangle.

From the comparison between Figure 3b and c and Figure 3a, it can be concluded
that the habituation model can reproduce the experimental data. In particular, the
detailed time course of habituation in the simulation compares well with the experi-
mental data. With the same parameter values (see the caption of Figure 3), the same

good results were also found in other simulations corresponding to the Ewert and
Kehl experiments.

The quantitative data of Ewert and Kehl (1978) could also be modeled with just
an STM model (Lara & Arbib, 1985; Wang & Arbib, 1992), as habituation tests

were conducted within only one session. Thus, it is not particularly demanding to
obtain the results in Figure 3. On the other hand, rather early observations by Ewert

(1967, 1970, 1984) are surprisingly suitable for long-term habituation tests, Ew-
ert’s habituation experiments being conducted in series of training sessions separated
by recovery pauses. During each training session, toads continuously oriented to a

moving prey dummy until their responses were below a criterion value. The next
session started after a recovery pause during which previously acquired habituation
was partly forgotten. Figure 5a summarizes the experimental results. Apparently, the

longer an intersession pause, the more activity will be released during the following
session. The log scale of the ordinate of Figure 5a indicates that the overall response
in a training session approximately drops exponentially with the number of sessions

(Ewert, 1984). This exponential decay appears to be in accordance with the expo-
nential decay of short-term habituation (see Fig. 3), but this is not the case, as is

shown by the following simple analysis: After a constant recovery pause T, during
which S~t) = 0, we have from Equation 3a:
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Figure 4
Simulation of a habituation series with a

5-minute intersession pause. In the

simulation, the instantaneous response of the
model is assumed to be proportional to the
synaptic weight, y(t~. The log scale is used
for the ordinate. As in the experiments, a
simulated traimng session stops whenever
y(t) falls below ym (Equation 5), and
ym = 0.015. The rest of the parameter
values are the same as for Figure 3.

where Ym is the weight at which experiment tests are stopped, corresponding to
the criterion value of habituation. If only STM is concerned (i.e., z is set to 1),
it is clear from Equation 5 that the synaptic weight will recover to a constant level
regardless of prior training sessions. In other words, after an initial decay, the overall
activity elicited during each session is a constant. This is clearly shown in Figure 4
which presents a simulation of a habituation series of 15 sessions with a 5-minute

pause. In this simulation, z is set to 1. As in the experimental data of Figure 5a,
each data point in Figure 4 represents the normalized value of the overall model

response over one session. Figure 4 evidently contradicts the experimental data of
Figure 5a. Notice that this contradiction is not a result of the detailed definition
of Equation 3a. The same phenomenon occurs when Equation 3a is replaced by
commonly used Equation 1. Therefore, a short-term habituation model is not able
to explain the data, and LTM must be taken into consideration. This is expected
since the experiments involved long training series.

The challenge for our model becomes whether Equation 3 can be used to re-
produce the quantitative data of Figure 5a that demand a long-term habituation
model. A further challenge is whether Equation 3 can achieve this with the same
set of parameters as in Figure 3, which were tuned to reproduce successfully the
short-term (single-session) habituation data. We conducted extensive simulations to

produce corresponding model outputs to Figure 5a. Fortunately, during a recovery
pause, the value of z(t) does not change because S(t) = 0, and thus the value of
y(t) can be analytically solved. Even with analytical solutions, simulation of each
series of habituation sessions is computationally intense because each session lasted
for tens of minutes. Also, in Figure 5a, there are three series with many data points to
simulate. This is particularly challenging to model with the few parameters in Equa-
tion 3, most of which were already tightly constrained in simulating quantitative
data of short-term habituation. Figure 5b presents the simulation results using the
same parameters as in Figure 3. Each series in the simulation consisted of 15 training
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Figure 5
Data and simulations of
successive habituation in
toads. (a) Habituation
effects in successive

training sessions separated
by constant recovery
pauses of 1 minute, 5
minutes, and 24 hours.
Each data point represents
the normalized value of
the cumulative number of

orienting turns that the
animal released in

response to a continuously
moving prey dummy
during one habituation
session. (Redrawn from
Ewert, 1984.) (b) The
corresponding simulation
results. The parameter
values are the same as for

Figure 3 except
ym = 0.015 as in Figure 4.
(c) The time course of y
and z in the entire process
of 15 training and
recovery sessions with a

5-minute intersession

pause. Each pause is

accompanied in the figure
by an increase segment in
y (spontaneous recovery)
and a constant segment
in z.

sessions, and 1-minute, 5-minute, and 24-hour intersession pauses were used. Other

details of the simulation are consistent with those in Figures 3 and 4. Compared to

Figure 5a, the simulation results are quantitatively similar to the experimental data.

Figure 5c displays a typical time course of y(t) and z(t) with a 5-minute pause.
The decrease of the overall response in later training sessions is due to two factors:

the decrease of the response amplitude, which is proportional to the synaptic weight,
and the decrease of the duration of a training session. The interaction of these two
factors gives rise to the two linear trends, particularly evident in the 1-minute and the
24-hour curves of Figure 5b. Different linear trends also seem to occur in the data
curves of Figure 5a; this is clearly evident on the 1-minute curve. For the 24-hour
case, it seems that the recovery (forgetting) occurs more slowly in the model than in
real animals, as is particularly evident for the second half of the curve in Figure 5b.

 at The University of Manchester Library on January 22, 2013adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


122

This suggests that the switch from one linear trend to another in the model should

occur more smoothly, a topic of future research. Also, the oscillatory fluctuations of
the curves in Figure 5a seem to call for additional mechanisms (Ewert, 1984).

To compare model predictions and other sets of behavioral data not included in

original modeling, we also conducted a habituation series with a 40-minute pause
after the model was completely fixed. This model prediction curve is included in
Figure 5b. It matches well the preliminary observations of a corresponding habitua-
tion series of toad’s prey-catching behavior by Ewert (1967). A more rigorous test of
this prediction, however, must await future experiments in which more toads should
be used. 

’

4 Discussion

The main point of this article is a demonstration that STM and LTM processes

may be quantitatively modeled as a result of a common dynamical process. A sharp
decrease in the transition stage of z underlies the transfer from an STM process to

an LTM process. The model does not imply that STM and LTM physically share
the same neural mechanisms. Our modeling, however, suggests that short-term and
long-term processes are not independent. As mentioned earlier, short-term habitu-
ation involves alterations in neurotransmitter release, whereas long-term habituation
seems to involve structural changes such as the number of presynaptic terminals (vari-
cosities) and the number and size of active zones (Bailey & Chen, 1988a, 1988b). It is

interesting to note that similar mechanisms also underlie short-term and long-term
synaptic plasticity at the frog neuromuscular junction (Magleby & Zengel, 1982;
Herrera, Grinnell & Wolowske, 1985). Based on these observations, we suggest in

gross terms that Equation 3a provides a description of changes in neurotransmitter
release and Equation 3b provides a description of morphological changes that ac-

company long-term habituation. As can be seen from Equation 3a, morphological
changes then affect the process of neurotransmitter release by changing its recovery
process. Thus, the two forms of synaptic plasticity can be unified by the interacting
equations.
We have also tried to incorporate other possible descriptions for the long-term

variable z(t) of Equation 3. In particular, we tested a similar description of y(t)
for z(t) so that z(t) also exhibits an exponential decay, as the exponential decay
in Figure 5a seems to favor such a choice. However, the results of other forms of

z(t), including the exponential decay description, are not nearly as comparable with
Figure 5a as is Equation 3b.

Synaptic plasticity in general is underlain by molecular changes that take place
in presynaptic terminals on repeated stimulation from presynaptic neurons. Clearly,
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our model has not specifically addressed molecular and ionic channel modifications

accompanying habituation, though other models have attempted to deal with these
(see, for example, Magleby & Zengel, 1982; Gingrich & Byrne, 1985). Rather, we
have attempted to provide phenomenological descriptions of how synaptic weights
are modified by stimulation. Such a style of habituation modeling can be found
extensively in the literature (see, among others, Stanley, 1976; Lara & Arbib, 1985;
Gluck & Thompson, 1987; Ogmen & Moussa, 1993). The distinction between these
two kinds of modeling resembles that between the detailed Hodgkin-Huxley equa-
tions (Hodgkin & Huxley, 1952) for a single neuron’s action potential generation and
the more abstract models of FitzHugh (1961) and Nagumo, Arimoto, and Yoshizawa
(1962) for generating neuronal impulses. The obvious advantage of more abstract
models lies in their analytical simplicity and computational efficiency.

Of course, these types of equation cannot generate predictions about how molec-
ular processes operate during habituation. However, quantitatively tested abstract
models can generate useful predictions about animal behavior. For instance, our

model of toad’s visual discrimination produces a number of precise behavioral pre-
dictions (Wang & Arbib, 1991a), which helped to design a set of experiments to
test and actually validate some of the predictions (Wang & Ewert, 1992). The 40-
minute curve in Figure 5b is a behaviorally testable prediction about our quantitative
description of synaptic plasticity. In addition to behavioral implications, Equation 3
suggests that presynaptic stimulation affects consolidation of long-term habituation

following the inverse S-shaped curve of Equation 4, and the long-term trace affects
short-term habituation by slowing down its recovery time scale (the first term of the
right-hand side of Equation 3a).

Although the learning gate model of Ciaccia, Maio, and Vacca (1992) addresses
conditioning while ours models habituation, some comparisons may be drawn about
how STM relates to LTM in these two models. The learning gate model introduces
two different weights, one short-term and another long-term, and assumes that the
overall weight is a product of the two. The same assumption was used earlier by
Gardner-Medwin (1989), who proposed an associative memory model using both
short-term and long-term synaptic modification. In Equation 3, we use only one
synaptic weight with the introduction of z, which controls both time scales of
forgetting. Another difference is that our model uses an inverse S-shaped curve to
describe the transition from STM to LTM, whereas the learning gate model uses an
exponential function similar to Equation 1 to describe LTM but with a much slower
time scale than the one for STM.

Although the model is tested mainly on the habituation data from toads, ap-
plication of the model is not necessarily restricted to anuran amphibians. The ba-
sic properties of Equation 3 are consistent with the general parametric features of
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Figure 6
Time course of long-term
habituation.

(a) Habituation of the
siphon withdrawal reflex
in Aplysia. Each data
point is the accumulated
score of the median

response from ten training
trials within a day. The
response is measured as
the duration of siphon
withdrawal. Following the
first 4 days of training,
retention was tested on

days 5, 12, and 26.
(Redrawn from Carew,
Pmsker & Kandel, 1972.)
(b) Habituation of the
acoustic startle response in
the rat. Each data point is
the mean startle amplitude
(in millimeters) to a tone
stimulus. One training
session was conducted

daily. (Redrawn from
Leaton, 1976.)

habituation summarized by Thompson and Spencer (1966) (see section 1). As shown
by the y curve in Figure 5c, this model exhibits exponential decay of response strength
and spontaneous (also exponential) recovery with rest. Figure 5b clearly shows that
habituation occurs more rapidly and strongly with a series of training sessions. Gen-
eralization and dishabituation generally involve the features of stimuli but, as shown
in Figure 3, this habituation model, together with a stimulus discrimination system,

. can readily demonstrate generalization and dishabituation.
More specifically, the exponential decay of the overall response after habituation

series, as shown in Figure 5a, seems to be a general property of long-term habit-
uation across different animal species. Figure 6 displays the systematic data of two
other habituation series, obtained from the studies of Aplysia’s siphon withdrawal
reflex (Carew, Pinsker & Kandel, 1972) and the rat acoustic startle response (Leaton,
1976). Each point in Figure 6a shows the accumulated score of ten habituation trials
conducted during 1 day. Here we are mainly interested in habituation exhibited in
the first 4 days, which can be compared with the data of Figure 5a by assuming
an approximate 24-hour intersession pause. Each point in Figure 6b represents the
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response to a single habituation trial conducted daily. This decrement pattern, how-
ever, is similar to the later experiments in which each daily session consists of six
trials (Leaton & Supple, 1991). The behavioral decrements in these two studies are

displayed in the linear scale, as opposed to the log scale of Figure 5a. Thus, the expo-
nential trend of the decrement following daily habituation training exhibited in both

graphs appears consistent with Figure 5a. More careful inspection also shows that the
detailed decrement curves during each daily session both in Aplysia (Carew, Pinsker
& Kandel, 1972) and in the rat (Leaton & Supple, 1991) are qualitatively similar to
the y curve of Figure 5c. Therefore, we conclude that the basic properties of the

long-term habituation data in toads may be exhibited by other animal species as well.
It is not unreasonable to suspect that the laws of synaptic plasticity at the basic

level may be universal to all types of learning. For example, a reverse but, by nature,
similar process has been demonstrated in sensitization (Castellucci & Kandel, 1976;

Bailey & Chen, 1988b; Hawkins, Kandel & Siegelbaum, 1993), and the two forms
of conditioning seem to interact with each other in a way similar to habituation
(Carew, Walters & Kandel, 1981; Buonomano & Byrne, 1990). In the future, we

plan to use the same idea to address LTM data of sensitization and conditioning, and
to see to what extent the idea can be utilized to simulate LTM in general.

Our model provides a parsimonious description of the fundamental processes of
short-term and long-term plasticity at the synaptic level, as distinguished from more
detailed modeling of ionic channels (Magleby & Zengel, 1982; Byrne, 1982). From
a computational perspective, a simpler description at a basic level may result in sig-
nificant gains of computational power at the network (systems) level (see Kohonen,
1989, and Wang & Arbib, 1992, for examples of habituation at the network level).
Admittedly, there are many issues, such as interactions between different ionic chan-
nels, that are overlooked in the phenomenological description of synaptic weight
modification. Future research will address the question of how to relate the phe-
nomenological descriptions of synaptic plasticity and the detailed molecular processes
accompanying it. But we believe that simple but fairly accurate quantitative descrip-
tions of synaptic plasticity at the cellular level merit their own studies. For instance,
Equation 3 may have to be changed in light of new emerging data or may simply
give way to more theoretically elegant descriptions. Lastly, our analysis shows that

quantitative data from series of training sessions, which are relatively easy to obtain,
may well serve to verify the type of quantitative LTM model proposed in this article.
We hope that experimental tests of such models and further refinement of modeling
will enhance our understanding of the relationship between STM and LTM.
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