IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 6, NOVEMBER 1996

1465

Incremental Learning of Complex Temporal Patterns

DeLiang Wang, Member, IEEE, and Budi Yuwono

Abstract—A neural model for temporal pattern generation is
used and analyzed for training with multiple complex sequences
in a sequential manner. The network exhibits some degree of
interference when new sequences are acquired. It is proven
that the model is capable of incrementally learning a finite
number of complex sequences. The model is then evaluated with
a large set of highly correlated sequences. While the number of
intact sequences increases linearly with the number of previously
acquired sequences, the amount of retraining due to interfer-
ence appears to be independent of the size of existing memory.
The model is extended to include a chunking network which
detects repeated subsequences between and within sequences.
The chunking mechanism substantially reduces the amount of
retraining in sequential training. Thus, the network investigated
here constitutes an effective sequential memory. Various aspects
of such a memory are discussed.

[. INTRODUCTION

NE of the fundamental aspects of natural intelligence is
the ability to process temporal information [27]. Learn-
ing and recalling temporal patterns are closely associated with
our ability to perceive and generate body movements, speech
and language, music, etc. A considerable body of neural-
network literature is devoted to studying temporal pattern
generation (see [28] and [40] for reviews). These models
generally treat a temporal pattern as a sequence of discrete
patterns, called a temporal sequence. Most of the models are
based on either multilayer perceptrons with backpropagation
training or the Hopfield model of associative memory. The
basic idea for the former class of models is to view a
temporal sequence as a set of associations between consecutive
components, and learn these associations as input—output pairs
[22], [11], [31]. To deal with temporal dependencies beyond
immediate predecessors, part of the input layer is used to keep
a blended form of history, behaving as short-term memory
(STM). Similarly, for temporal recall models based on the
Hopfield associative memory, a temporal sequence is viewed
as associations between consecutive components. These asso-
ciations are stored in extended versions of the Hopfield model
{39], [6], [21]. To deal with longer temporal dependencies,
high-order networks have been proposed [19].
One of the main problems with these two classes of model
lies in their difficulty in retrieving complex temporal se-
quences, where the same part may occur many times in

Manuscript received May 25, 1995; revised January 9, 1996. This work was
supported in part by NSF Grants IR1-9211419, IRI-9423312, and equipment
Grant CDA-9413962, and the ONR Grant N00014-93-1-0335.

D. L. Wang is with the Laboratory for Al Research, Department of
Computer and Information Science and Center for Cognitive Science, The
Ohio State University, Columbus, OH 43210-1277 USA.

B. Yuwono is with the Department of Computer and Information Science,
The Ohio State University, Columbus, OH 43210-1277 USA.

Publisher Item Identifier S 1045-9227(96)07448-6.

the sequence. Though proposed remedies can alleviate the
problem to a certain degree, the problem is not resolved.
In multilayer perceptrons, a blended form of STM becomes
increasingly ambiguous when temporal dependencies increase
[3]. The use of high-order units in the Hopfield model entails
a huge number of connections when long range temporal
dependencies appear, or the model faces ambiguities [40].

More recently, Bradski ef al. [5] proposed an STM model,
and showed that both recency and primacy can be captured
by such a model. In addition, their model creates new repre-
sentations for repeated occurrences of the same symbol, thus
capable of encoding complex sequences to a certain extent.
Granger et al. [15] proposed a biologically motivated model
for encoding temporal sequences. Their model uses a non-
Hebbian competitive learning rule, that eventually develops
sequence detectors at the end of sequence presentation. Each
detector encodes a sequence with the beginning component
having the strongest weight, and the subsequent components
having successively weaker weights. They claim that the
network has an unusually high capacity. However, it is unclear
how their network reads out the encoded sequences. Baram
[1] presented a model for memorizing vector sequences using
the Kanerva memory model [23]. The basic idea is similar to
those models that are based on the Hopfield model. Baram’s
model uses second-order synapses to store the temporal asso-
ciations between consecutive vectors in a sequence, and the
model deals only with sequences that contain no repeating
vectors. Rinkus [33] proposed a model of temporal associative
memory, based on associations among random patterns. The
associations are built using a scheme similar to the associative
memory of Willshaw et al. [44]. However, it is not clear how
to map a sequence component to a semirandom vector and
remember the mapping later.

Based on the idea of using STM for resolving ambiguities,
Wang and Arbib [41] proposed a model for learning to
recognize and generate complex temporal sequences. With an
STM model, a complex sequence is acquired by a learning
rule that associates the activity distribution in STM with a
context detector (for a rigorous definition see Section 1I-A).
For sequence generation, each component of a sequence is
associated with a context detector that learns to uniquely
activate the component. After successful training, a beginning
part of the sequence forms the context for activating the next
component, and the newly activated component joins STM
to form a context for activating yet a next component. This
process continues until the entire sequence is generated. A later
model [42] addressed the issues of time warping and chunking
of subsequences. In particular, sequences can be recognized in
a hierarchical manner and without being affected by presen-

1045-9227/96$05.00 © 1996 1IEEE

1466

tation speed. Hierarchical recognition enables the system to
recognize sequences whose temporal dependencies are much
longer than the STM capacity. In sequence generation, the
system can maintain relative timing among the components
while changing overall rate.

Recently we proposed an anticipation model for temporal
pattern generation [43]. Similar to Wang and Arbib [41], [42],
an STM model is used for maintaining a context which is
stored by a context detector. In learning a temporal sequence,
the model actively anticipates the next component. When the
anticipation is correct, the model does nothing and continues
to learn the rest of the sequence. When the anticipation is
incorrect, namely a mismatch occurs, the model automatically
expands the context for the component. A one-shot normalized
Hebbian learning rule is used to learn contexts that exhibits
the mechanism of temporal masking, where a sequence is
preferred to its subsequences in winner-take-all competition.
We proved that the anticipation model can leam to gener-
ate an arbitrary temporal sequence by self-organization, thus
avoiding supervised teaching signals as required in Wang and
Arbib.

In this paper, we focus on learning multiple temporal se-
quences. In particular, we study sequential training of multiple
sequences, meaning that new sequences are learned after
old sequences have been acquired. One way of learning
multiple sequences is to use simultaneous training, where
many sequences are learned at once. A model that can learn
one sequence can be generally extended to learn multiple
sequences with simultaneous training. A straightforward way
is to concatenate these sequences into a single long sequence
during training. Given that each sequence has a unique iden-
tifier, a model can learn all of the sequences if it can learn
the concatenated sequence. However, sequential learning of
multiple sequences is an entirely different matter. It is a more
desirable form of training because it allows the model to
acquire new knowledge on the basis of an existing memory—a
form of incremental learning. Incremental learning not only
conforms well with human learning experience, but also is
important for many applications that do not have all the
training data available at the beginning and where learning
is a long-term ongoing process.

It turns out that incremental learning is particularly challeng-
ing to obtain. In multilayer perceptrons, it has been recognized
that the network exhibits so-called catastrophic interference,
whereby later training disrupts the traces of previous training.
It was pointed out by Grossberg [18], and systematically
revealed by McCloskey and Cohen [29] and Ratcliff [32].
Many subsequent studies attempt to address the problem. Most
of the proposals amount to reducing overlapping in hidden
layer representations by some techniques of orthogonalization,
which were used long ago for reducing crosstalks in associa-
tive memories (see [25], [13], [14], [26], [38], and [36]). Most
of these proposals are verified only by small-scale simulations,
which, together with the lack of rigorous analysis, make it
difficult to judge to what extent these proposed methods work.
It remains to be seen whether a general remedy can emerge
for multilayer perceptions at not too great a cost. Associative
memories appear to be able to incorporate more patterns easily

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 6, NOVEMBER 1996

so long as the overall number of patterns does not exceed
the memory capacity. However, the Hopfield model has an
exceedingly low capacity when storing correlated patterns that
have overlapping structures [20]. The Hopfield model has been
extended to deal with correlated patterns [24], and Diederich
and Opper [10] proposed a local learning rule to acquire the
necessary weights iteratively. The local learning rule used by
them is similar to the perceptron learning rule. Thus, it appears
that such a scheme for dealing with correlated patterns should
suffer from catastrophic interference.

The major cause of catastrophic interference is the dis-
tributedness of representations. The learning of new patterns
needs to use those weights that participate in representing
previously learned patterns. We can say that there is a trade-
off between distributedness and interference. Models that use
nonoverlapping representations, or local representations, do
not exhibit the problem. For example, the adaptive reso-
nance theory (ART) [7] does not have the problem because
each pattern corresponds to the weight vector of a unique
unit and no overlapping is allowed between any two weight
vectors.

It is clear that during sequential learning, humans show
some degree of interference. Retroactive interference has been
well documented in psychology [9], which occurs when learn-
ing a later event interferes with the recall of earlier informa-
tion. In general, the similarity between the current event and
memory items is responsible for retroactive interference [2],
[81, [4]. Retroactive interference exists in animals as well [34].
The existence of retroactive interference suggests that events
are not independently stored in the brain, and related events are
somehow associated in the memory. Also, though the recall
performance with the interfered items decreases, it still is better
than the chance level, and it is easier to regain these items
than to learn them the first time. These considerations suggest
that a memory model that stores every item independently
does not provide an adequate basis for modeling human/animal
memory. From the computational perspective, the models that
contain a certain degree of sharing in storing different events
have a better storage efficiency than those that do not. In sum,
a desired memory model should exhibit a degree of retroactive
interference when learning similar events, but not catastrophic
interference.

In a preliminary simulation, the anticipation model seems
to exhibit some retroactive interference when learning two
sequences sequentially that have overlapping subsequences
[43]. In this paper, the model will be analyzed in terms of
its general performance on sequential training tasks. We will
show that the anticipation model is capable of incremental
learning with retroactive interference but without catastrophic
interference. Extensive simulations reveal that the amount of
retraining is relatively independent of the number of sequences
stored in the model. Furthermore, a mechanism of chunking
is proposed that creates chunks for recurring subsequences.
This chunking mechanism significantly improves training and
retraining performances.

The remaining part of the paper is organized as follows.
In Section II, we provide necessary terminology and a brief
description of the anticipation model. Section IIl gives a

WANG AND YUWONO: COMPLEX TEMPORAL PATTERNS

shift-register
assembly

G

*-terminals

Fig. 1.
The connections between terminals and modulators are bidirectional.

rigorous result of the model in sequential training, namely
the model exhibits the ability of incremental learning. In
Section IV, we provide the results of numerical simulations
for learning many sequences incrementally, which suggest
that incremental learning in the anticipation model is capacity
independent. Section V describes the chunking mechanism
and shows how chunking affects the learning performance
of the same simulations as described in Section IV. Finally,
Section VI provides some general discussions about the antic-
ipation model.

II. ANTICIPATION MODEL OF TEMPORAL LEARNING

A. Terminology

We follow the terminology introduced by Wang and Arbib
[41]. Sequences are defined over a symbol set I', which
contains all possible symbols, or spatial (static) patterns.

Sequence S of length NV over [is defined as py —p2—- - - —pn,
where p; (1 < ¢ < N) € TI' is a component of S. The
sequence p; — pjp1 — - — Pp Where 1 < 3 <k < N, is
a subsequence of S, and the sequence p; — pjy1 — -+ — PN

where 1 < j < N, is a right subsequence of S. In general,
in order to associate a component by its predecessors in a
sequence, a prior subsequence is needed. For example, to pro-
duce the first “P” in the sequence M-1-S-S-1-S-S-1-P-P-1
requires the prior subsequence S-1-S-S-1. This is because /-
S-S-1 is a recurring subsequence. Thus, the context of p; is
defined as the shortest prior subsequence of p; which uniquely
determines p; in S, and the degree of p; is the length of its
context. The degree of S is defined as the maximum degree
of all the components of S. According to these definitions, a
simple sequence, where each component is unique, is a degree
one sequence; a complex sequence, which contains recurring
subsequences, is a sequence whose degree is greater than
one.

1467

winner-take-all
interconnection

shift-register
o assembly

------ modulator

Diagram of the anticipation model (from [43]). Thin solid lines indicate modifiable connections, and thick or dashed lines indicate fixed connections.

B. Basic Network Description

We now describe the basic components of the anticipation
model [43]. Fig. 1 shows the architecture of the network. The
entire architecture consists of a layer of n input terminals,
each associated with a shift-register (SR) assembly, a layer of
m context detectors, each associated with a modulator. Each
SR assembly contains 7 units, arranged so that an input signal
sensed by an input terminal shifts to the next unit every time
step. SR assemblies are introduced to serve as a STM for
input signals. Each detector is projected by all SR units, and
there are lateral connections, including self-excitation, within
the detector layer to form winner-take-all dynamics. These
connections and competitive dynamics amount to that the
detector that receives the greatest ascending input from SR
units will be the sole winner of the entire detector layer. In
addition to the ascending and lateral connections, each detector
also connects mutually with its corresponding modulator,
which in turn connects directly with input terminals.

More specifically, let J;(t) represent the activity of terminal
J at time ¢, and Vj(¢) the activity of the kth SR unit of
the jth assembly at time ¢. I;(¢) is binary, indicating the
presence/absence of a particular input symbol that the terminal
represents. The activity of detector ¢ is denoted by F;(t). The
detector has another parameter d; to indicate the degree of
the sequence that the detector learns to recognize. Also, for
detector ¢, 0;(t) is used to indicate the result of competition
in the detector layer, so that O;(t) = 1 if detector ¢ is the
winner at time ¢ and O,(t) = 0 otherwise. The weight of the
connection from the kth unit of assembly j to detector ¢ is
denoted by W; ;.. Let M;(t) denote the activity of modulator
¢ at time ¢, and Fi;; the weight of the connection from terminal
j to modulator 7. These notations are consistent with the
definitions introduced earlier [43]. The dynamics of these
quantities has been defined in [43], and we provide in the
Appendix relevant equations for completeness.

1468

The learning process proceeds as follows. An input sequence
S is presented to the network one component at a time. In each
time step, only one detector unit can be activated because all
of the detector units form a winner-take-all network [17]. The
winning detector, denoted as z, performs one-shot learning
to recognize a sequence of most active components held in
STM by adapting its connection weights to match the activity
levels of the corresponding SR units—much like template
matching. The degree parameter d. determines the length of
the sequence that z can learn to recognize. The output of the
detector, O, activates its corresponding modulator in the next
step (assuyming some delay) while the next component of S
is input to a terminal. The simultaneous activation between
the modulator and the terminal is used to form a unique
connection between the two through one-shot learning. This is
how the model associates a prior subsequence (context) with
a sequence component. The modulator which receives top-
down input from z and bottom-up input from terminals serves
to detect the match between the anticipated next component
made by the detector and the actual next component. If they
match, no change is made to the model; if they do not, this
mismatch signal is fed back to z to increment d, so as to
expand the context to be detected by z. At the same time,
a new connection is formed between the modulator and the
terminal. Training is completed when there is no mismatch
during the presentation of the entire sequence.

We now summarize the major results of our previous study
that are relevant to the present investigation.

1) It is proven that a normalized Hebbian rule (see the
Appendix) leads to a property called temporal masking: a
parameter in the learning rule can be chosen to guarantee
that the detector of sequence S is preferred to the
detectors of the right subsequences of S.

2) It is proven that the model with m detectors, and r SR
units for each of n SR assemblies can learn to produce
an arbitrary sequence S of length <m and degree <,
where S is composed of symbols from I" with [I'| < n.

Once training is completed, the network can be used to
produce the sequence it has been trained on. During sequence
generation, the learned connections from input terminals to
modulators are used in the reverse order for producing input
components. Sequence generation is triggered by the presenta-
tion of the first component (or an identifier). This presentation
will be able to trigger an appropriate detector which then,
through its modulator, leads to the activation of the second
component. In turn, the newly activated terminal adds to
existing STM, which then forms an appropriate context to
generate yet another component in the sequence. This process
continues until the entire sequence is produced.

Aside from the theoretical result that the model can learn a
sequence of arbitrary complexity by self-organization, learning
is efficient—it generally takes just a few training sweeps to
acquire a sequence. This is because the anticipation model
employs the strategy of least commitment. The model assumes
that the sequence to be learned is a simple one, and expands
the contexts of sequence components only when necessary.
Another feature of the model is that, depending on the nature

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 6, NOVEMBER 1996

of the sequence, the system can yield significant sharing in
the use of context detectors. The same detector may be used
for anticipating the same symbol that occurs many times in
a sequence. As a result, the system needs fewer detectors to
learn complex sequences than the model of Wang and Arbib
[41], [42].

III. INCREMENTAL LEARNING

The previous study on the anticipation model is mainly
concerned with the learning and storage of a single sequence
[43]. A preliminary simulation presented in [43] indicates that
the model has the ability of learning two sequences sequen-
tially. We now analyze the network ability to learn multiple
sequences sequentially. In particular, we are interested in what
type of interference is exhibited by the model during sequential
training.

As described in the previous section, a sequence is presented
to the network one component at a time during training. Notice
that each training sweep is associated with a single sequence.
When dealing with multiple sequences, each sequence is
viewed as unique, because learning a sequence that has been
acquired corresponds to recalling the sequence. We assume
that the first component of a sequence represents the unique
identifier of the sequence. In order to make the following
analysis possible, we give a precise definition of a sequential
learning procedure as the following. The training process
proceeds in rounds. In the first round, the first sequence is
presented to the network in repeated sweeps. Once the network
has learned the first sequence, the second round starts with the
presentation of the second sequence. Once the second sequence
is acquired by the network, the network is checked to see if
it can generate the first sequence correctly when presented
with the identifier of the sequence. If the network can produce
the first sequence, then the second round ends. Otherwise, the
first sequence is brought back for retraining; in this case, the
first sequence is said to be interfered by the acquisition of the
second sequence. If the first sequence needs to be retrained, the
second sequence needs to be checked again after the retraining
of the first sequence is completed, which may lead to the
interference of the second sequence. The second round ends
when both sequences can be produced by the network. In the
third round, the third sequence is presented to the network
repeatedly until the sequence has been learned. The network
is then checked if it can generate the first two sequences; if yes,
the third round is completed; if not, retraining is conducted. In
the latter case, retraining is always conducted on the sequences
that are interfered. The system sequentially checks and retrains
each sequence until every one of the three sequences can be
generated by the network——that ends the third round. Later
sequences are sequentially trained in a similar manner. It is
possible that a sequence that is not interfered as a result of
acquiring the latest sequence gets interfered as a result of
the retraining of some other interfered sequences. Because
of this, retraining is conducted in a systematic fashion as
the following. All of the previous sequences plus the current
sequence are checked sequentially and retrained if interfered.
This entire checking/retraining process is conducted repeatedly
until no more interference occurs for every sequence learned

WANG AND YUWONO: COMPLEX TEMPORAL PATTERNS

so far. Each such process is called a retraining cycle. Thus a
round in general consists of repeated retraining cycles.

It is clear that if a system exhibits catastrophic interference,
it cannot successfully complete a sequential learning proce-
dure with multiple sequences. The system instead will show
endless oscillations between learning and relearning different
sequences. In the case of two sequences, for example, the
system can only acquire one sequence—the latest one used
in the sequential training procedure. Thus, the system will be
stuck in the second round. We are now ready to prove the
main conclusion of this paper.

Theorem 1: Given sufficient numbers of detectors and SR
units for each shift-register assembly, the anticipation model
can learn to produce a finite number of sequences sequentially.

Proof: We prove the theorem by mathematical induction
on the number of sequences to be trained. For only one
sequence, the theorem is equivalent to Theorem 1 in Wang
and Yuwono [[43], see 2) above]. Thus, the conclusion is true.

Let us assume that for £ sequences, the theorem is true. That
is, the model can learn to produce k sequences sequentially.
Now, we examine the case with £ + 1 sequences.

According to the induction hypothesis, the first & sequences
can be trained sequentially. Thus, we can assume that, when
the model is trained on the (k + 1)th sequence, denoted as
Sk+1, the first k£ sequences have all been acquired by the
model. Let |Spy1| = L. During the training with Sy,
each component of the sequence is presented to the model
sequentially. When a component p; is presented, one of the
following three cases occurs. The first case is that right before
p; is presented, a committed detector is activated and this
detector anticipates p;. In this case, the system makes correct
anticipation and nothing needs to be done. The second case
is that right before p; is presented, a committed detector is
activated, but the detector anticipates a component different
from p;. In this case, a mismatch occurs and the detector will
increase its degree by one and makes a link to p;. The last
case is that right before p; is presented, no committed detector
is activated. In this case, the system automatically selects an
uncommitted detector, and makes a link from the detector to
p;. For the sequence Si41 with length L, the system needs to
use at most L — 1 detectors. In addition, each detector needs
to have at most a degree of L — 1 because the first component
of Si41 is a unique component. Thus, learning Siy; will
succeed after a finite number of training sweeps if the model
has enough detectors and SR units for each SR assembly.

Since learning Sj4; may interfere with the memory of
some of the first £ sequences, some retraining may be needed
to retain the first £ sequences. According to the induction
hypothesis, retraining will succeed after a finite number of
training sweeps.! The same reasoning reveals that the retrain-
ing process can interfere with the memory of Sj.1. Therefore,
Si+1 may need to be retrained. The following observation

'We recognize possible differences between sequentially learning & se-
quences from the scratch or a blank model and retraining k& sequences. But
these differences do not matter because of the following observation. We can
strengthen the conclusion for the case of one sequence to include the situation
that contains committed detectors to start with. The strengthened conclusion
can be shown to be true following the same argument that Sjy; can be
learned after the first k sequences are acquired.

1469

ensures that the retraining of Si4q and that of the first &k
sequences will not enter an oscillating (infinite) loop. During
the retraining of any interfered sequence, one of the three cases
outlined in the previous paragraph occurs. As a result, some
committed detectors may increase their degrees and some new
detectors may be committed. Let the length of the longest
sequence of the k + 1 sequences be M. Since each sequence
starts with a unique component, the degree of any detector is
at most M — 1. In addition, the model needs to use at most
S11S;| = (k+1) detectors. Thus, the retraining process will
end after a finite number of sweeps. Q.E.D.

Remark 1: In the theorem, the number of units in each
SR assembly, or the STM capacity, must be sufficient to
handle long temporal dependencies in the context of multiple
sequences. It should be clear that the complexity of a sequence
may increase when it is trained with other sequences. For
example, X-A-B-C and Y-A-B-D are both simple sequences
when taken independently. But when the system needs to
memorize both sequences, A-B becomes a repeating sequence,
and as a result none of them is simple any longer. We define the
degree of a set of sequences as the length of the shortest prior
sequence that uniquely determines every component of every
sequence in the set. Because each sequence has its identifier
as the first component, the definition of the set degree does not
depend on how this set of sequences is ordered. Moreover, the
degree of a set of sequences must be smaller than the length
of the longest sequence in the set. With this definition, it is
sufficient to satisfy the condition of Theorem 1 regarding SR
units if the number of SR units in each assembly is greater
than or equal to the set degree.

Remark 2: The sequential learning procedure is not neces-
sary for the validity of Theorem 1. A more relaxed procedure
of sequential training is to postpone retraining until inter-
fered sequences need to be recalled in a specific application
task. This procedure is more consistent with human learning
process. One often does not notice memory interference until
being tested in a psychological experiment or daily life. This
learning procedure blurs the difference between learning a
new sequence for the first time and relearning an interfered
sequence. The proof of Theorem 1 essentially implies that
more and more sequences will be acquired by the system as the
learning experience of the model expands. This is an important
point. As a result, the model can be viewed as an open
system of learning. No rigid procedure for sequential training
is needed for the system to increase its long-term memory
capacity. The model automatically increases its capacity by
just focusing on learning the current sequence.

Remark 3: The number of detectors needed to satisfy The-
orem 1 can be significantly smaller than the upper limit of
$F_1|Si| — k for k sequences. This is because detectors can
be shared within the same sequence as well as across different
sequences. This point will be further discussed in Section IV.

1V. SEQUENTIAL TRAINING EXAMPLES

Theorem 1 guarantees that the anticipation model does
not suffer from catastrophic interference. Interference exists
nonetheless in sequential training, because committed detec-
tors may be seized by later training or retraining to make

1470 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 6, NOVEMBER 1996

TABLE I

SEQUENCE BASE FOR PHASE I TRAINING
no. |Sequence no. _|Sequence
1 Learning and Memory II 7 Time Series Prediction
2 Intelligent Control II 8 Neural Systems Hardware
3 Pattern Recognition II 9 Image Processing
4 Hybrid Systems III 10 Applications of Neural Networks to Power Systems
5 Probabilistic Neural Networks and Radial Basis Functions 11 Supervised Learning
6 Artificially Intelligent Neural Networks II

TABLE II

SEQUENCE BASE FOR PHASE II TRAINING
no.| Sequence no. |[Sequence
1 |Social and Philosophical Implications of Computational Intelligence 50 |Image Recognition
2 |Neurocontrol Research: Real-World Perspectives ! 51 |Medical Applications
3 |Fuzzy Neural Systems ‘ 52 |Parallel Architectures
4 | Advanced Analog Neural Networks and Applications 53 |Associative Memory 1
5 {Neural Networks for Control 54 |Pattern Recognition IV
6 |Neural Networks Implementations 55 |Supervised Learning III
7 |Hybrid Systems 1.D. 56 |Learning and Memory IV
8 |Artificial Life 57 |Intelligent Control IV
9 |Learning and Recognition for Intelligent Control 58 |Economic/Finance/Business Applications
10 | Artificially Intelligent Neural Networks . 59 {Machine Vision I
11 |Hybrid Systems II 60 [Machine Vision
12 [Supervised Learning X 61 |Architecture I
13 | Intelligent Neural Controllers: Algorithms and Applications 62 |Supervised Learning V
14 | Who Makes the Rules? . 63 | Speech I
15 |Pulsed Neural Networks 64 |Robotics
16 |Fuzzy Neural Systems IT 65 | Associative Memory II
17 |Neural Networks Applications to Estimation and Identification 66 |Medical Applications 11
18 | Adaptive Resonance Theory Neural Networks 67 |Modular/Digital Implementations
19 | Analog Neural Chips and Machines 68 |Pattern Recognition VI
20 |Learning and Memory [69 |Robotics IT
21 |Pattern Recognition I ' 70 | Unsupervised Learning I
22 [Supervised Learning I 71 | Optimization I
23 |Inteltigent Control I 72 | Applications in Image Recognition
24 |Neurobiology 73 | Architecture IIT
25 |Cognitive Science 74 | Optimization II
26 {Image Processing II 75 | Supervised Learning VII
27 {Neural Network Implementation I 76 | Associative Memory IV
28 | Applications of Neural Networks to Power Systems 77 |Robotics IIT
29 |Neural System Hardware I 78 |Speech IIT
30 | Time Series Prediction and Analysis 79 |Unsupervised Learning II
31 | Probabilistic Neural Networks and Radial Basis Function Networks 80 |Neurodynamics I
32 |Pattern Recognition IT 81 |Applications I
33 {Supervised Learning 1T 82 | Applied Industrial Manufacturing
34 |Image Processing I 83 |Applications II
35 |Learning and Memory IT 84 | Architecture IV
36 |Hybrid Systems IIT 85 | Optimization III
37 | Artificially Intelligent Networks II 86 |Applications in Image Recognition IT
38 |Fast Learning for Neural Networks 87 | Unsupervised Learning III
39 |Industry Application of Neural Networks 88 |Supervised Learning VIII
40 |Neural Systems Hardware II 80 |Neurodynamics 11
41 [Image Processing I1 90 | Computational Intelligence
42 {Nonlinear PCA Neural Networks 91 |Optimization Using Hopfield Networks
43 |Intelligent Control III 92 [Supervised Learning IX
44 | Pattern Recognition III 93 | Applications to Communications
45 {Supervised Learning IIT 94 | Applications III
46 | Applications in Power ‘ 95 |Unsupervised Learning 1V
47 | Time Series Prediction and Analysis II 96 | Optimization IV
48 |Learning and Memory IIT 97 | Applications
49 |Intelligent Robotics

different anticipation. For example, assume that the system with .S, will lead to the following situation. The previously
is sequentially trained with two simple sequences: S,: C-A- established link from A to T will be replaced by a link
T and Sb: E-A-R. Once S, has been learned, the training from E-A to R. As a result, S, is interfered and cannot be

WANG AND YUWONO: COMPLEX TEMPORAL PATTERNS

generated after Sy, is acquired. The question now is what kind
of interference is exhibited by the model, and how severely
does it affect learning performance? The extent of interference
depends on the amount of overlap between the sequence to
be learned and the sequences already stored in the memory.
Clearly, if a new sequence has no component in common
with the stored sequences, the sequence can be trained as
if nothing had been learned by the model. In this sense,
interference is caused by the similarity between the sequence
and the memory. This is consistent with psychological studies
on retroactive interference.

Knowing that the amount of interference, and thus retrain-
ing, depends on the overlap of the sequences to be learned,
we arbitrarily select a domain that contains a high degree of
overlap among the sequences. The database of the sequences
used consists of the titles of all sessions that were held during
the 1994 IEEE International Conference on Neural Networks
(ICNN-94). The model is evaluated in two phases, both of
which use the sequential training procedure. In Phase I, we
test the model using 11 sequences; in Phase II, we test the
model using the whole set of 97 sequences. Phase I with
fewer sequences is included for illustrating the process of the
sequential training procedure. The set of sequences used in
Phase I is composed of the titles of a group of 11 parallel
sessions, arbitrarily selected from many such groups. The two
test sets are listed in Tables I and II, respectively. These titles
are listed without any change and in exactly the same order as
they appear in the brochure of the final conference program,
even retaining the obvious mistakes printed in the program.
As is evident from the two tables, there are many overlapping
subsequences within each set. Thus, we believe that these
sequences provide a good testbed for evaluating sequential
training and retroactive interference.

A. Phase I Training

For Phase I training, the network has 45 input terminals, 34
of which are for the symbol set (26 English letters plus “#,” “”
(space), “-,” “&,” “2” “-” (hyphen), “:,” and “/”), and 11 for
the identifiers of the 11 sequences. There are 20 SR units for
each SR assembly. In addition, the network needs a minimum
of 250 detectors and 250 modulators. Thus, the network has
a total of 1445 units. The values of the system parameters
(see the Appendix for their definitions): o = 0.2,6 = 1/20,
and C' = 134. To measure the extent of interference, we keep
track of the number of retraining sweeps required to eliminate
all interference for every round of sequential training. This
number is a reliable indicator of how much retraining is
needed to store all of the sequences that have been sequentially
presented to the system. Also, we keep track of the number
of intact (noninterfered) sequences right after the acquisition
of the latest sequence. :

Fig. 2 shows the number of intact sequences and the number
of retraining sweeps for 11 training rounds. As is expected,
the number of intact sequences grows, albeit unsteadily, as
the number of stored sequences increases. On the other hand,
the number of retraining sweeps varies greatly from round to
round. To see why this variation occurs, let us compare the

1471

training episodes of sequence 10 which requires 38 retraining
sweeps, the highest of all rounds, and sequence 11 which
requires 15 retraining sweeps. Sequence 10, denoted as Sig,
is “Applications of Neural Networks to Power Systems.” This
sequence contains long subsequences that occur in previ-
ously acquired sequences, such as “Neural Networks” which
occurs both in S; and Sg, and “Systems” which occurs
in Sy and Sg. On the other hand, S;; contains only one
such sequence, “Learning,” and that occurs only once in Si.
This reinforces the earlier point that the overlap between the
stored sequences causes interference. The same explanation
can apply to Sg in Table I, which requires 31 retraining
sweeps (see Fig. 2). For long overlapping subsequences, many
sweeps may be needed (o resolve the interference caused by
overlaps.

As an illustration of what happens during retraining, Fig. 3
shows the detailed process during round four after S, has
been acquired. Each row represents the activity of an input
terminal with respect to time. The symbol “#” at the bottom
row represents the end-of-sequence marker. Retroactive inter-
ference can cause two problem scenarios. In the first scenario,
the interfered sequence is switched to a part of a different
sequence during generation. For example, the shaded boxes in
retraining 57 (see Fig. 3) represent terminal activities which
do not belong to S, but to S; which is the latest sequence
stored in the model. This effect resembles the recency factor,
which describes a phenomenon in human learning where the
recall of more recent items is facilitated. This is because a
context detector that has been used for storing S; is also
used in training S4, and this detector can be triggered by
a subsequence of S; even after Sy is acquired successfully.
In the second scenario, the interfered sequence is aborted
before the entire sequence is generated. This scenario happens
frequently in Fig. 3. When a detector that has been used before
participates in storing another sequence, its degree increases,
and therefore the interfered sequence may not be able to trigger
the detector.

One of the most critical questions left unanswered in Phase 1
learning is wherher the number of retraining sweeps increases
with the size of the stored sequences, or the round of se-
quential training. The database used in Fig. 2 is too small,
and variations in retraining sweeps are too large to permit a
reliable conclusion. It is also interesting to see how the number
of intact sequences changes with respect to the number of
stored sequences. Phase II training is included to answer these
questions.

B. Phase II Training

For Phase 1I training, the network has 131 input termi-
nals—34 for the symbol set as in Phase I and 97 for the
identifiers of 97 sequences. Each SR assembly contains 40
units. Also, the network needs at least 1088 detectors and
1088 modulators. Hence, the network has a total of 7567
units. The parameters of the network take the following values:
a=0.2,6 =1/40, and C = 535. As in Fig. 2, Fig. 4 displays
the number of intact sequences and the number of retraining
sweeps with respect to training rounds.

1472 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 6, NOVEMBER 1996

40
--&- number of intact sequences
—=—— number of retraining sweeps
30
20
10} \
5 CaeBell Ll 4
- TR - a-
- em=TT
[S R Y B > - S, 8-
0 1 2 3 4 5 6 7 8 9 10 11

number of rounds

Fig. 2. The number of intact sequences and the number of retraining sweeps plotted against training rounds during Phase I learning.

N Sy S3 S4

Al I ;0 [. 0.0 :
B : ; r 1
c j ' i N a 1
D 0 _H] ul ! :] [l
g0 HiT i 0. 0 0O HEE v HEl 0
G [1 ! nl ! Il ! n [
H L ' L il
I 0 g gl N mh il Ty ! no m{' 0 [§an
il il — [0 {] ' :
M 1l ; (10 il : T 0
N 000 HE Iyl 0 .0 0 0) Bl 0 0 ;
0 r Il : 0 ! 0 0]
P N S Tl |
R] §] ' Bl] [0 [
s Of H 1 ! H 0n o
T A ! 0:rn O0_ 0 0m 0 ' O
Y 2l N Il : H 0 0
o [_0_a m 00O 0 : i 3]] 0 O ! n 5]
4 i) : N ¢

1 2 3 4 5 6 7 8

AR vOozZz—QmA R
(=
M

£

retraining cycle 2

Fig. 3. Retraining process during round 4 of Phase I training. Each row represents the activity trace of an input terminal, as indicated by the corresponding
input symbol. White boxes represent correct terminal activities in sequence generation, whereas shaded boxes represent terminal activities which do not
belong to the desired sequence. Solid vertical lines separate training sweeps of different sequences, and dashed vertical lines separate training sweeps of
the same sequence. Cycle numbers are indicated under each panel. Time runs from left to right.

Several conclusions can be drawn from this simulation. The ous memory. The overall curve for retraining sweeps remains
first and the most important conclusion is that the number of flat, even though there is a large amount of variation across
retraining sweeps seems independent of the size of the previ- different training rounds. We view this result as particularly

WANG AND YUWONO: COMPLEX TEMPORAL PATTERNS

1473

---g--- number of intact sequences
—a— number of retraining sweeps

90

80

70[-reee

40

20|

a_/
fooca® ¥

35 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 353 35 57 59 61 63 65 67 69 71 713 715 77 19 81 83 85 87 89 91 93 95 97

number of rounds

Fig. 4. The number of intact sequences and the number of retraining sweeps plotted against training rounds during Phase II learning.

significant because it suggests that in the anticipation model
the amount of interference caused by learning a new sequence
does not increase with the number of previously memorized
sequences. This conclusion not only conforms intuitively with
human performance of long-term learning, but also makes the
model feasible to provide a reliable sequential memory that can
be incremented or updated later on. In this case, new items can
be incorporated into the memory readily without being limited
by those items already in the memory. We refer to this prop-
erty of sequential learning/memory as capacity-independent
incremental learning/memory. The anticipation model exhibits
this property because a learned sequence spreads its traces
across the network, involving a set of distributed associations
between subsequences and context detectors (see Fig. 1). On
the other hand, each context detector stores its context locally.
When a new sequence is learned, it employs a group of context
detectors, some of which may have been committed, thus
causing interference. But as the sequential memory becomes
large, so is the number of context detectors. Out of these
detectors, only a certain number of them can get interfered
because of learning a new sequence. The number of interfered
detectors tends to relate to the new sequence itself, not the size
of the sequential memory. Contrasting capacity independent
incremental learning, catastrophic interference would require
simultaneous retraining of the entire memory when a new
item is to be learned. The cost of retraining when catastrophic
interference occurs can be prohibitive if the size of memory
is not so small. Ruiz de Angulo and Torras [35] presented
a study on sequential learning of multilayer perceptrons, and
reported that their model can learn sequentially several most
recent patterns. Although it is a better result than the original

multilayer perceptrons, their model appears unable to support
a sizable memory. The high variations in the number of
retraining sweeps shown in Fig. 4 can be explained similarly
as those shown in Fig. 2.

The second conclusion is that the number of intact se-
quences increases with the round of sequential training approx-
imately linearly. This is to be expected given the result on the
amount of retraining. Again, there are considerable variations
from one round to another. Since interference is caused by the
overlap between a new sequence and the stored sequences,
another way of looking at this result is the following: As the
memory expands, relatively fewer items in the memory will
overlap with the new sequence.

Fig. 5 illustrates the detailed retraining process during round
96. Right after the model learned Sg¢ of Table II, the only
interfered sequence was Sq4. After Si4 was retrained, Sog
was interfered and had to be retrained. This finished the first
retraining cycle for round 96. During the second cycle, S71
was found to be interfered. After S7; was retrained, Sgg was
interfered again and had to be retrained. The retraining with
S71 alternated with that of Sgg for three more cycles. Notice
the large overlap between S;i: “Optimization 17 and Sog:
“Optimization TV.” In cycle 6, several more sequences were
interfered. After retraining them sequentially, all of the first
96 sequences had been learned successfully.

To examine the amount of detector sharing, let us com-
pare the detector use in the anticipation model with one in
which no detector is shared by different components (see,
for example, [42]). Without detector sharing, the number of
detectors needed to acquire all of the 97 sequences in Table II
is %9715 — 97, which equals 2520. As stated earlier, the

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 6, NOVEMBER 1996

1474

A
-] -
I - y
= - _Hﬂ 0
O —l = r
O 3 ~ [
[O O =)
s = O 0
O = g)
[<+ O O d
O [O ~ =
O] — =
[o O] o
- Soqd-bd-d T 4-14- - O
O @] = = o
= [O]
2 O 4 O o
- S o 1y I 0 O = O O
= | RS iy N R SR S A D SN N | S [O
[o =] O
[O e © [ma
o O —
O [~ 2 o
O O 3] O
O O £ > (|
[- O S, — ° % O
O O N = S = s USSR S G U O Py A o g R O Y O
pu = w O 5 @ o L £
Q = 5 =1
> =1 =]
= 5 5 O E - [g 5 -
I o H_H 5] |5] O =
O £ O T i =
[g [-~ = = &
[3 |] O
g = O O O
- © O - O ~
O = O O]
O o~] O [
= = = - =
O B T s oy I O O o O
O & | =
o = o =
3 O O
S g E g S G S O O o
& 1 g4 = = -
5 = = ﬂ_H [- COARWUIT m dZ2Z0GdurE=D>N. = = tm
[[
= O
O - O o e
= H - o H
S 5 s n w H
= O <~ ZZO0ar>N. o= Sad-b b d-td-b b de oLl
O -
I = O O =
<—Z2Z0atk>N. = N [] "
= [s
(= m
J O -+ |
g [-
- o O
o O]
O O O
= [< = c g [
i) o = [
[O = iy B 1 ow g S G S O
= « - O
[= O O
= [mn] H H O
O - 2 = [[
o =S O s I I O o O
[d - O - |
[O O (=
O O (= vy 0
O [] O -
- O L2 [
2 = O O] =
Sedobdebdobadad bbb dbdL Y (= - = S O
o au - O 5 O
o (o i 60 |
= o » o O
[—_ g o1 - = O
d0 O ES = il (o
(= v [Q) —] o =
| msi < = O B o~ =)
- o g i 0 o © v O
O & |- £] = 0
[s c .]
| 50 = -] | ~ [
= i O B O
o =] 5 -
= E [2 [P G Y O N U R
= o = [e
= = o [
O 2] e e da e ey Y S Y
d O o~ = =
= 0 © = [
d .| O cd
o = | O
| . O = O
O b R s g R Y O O o O) "
o & L3=| = O
O s [- O
[o O O]
= O O O
& O [i 4
= O d]
- (=) _ O
) = = O - J m
- o O I O
] 1 = mn <. ZZCa k>N = COAWUL . 0ZZO0 o dunkD>N. =
SR R R B R Bt R L o B P I =
O = —d
CWT ¥ 2Z2Z20adntnD>2N. o= <_ZEZOar>N. =

retraining cycle 6

Fig. 5. Retraining process during round 96 of Phase II training. See the caption of Fig. 3 for notations of this figure.

WANG AND YUWONO: COMPLEX TEMPORAL PATTERNS

1475

R A

generation network

context

detectors

&

27X
¥

22

N

fe—
g

chunking network

chunk
detectors

L

4N

</

shift-register
) assemblies

terminals

Fig. 6. Diagram of the extended anticipation model with a dual architecture. The entire architecture consists of two mutually connected networks: the

generation network and the chunking network. The connections to and from
for other notations of this figure.

anticipation model needed 1088 detectors to learn all of the
sequences. Thus, the detector sharing in the anticipation model
cuts required context detectors by nearly a factor of 2.5.

V. CONTEXT LEARNING BY CHUNKING

Even though the amount of retraining does not depend on
the number of stored sequences in the memory, retraining can
be expensive. As shown in Fig. 4, it usually takes dozens
of retraining sweeps to fully incorporate a new sequence.
Our analysis of the model indicates that repeated sweeps are
usually caused by the need of committing a new detector and
gradually expanding the context of the detector to resolve
ambiguities resulting from long recurring subsequences. For
example, consider the situation that the system has stored the
two sequences

Se:
Sy

“JOE LIKES 0
“JAN LIKES 1~

and the network is learning the sequence

S.: “DEBLIKES2”

There is an overlapping subsequence between S. and Sy:
“LIKES” (ignore the spaces here). A common situation before
Se is learned is that there are two detectors, say u; and
u9, tuned to the contexts of “E LIKES” and “N LIKES,”
respectively. While S, is being trained, neither «; nor uy can
be activated and a new detector, say ug, will be committed

global input and output units have fixed weights. See the caption of Fig. 1

to anticipate “2” (ug3 needs to recognize only “S” since “S”
cannot activate either uy or uz). Suppose now the network is
trained with yet another sequence

Sy: “DIK LIKES 3,”

S, and Sy will take turns to capture ug and gradually increase
its degree until u3 can detect either “B LIKES” or “K LIKES.”
Eventually, another detector, say 4, will be committed for the
remaining sequence. This gradual process of degree increment
is a major factor causing numerous retraining sweeps.

The above observation has led to the following extended
model for reducing the amount of retraining. The basic idea is
to incorporate a chunking mechanism so that newly committed
detectors may expand their contexts from chunks formed
previously, instead of from the scratch.

A. Network Architecture

The extended model consists of a dual architecture, as
shown in Fig. 6. The dual architecture contains a generation
network (on the left of Fig. 6), much of which is the same
as the original architecture (see Fig. 1), and another similar
network, called the chunking network (on the right of Fig. 6).
The two networks are mutually connected at the top. The
chucking network does not produce anticipation, and thus it
does not need a layer of modulators. Because of this, the
detectors in this network do not increment their degrees by
mismatches. Besides, the chunking network mirrors every
process occurring in the generation network.

1476

In any time step during training, there is a pair of winning
detectors in the dual architecture, each corresponding to one
network. The dynamics is designed so that the winning de-
tector of the chunking network has a degree that is always
one less than the degree of the winning detector of the
generation network. In addition, a newly committed detector
of the generation network may take a degree which is one
plus the degree of the activated chunk detector. We refer to
the detectors of the chunking network as chunk detectors.
The interaction between the two networks takes place via
the two-way connections between the two networks (Fig. 6).
The introduction of the chunk detectors can speed up learning
when a subsequence (a chunk) occurs multiple times in the
input flow. More specifically, assume that a context detector
u; of degree d has learned to recognize a context, and a
corresponding chunk detector u,; of degree d —1 has learned a
chunk which is a right subsequence of the context learned by
u;. If the chunk occurs at least twice, then there will be a time
when w; is activated but u; is not. Through regular learning
an uncommitted context detector, say uj, is activated (thus
committed). Instead of starting from degree one, u; starts its
degree at the value of d, leading to a significant reduction of
training/retraining sweeps.

B. Formal Description

The degree parameters of chunk detectors are modified on
the basis of the input from the generation network. Since the
two networks are very similar, we use a prime symbol to
indicate the corresponding symbols of the chunking network.
The cross-network interaction is carried out by two pairs of
global units. One pair is X and Y’ where X denotes the
output unit of the generation network, and Y’ the input unit
of the chunking network. The other pair involves X’ and Y,
where X’ denotes the output unit of the chunking network and
Y the input unit of the generation network. We also use these
symbols to denote their activities.

In addition to the description for the generation network
(Section II and the Appendix), we need to specify the chunking
network, the two pairs of global units and the update of the
degree parameters of the context detectors.

The size of the chunking network is set to be the same as for
the generation network. The activity, the learning rule, and the
threshold adjustment for a chunk detector ¢’ are defined just as
for a context detector (see the Appendix), including using the
same parameters such as C' and o [see (A4)]. Likewise, the
degree parameter of 4’, d;/, is initialized to zero. Once winner-
take-all dynamics in both networks reaches the equilibrium,
the winning detector of each network sends its output to its
respective global output unit. The activity X (¢)

X(t) = ZOi<t>(di(t) - 1) (1)

and X'(t) of the chunking network

X'(t) = Z Ou (t)(dir (t) +1). (2)

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 6, NOVEMBER 1996

Each of the above units sends its output to the global input
unit of the other network. For the generation network

Y(t) = X'(t) 3)

and for the chunking network

Y'(t) = g(X(t),0") @
g(z,y) = { 0 otherwise.)

The parameter 6’ is an integer threshold which defines the
minimum size of a chunk. No chunking takes place unless
the size of a potential chunk is greater than or equal to ¢’
As 6’ increases, fewer chunk detectors are required and less
chunking goes on. This threshold is introduced to control the
balance among these elements.

The degree of detector 4’ is updated according to

dir(t+1) = dy (t) + O (£)g(Y'(t) — dir (£),0). (6)

This, together with (4) and (1), implies that d;r gets increased
at ¢+ 1 if ¢’ is a winner at ¢ and the winning context detector
at ¢ has a degree which is greater than d;/(¢) + 1. Otherwise,
d; remains the same. Notice that the update takes place in
the next time step.

The update rule for d; is a little more complicated, since it
is affected both by a mismatch within the generation network
during anticipation and by the projection from the chunking
network. Combining these elements together, we define

O;,(H)Y (¢) if Y (t)>d;(t)
di(t+1) =< di(t) + O;(t) if Y(t) < d;(t) and M;(t) =0
di(t) otherwise.

0

See the Appendix for the definition of M;(¢) and (A8) for
comparisons. This update rule assures that if there is a nonzero
degree increase as a result of input from the chunking network,
d; will be so increased; at the same time, the mismatch within
the generation network will not yield degree increment. Apart
from that, d; will be subject to the same internal modification
as is defined for the generation network only. It should be
mentioned that in the same time step the update to the degree
parameter d; precedes the weight update to the detector ¢ (see
[43]).

Before presenting simulation results with chunking in the
next section, we explain using the example at the beginning of
this section how the dual architecture helps speed up training.
After training with S, and Sy, there will be a context detector
which is tuned to either “F LIKES” or “N LIKES.” This, in
turn, will lead to the formation of the chunk “LIKES;” that is,
a chunk detector will be tuned to “LIKES” since the detector
has a degree that is one less than that of the corresponding
context detector. After the chunk is formed, S, can be acquired
easily—the detector which is trained to associate with “2” can
obtain its appropriate degree in just one sweep, thanks to the
formation of the chunk “L/KES.” Similarly, S can be acquired
quickly.

WANG AND YUWONO: COMPLEX TEMPORAL PATTERNS

1477

40{- -2 - number of intact sequences (w/ chunking)
—a— number of retraining sweeps (w/ chunking)
--0-- number of intact sequences (w/o chunking)
-—o— number of retraining sweeps (w/o chunking)
30
20
10 /\h
3 e St LS
/,g’,,/ - @~~~
e il a------ g - B---—-- eerTTT
1 2 3 4 5 6 7 8 9 10 1l

number of rounds

Fig. 7. The number of intact sequences and the number of retraining sweeps plotted against training rounds during Phase I learning with the dual architecture.

For comparison purposes, the results of Fig. 2 are also included.

The speedup in sequential training does not come without a
cost. Apparently, the addition of another network—the chunk-
ing network—adds both to the size of the overall network and
to additional computing time. The latter, however, would not
be a concern if the overall network is implemented on a fully
parallel architecture.

C. Performance

To evaluate the effectiveness of the chunking mechanism,
we conducted simulations using the same sequences and the
same procedure as in Section IV. The model was again tested
in two phases, where Phase I involves 11 sequences and Phase
II involves 97 sequences.

For Phase I training, the parameters of the network were
set to be the same as those used in the previous simulation.
The only extra parameter introduced in defining the chunking
network is 6/, which was set to zero to allow the maximum
amount of chunking. With #’ = 0, the minimum chunk has a
single component. The size of the overall network is a little
different. To complete Phase I training, the dual architecture
needed a minimum of 255 context detectors and 95 chunk
detectors. The reason for a few more context detectors in the
current simulation is the following. With chunking, context
detectors may sometimes end up with degrees a little larger
than absolutely required for disambiguation. The situation
that detectors take larger-than-required degrees may lead to
less context sharing among different sequence components
across different sequences or within the same sequence, and
the demand for more context detectors. The setup for other
parts of the dual architecture is the same as in Section IV-
A. The results are shown in Fig. 7 with the same format as
in Fig. 2. To facilitate comparison, the results obtained by
the dual architecture are plotted together in Fig. 7 with the

previous results of Fig. 2. Compared to the previous results,
the number of intact sequences with chunking is greater after
round six. Meanwhile, the number of retraining sweeps is
reduced considerably. The dual architecture never performed
worse in any round.

For Phase 11 training, 6’ was again set to zero. To complete
the Phase II training, the dual architecture required 1234 con-
text detectors as compared to 1088 required for the situation
without chunking, and 436 chunk detectors. Other parts of the
network, including parameter values, are the same as used
in Section IV-B. Fig. 8 presents the results. A comparison
between the results in Fig. 8 and in Fig. 4 shows that the
former gives rise to a little more intact sequences. This
indicates that, in the dual architecture, later training causes
almost the same degree of interference. The dual architecture
requires 54% more detectors than the original model. On the
other hand, when the chunking is incorporated, the number of
retraining sweeps on the whole reduces dramatically. The total
number of retraining sweeps during entire Phase II training is
1104 when the chunking network is included. This is compared
to 3029 without the chunking network. This represents a
reduction of overall amount of sequential training almost by
threefold.

For a comparison with Fig. 5 which illustrates the retraining
process of round 96, Fig. 9 shows the detailed retraining
process during round 96 using the dual architecture. Right after
Sgg was learned, three sequences were interfered: Ssg, Sso,
and Sgg. After Sso: “Machine Vision I was retrained, Sgo:
“Machine Vision II” could be correctly generated without
further retraining. This interesting situation arises because the
two sequences have a large overlap and it is the overlapping
part that was interfered during training Sg¢s. Thus, when the
overlapping part was regained during retraining with Ssg, both
Ssg and Sgp could be retrieved correctly. The system took

1478 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 6, NOVEMBER 1996
100} i .
—-&-- number of intact sequences
—— number of retraining sweeps
9o|— —

number of rounds

Fig. 8. The number of intact sequences and the number of retraining sweeps plotted against training rounds during Phase II training with the dual architecture.

Ss9 S60 Sg6
Al 0 8] B N B h 1 0
cl O " 0 I 5] 0 ' 0 3]
G ! Il B ! i 1
H 1) ! L
I 0 fOfn ¢+ 0. 0o Al 0 00 m ﬂn 0010 no. 0 n.n oo 0 _1m
L) 1
M il il Il ' 0
N 0 ol Il 1 5] 0 00 0 0. N 0 0 N
) o 0 0 0 0 o 0 ol n
P ¥ m M
R 3 3] ; 0
s 0. 0 ul . al
T ! 0 o 0 5]
v 1 . il N H
o al Isl I 0 0 I ul 0 o sl 0 0
L [4 t
1 2 3 4 5

retraining cycle |

Fig. 9. Retraining process during round 96 of Phase II training with the dual architecture. The interference with Sgo was eliminated as a result of

retraining Sso. See the caption of Fig. 3 for notations of this figure.

another sweep to regain Sgg. After the first retraining cycle,
all of the first 96 sequences had been acquired.

V1. DISCUSSION

The analysis clearly shows that the anticipation mode] does
not suffer catastrophic interference. When multiple sequences
are acquired by the model sequentially, some degree of inter-
ference occurs. But this kind of interference can be overcome
by retraining the interfered sequences. Extensive computer
simulations indicate that the amount of retraining does not
increase as the number of sequences stored in the model
increases. The anticipation model is characteristic of capacity
independent incremental learning during sequential training.
These results, plus the fact that interference is caused by the

overlap between a new sequence and stored sequences, suggest
that the behavior of the model in sequential learning resembles
some elements of retroactive interference.

Once a sequence S is learned, it can be generated by
its beginning component—the sequence identifier. Partial se-
quence generation can be elicited by a subsequence of S. If
a sufficient subsequence is provided, the rest of S can be
generated entirely. Partial generation can stop before the rest
of the sequence is completed. For example, after the sequence
X-A-B-C-D-E-A-B-C-D-F is learned, the presentation of
A activates the subsequence B-C-D, but not the rest. The
anticipation model exhibits partial generation because a se-
quence is stored as a chain of associations, each of which
is triggered by a context, or a subsequence. This property of

WANG AND YUWONO: COMPLEX TEMPORAL PATTERNS

the model is consistent with our experience that we are able
to pick up a familiar song, a melody, or an action sequence
(like Tai Chi) from the middle. Partial generation gives the
model a dimension of flexibility in generating traces of stored
sequences.

As shown in Section V, the capability of chunking repeated
subsequences within a sequence and between sequences sub-
stantially reduces the amount of retraining and improves the
overall efficiency of learning in the present model. Without
the chunking scheme, recurring subsequences must be learned
separately as they occur in training process. The basic idea
behind current chunking is to learn a recurring subsequence
just once and store it as a chunk, so that the next time the
subsequence occurs the model can simply use the chunk as
a basic component. This is implemented by introducing a
layer of chunk detectors which operates in a way similar
to context detection. The dual architecture self-organizes to
perform chunking. It is interesting to compare the present
chunking method with the hierarchical model of temporal
sequence recognition of Wang and Arbib [42]. In their model,
a sequence in a layer becomes a basic component in the next
layer, and using this idea of chunking they show that detectors
in a higher layer can recognize sequences much longer than
the basic capacity of STM. Unlike the anticipation model, their
model does chunking in a supervised manner. It is still an open
issue how hierarchical sequence recognition can be achieved
by self-organization. On the other hand, the present model
cannot learn a set of sequences if the set degree is greater
than r, the STM capacity. It requires further investigation to
incorporate the chunking idea of Wang and Arbib with the
anticipation model so that the latter can acquire sequences
whose set degree is much greater than 7.

Chunking is one of the fundamental characteristics of human
information processing [30], [37]. Though the present model
and the model of Wang and Arbib [42] have addressed some
aspects of chunking, the general issue of automatic chunking
is very challenging and remains unsolved. It is not even clear
what constitutes a chunk in general. In this paper, a chunk
corresponds to a repeated subsequence. This is a reasonable
definition in the present context. The anticipation model,
through its mechanism of context learning, provides a neural
network basis for forming such chunks. On the other hand,
this definition of a chunk does not capture the richness of
general chunking. We realize that chunking depends critically
on the STM capacity [30]. Different people, however, may
have different ways of chunking the same sequence in order
to overcome STM limitations and memorize the sequence.
Chunking also depends on general knowledge. For example,
we tend to chunk a 10-digit telephone number in the U.S.
into three chunks: The first three digits that correspond to an
area code, then the next three digits to a district code, and the
last four digits. But the same 10-digit number may well be
chunked in a different way in a different country.

Theorem 1, Remark 2, and the property of capacity-
independent incremental learning together enable the antic-
ipation model to perform long-term automatic learning of
. temporal patterns. The system is both adaptive and stable,
and its long-term memory increases gradually as learning

1479

episodes extend. Thus, the anticipation model provides a
sequential memory, which can store and recall a large number
of complex sequences. While sequences can be acquired
from time to time, they can also be forgotten as a result of
interference. But retraining with a particular sequence takes
less effort than learning the sequence from the scratch.

How does the anticipation model as a sequential memory
compare with computer storage of symbol sequences (strings)?
A typical computational scheme is to store each sequence
independently, and recall it by its identifier. This is similar
to Grossberg’s outstar avalanche model [16). In doing so, this
method treats both simple sequences and complex sequences
in the same way, and a complex sequence can be recalled
just as easily as a simple one. Also, there is no interference
when a new sequence js acquired. Provided that an identifier
can access its corresponding sequence by a very efficient
search method, this method can support immediate recall. This
method of storing sequences is used for many applications,
such as storing book titles for library search and various
pieces of music, and it is characteristic of the computer
database approach [12]. The anticipation model differs from
this method in several ways. First, our model supports not
only sequence recall by its identifier but also partial recall
by a context. Second, the computer method stores recurring
subsequences as different copies, and the anticipation model
stores them as a unique copy. As a result, our model yields
a significantly more efficient use of memory space. Finally,
though the computer method does not produce interference,
the anticipation model is always adaptive and its long-term
memory increases gradually with learning and recall expe-
rience. As a result of long-term adaptation and overlaps in
storage, the anticipation model permits a dimension of recall
flexibility that is missing from the computer method. For
example, the anticipation model is more reliable because being
self-organized it exhibits graceful degradation if detectors or
their connections are damaged. Also, the anticipation model
has the potential to support cognitive investigation of temporal
learning.

APPENDIX

Here we provide a complete definition for the original
anticipation model [43]. See Section II-B for notations. The
activity of detector i is defined as”

Ei(t) =g | Y Wiing(Vie(t), Ai), 6; (AU
ik
_Jx ifzx>y
9(z,y) = { 0 otherwise "

where 6; is an adjustable threshold for detector ¢, which may be
increased when the detector wins winner-take-all competition
in the detector layer, to be discussed later. See (AS) for the
definition of A;. The activity of the kth SR unit of the jth

2Notice the difference between (A1) here and the corresponding equation
in [43]—the gating of V;; by the inner g function is included in (Al). The
gating makes the model robust in the presence of initial variations. We thank
C. Rosenberg for pointing this out.

1480

assembly is

Viult) = {Jj(t) if k=1 (head unit)

max [0,V; x—1(t — 1) — 8] otherwise

(A3)

where ¢ is a decay parameter.

The detailed dynamics of winner-take-all competition in the
detector layer can be found in [17]. The learning rule for each
detector 7 is a Hebbian rule plus normalization to keep the
overall weight constant (the normalized Hebbian rule)

Win(t+1) =W ji(t) + aO:(t)g(Vir(t), A;)) (Ada)
Won(t 4 1) = — Ll D) (Adb)
v aC + ZWZ‘J‘]Q(T, + 1)
ik

where « is a learning rate. A; is the sensitivity parameter of
detector 7, which is adapted by the following rule:

ifd; =0

if d; > 0. (A5)

1
A= {maX [0,1—-6(d; — 1)]

The threshold of the winning unit z in the detector layer is
updated according to

Oi(t +1) = 0;(t) + O;(EF (1 + 1) — 6,(¢)) (A6)

where E7f(t+1) is the activity of ¢ based on the new weights,
Le, BI(E+1) = X Wi (t 4+ 1)9(Vir(t), A;). The activity
of modulator 7 is defined as

Mi(t) = O;(t — 1) i Ri;I;(t) (A7)
j=1

where R;; is a binary-valued weight of the connection from
terminal j to modulator ¢. All R;;’s are initialized to zero. The
degree d; of detector ¢ is adjusted at time ¢ as follows:

di = { d; otherwise. (A8)

Finally, one-shot learning is performed on the modulator of
the winning detector z

R.; = I;(t). (A9)

REFERENCES

[11 Y. Baram, “Memorizing binary vector sequences by a sparsely encoded
network,” IEEE Trans. Neural Networks, vol. 5, pp. 974-981, 1994.

[2] J. M. Barnes and B. J. Underwood, “Fate of first-list associations in
transfer theory,” J. Exp. Psych.., vol. 58, pp. 97-105, 1959.

[3] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,” /EEE Trans. Neural Nerworks,
vol. 5, pp. 157-166, 1994.

(4] G. H. Bower, S. Thompson-Schill, and E. Tulving, “Reducing retroac-
tive interference: An interference analysis,” J. Exp. Psych.: Learning,
Memory, Cognition, vol. 20, pp. 5166, 1994.

[5] G. Bradski, G. A. Carpenter, and S. Grossberg, “STORE working mem-
ory networks for storage and recall of arbitrary temporal sequences,”
Biol. Cybern., vol. 71, pp. 469-480, 1994,

(61
[7]

[11]
[12]

{13]

[14]

[15]

[16

[17]

[18]

[19]

[20]

121

[22]

128]

{29]

[30]

[31]

(32]

[33]

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 6, NOVEMBER 1996

J. Buhmann and K. Schulten, “Noise-driven temporal association in
neural networks,” Europhys. Lett., vol. 4, pp. 1205-1209, 1987.

G. A. Carpenter and S. Grossberg, “A massively parallel architecture for
a self-organizing neural pattern recognition machine,”- Comput. Vision,
Graphs, Image Processing, vol. 37, pp. 54-115, 1987.

C. C. Chandler, “Accessing related events increases retroactive interfer-
ence in a matching test,” J. Exp. Psych.: Learning, Memory, Cognition,
vol. 19, pp. 967-974, 1993.

R. L. Crooks and J. Stein, Psychology: Science, Behavior, and Life.
Fort Worth, TX: Holt, Rinehart, and Winston, 1991.

S. Diederich and M. Opper, “Learning of correlated patterns in spin-
like glass networks by local learning rules,” Phys. Rev. Lett., vol. 58,
pp. 949-952, 1987.

J. L. Elman, “Finding structure in time,” Cognitive Sci., vol. 14, pp.
179211, 1990.

R. Elmasri and S. B. Navathe, Fundamentals of Database Systems.
Redwood City, CA: Benjamin/Cummings, 1994.

R. M. French, “Using semidistributed representations to overcome
catastrophic forgetting in connectionist networks,” in Proc. 13th Annu.
Conf. Cognitive Sci. Soc., 1991, pp. 173-178.

. “Dynamically contraining connectionist networks to produce
distributed, orthogonal representations to reduce catastrophic inter-
ference,” in Proc. 16th Annu. Conf. Cognitive Sci. Soc., 1994, pp.
335-340.

R. Granger, J. Whitson, J. Larson, and G. Lynch, “Non-Hebbian
properties of long-term potentiation enable high-capacity encoding of
temporal sequences,” in Proc. Nat. Academy Sci. USA, vol. 91, 1994,
pp. 10104-10108.

S. Grossberg, “Some networks that can learn, remember, and reproduce
any number of complicated space-time patterns, 1,7 J. Math. Mechan.,
vol. 19, pp. 53-91, 1969.

, “Adaptive pattern classification and universal recoding I: Parallel
development and coding of neural feature detectors,” Biol. Cybern., vol.
23, pp. 121-134, 1976.

, “Competitive learning: From interactive activation to adaptive
resonance,” Cognitive Sci., vol. 11, pp. 23-63, 1987.

I. Guyon, L. Personnaz, J. P. Nadal, and G. Dreyfus, “Storage and
retrieval of complex sequences in neural networks,” Phys. Rev. A, vol.
38, pp. 6365-6372, 1988.

H. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of
Neural Computation. Redwood City, CA: Addison-Wesley, 1991,

T. M. Heskes and S. Gielen, “Retrieval of pattern sequences at variable
speeds in a neural network with delays,” Neural Networks, vol. 5, pp.
145-152, 1992.

M. L. Jordan, “Attractor dynamics and parallelism in a connectionist
sequential machine,” in Proc. 8th Annu. Conf. Cognitive Sci. Soc., 1986,
pp. 531-546.

P. Kanerva, Sparse Distributed Memory.
1988.

L. Kantor and H. Sompolinsky, “Associative recall of memory without
errors,” Phys. Rev. A, vol. 35, pp. 380-392, 1987.

C. A. Kortge, “Episodic memory in connectionist networks,” in Proc.
12th Annu. Conf. Cognitive Sci. Soc., 1990, pp. 764-771.

J. K. Kruschke, “ALCOVE: An exemplar-based model of category
learning,” Psych. Rev., vol. 99, pp. 22-44, 1992.

K. S. Lashley, “The problem of serial order in behavior,” in Cerebral
Mechanisms in Behavior, L. A. Jeffress, Ed. New York: Wiley, 1951,
pp. 112-146.

R. P. Lippmann, “Review of neural networks for speech recognition,”
Neural Computa., vol. 1, pp. 1-38, 1989,

M. McCloskey and N. J. Cohen, “Catastrophic interference in connec-
tionist networks: The sequential learning problem,” Psych. Learning
Motivat., vol. 24, pp. 109-165, 1989.

G. A. Miller, “The magical number seven, plus or minus two: Some
limits on our capacity for processing information,” Psych. Rev., vol. 63,
pp. 81-97, 1956.

M. C. Mozer, “Neural-net architectures for temporal sequence process-
ing,” in Predicting the Future and Understanding the Past, A. Weigend
and N. Gershenfeld, Eds. Redwood City, CA: Addison-Wesley, 1993,
pp. 243-264.

R. Ratcliff, “Connectionist models of recognition memory: Constraints
imposed by learning and forgetting function,” Psych. Rev., vol. 97, pp.
285-308, 1990. '

G. J. Rinkus, “TEMECOR: An associative, spatio-temporal pattern
memory for complex state sequences,” in Proc. World Congr. Neural
Networks, Washington, D.C., 1995, pp. 1.442-1.448.

Cambridge, MA: MIT Press,

WANG AND YUWONO: COMPLEX TEMPORAL PATTERNS

{34] W. A. Rodriguez, L. S. Borbely, and R. S. Garcia, “Attenuation by con-
textual cues of retroactive interference of a conditional discrimination
in rats,” Animal Learning Behavior, vol. 21, pp. 101-105, 1993.

[351 V. Ruiz de Angulo and C. Torras, “On-line learning with minimal
degradation in feedforward networks,” IEEE Trans. Neural Networks,
vol. 6, pp. 657-668, 1995.

[36] N. E. Sharkey and A. J. C. Sharkey, “Understanding catastrophic
interference in neural pets,” Dep. Comput. Sci., Univ. Sheffield, UK.,
Tech. Rep. CS-94-4, 1994,

[371 H. A. Simon, “How big is a chunk?” Sci., vol. 183, pp. 482488, 1974,

[38] S. A. Sloman and D. E. Rumelhart, “Reducing interference in distributed
memories through episodic gating,” in From Learning Theory to Connec-
tionist Theory: Essays in Honor of William K. Estes, A. F. Healy, S. M.
Kosslyn, and R. M. Shiffrin, Eds. Hillsdale, NJ: Lawrencc Erlbaum,
1992, pp. 227-248.

[39] H. Sompolinsky and 1. Kanter, “Temporal association in asymmetric
neural networks,” Phys. Rev. Letr., vol. 57, pp. 2861-2864, 1986.

[40] D. L. Wang, “Temporal pattern processing,” in Handbook of Brain
Theory and Neural Networks, M. A. Arbib, Ed. Cambridge, MA: MIT
Press, 1995, pp. 967-971.

[41] D. L. Wang and M. A. Arbib, “Complex temporal sequence learning
based on short-term memory,” Proc. IEEE, vol. 78, pp. 1536-1543,
1990.

[42] ., “Timing and chunking in processing temporal order,” IEEE

Trans. Syst., Man, Cybern., vol. 23, pp. 993-1009, 1993.

D. L. Wang and B. Yuwono, “Anticipation-based tcmporal pattern

generation,” TEEE Trans. Syst., Man, Cybern., vol. 25, pp. 615-628,

1995.

[44] D.J. Willshaw, O. P. Buneman, and H. C. Longuet-Higgins, “Nonholo-
graphic associative memory,” Nature, vol. 222, pp. 960-962, 1969,

143]

1481

DeLiang Wang (M’94) was born in Anhui, the People’s Republic of China, in
1963. He received the B.Sc. degree in 1983 and the M.Sc degree in 1986 from
Beijing University, China, and the Ph.D. degree in 1991 from the University
of Southern California, Los Angeles.

From July 1986 to December 1987 he was with the Institute of Computing
Technology, Academia Sniica, Beijing. He is currently an Assistant Professor
in the Department of Computer and Information Science and the Center
for Cognitive Science at the Ohio State University, Columbus. His present
research interests include temporal pattern processing, auditory and visual
perception, neural-network theories, and computational neuroscience.

Dr. Wang is a member of the [EEE Computer Society, the IEEE Systems,
Man, and Cybernetics Society, the International Neural Network Society, and
AAAS.

Budi Yuwono received the B.Eng. degree in indus-
trial engineering and management from the Bandung
Institute of Technology, Bandung, Indonesia, in
1986 and the M.Sc. degree in computer science
from the Ohio State University, Columbus, in 1991.
Currently he is a Ph.D. candidate at the Department
of Computer and Information Science, the Ohio
State University.

He has been a Research Associate since 1995
at the Department of Computer Science, the Hong
Kong University of Science and Technology. His
research interests include neural networks and information retrieval.

