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Anticipation-Based Temporal Pattern Generation

DeLiang Wang, Member, IEEE, and Budi Yuwono

Abstract— A neural network model of complex temporal pat-
tern generation is proposed and investigated analytically and by
computer simulation. Temporal pattern generation is based on
recognition of the contexts of individual components. Based on
its acquired experience, the model actively yields system anticipa-
tion, which then compares with the actual input flow. A mismatch
triggers self-organization of context learning, which ultimately
leads to resolving various ambiguities in producing complex
temporal patterns. The architecture of the model incorporates
a short term memory for building associations between remote
components and recurrent connections for self-organization and
component generation in a temporal pattern. Synaptic modifi-
cation is based on a one-shot normalized Hebbian rule, which
is shown to exhibit temporal masking. The major conclusion,
namely the network model can learn to generate any complex
temporal pattern, is established analytically. An estimate on the
efficiency of the training algorithm is provided. Multiple temporal
patterns can be incrementally acquired by the system, exhibiting a
form of retroactive interference. Neural and cognitive plausibility
of the model is discussed at the end of the paper.

I. INTRODUCTION

HE ability to learn and generate temporal patterns is one

of the most important characteristics of an intelligent
system. In fact, it is a necessary survival ability for many
animals, such as in recognizing dangerous scenes, escaping
from enemies, etc. Such an ability enables the systems to per-
form tasks, ranging from a simple behavior of limb movement
to abstract temporal reasoning. Time may be embedded in a
temporal pattern in two basic ways: 1) Temporal order. If the
components of a temporal pattern are drawn from a specific
alphabet, temporal order refers to the ordering among a set
of symbols from the alphabet (a sequence). For example, the
sequence A-B-C is considered different from C-B-A because
of different ordering. Temporal order may also refer to a
syntactic structure, such as subject-verb-object, where each
component may be any of a number of possible symbols.
2) Time duration. Time duration is inversely proportional
to the rate of presentation. Duration plays a critical role
for temporal processing, both in recognizing and producing
temporal patterns.

To focus the following discussions, we assume discrete tem-
poral patterns, or temporal sequences. Of course, a temporal
pattern may be continuous, and in this case, it can usually be
sampled into a sequence of discrete patterns before processing.
Following the terminology introduced by Wang and Arbib
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[40], a sequence S of length N over a symbol alphabet is
defined as p; — pp — --- — pn, where each p; (1 <7 < N)
is one symbol of the symbol alphabet and a component (static
pattern) of S. Any part of S, p; — pj4+1 — -+ — pr Where 1
< j £k < N, is called a subsequence of S. Generally, in
order to unambiguously produce a component in a sequence,
a prior subsequence is required to be detected. For instance,
in the sequence R-E-F-E-R-E-E, the prior subsequence E-
R-E of the last E is required to determine the E, since R-E
is a recurring subsequence in the sequence. Thus we define
the context of a component p; as the shortest subsequence
which unambiguously determines p; in sequence S, and its
length is called the degree of p;. The degree of a sequence
is the maximum degree of its components. Thus, a simple
sequence that contains no recurring subsequences corresponds
to a degree 1 sequence. A sequence is complex if its degree
is greater than one.

Neural networks to learn and generate temporal sequences
have been investigated by a number of investigators (See Wang
[39] for a more extensive review). Perhaps the earliest model
of sequence generation is the outstar avalanche by Grossberg
[13], which is composed of a number of sequential outstars
corresponding to static patterns. Each outstar is connected with
the next one in the sequence, leading to a sequential recall of
static patterns once the first pattern is activated. Based on the
idea of interconnecting two networks, Kosko [23] proposed
a bidirectional associative memory model that can generate a
sequence of patterns which alternate between the two memory
networks. Along a similar line, Healy et al. [16] coupled two
ART 1 modules {5] and associated the pattern learned from
one ART 1 to another one.

Associative memory models have been extended to store
and produce temporal sequences (see among others [36], [3],
[15], [18]). Here, a sequence is treated as a set of pairs between
consecutive components, and these pairs are stored into an
associative memory. Hence, after the first component of the se-
quence is presented, the next component will be activated from
the memory shortly, which further activates the third one, etc.
This process continues until the entire sequence is produced.
Generation of temporal sequences have also been investigated
using the backpropagation network [21], [10], [11]. There are
two basic styles of architecture: In the Jordan network [21]
the output layer associated with a component is fed back and
blended with some history to generate the next component,
whereas in the Elman network [11] the hidden layer is fed
back to influence the generation of the next component.

One of the main problems with the above methods lies
in producing complex sequences, where one pattern may be
followed by different ones. In this situation, it is insufficient
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to have just one prior component to cue a current one. High-
order networks have been proposed to fix the problem [9],
[15]. In a high-order network, one component in a sequence is
associated by a prior subsequence of certain length depending
on the order of the network. The major concern with high
order networks is the system overhead caused by the immense
number of connections. The number of connections in a
high-order network grows exponentially with the order of
the network. Another difficulty is that unless the degree of
the sequence is known in advance, a fixed network cannot
guarantee unambiguous production of an arbitrary sequence.

Recently, Wang and Arbib [40], [41] proposed a model for
temporal sequence learning. Complex temporal sequences are
acquired by a network through a form of supervised learning,
called attentional learning. The basic assumption for sequence
reproduction is that the generation of the next component is
based on the recognition of its context. Thus, after successful
training, an adequate beginning part of a sequence forms
the context for activating the next component. This newly
activated component joins the previous context, which is
fading as time goes, to form another context which will be
able to trigger yet next component. This process continues
until the entire sequence is reproduced. Based on this idea,
the later model {41] addressed the issues of time warping and
chunking of subsequences. In particular, sequences can be rec-
ognized in a hierarchical fashion and without being affected by
the presentation speed. Also in sequence generation, relative
timing among the sequence components can be maintained by
the model.

This paper presents a neural network model of learning
and generating complex temporal patterns by self-organization.
The basic idea for self-organization is an anticipation mecha-
nism where the system actively anticipates the next component
in a sequence and compares its anticipation with the next
input component. The self adjustment of contexts is performed
once the anticipation does not match the next input. We
introduce a layer of neural modulators which perform the
system anticipation. Based on this mechanism, we show that
the network can learn any complex sequences. The present
model differs from the earlier models proposed by Wang
and Arbib [40], [41] in a number of major aspects. First,
the selection of context detectors is done by competitive
learning in this model whereas the previous models need the
system to assign and remember appropriate context detectors.
Secondly, active anticipation is missing from the previous
models. Combined together, the present model fully organizes
itself during sequence training and learns to generate arbitrarily
complex sequences. Also a much more extensive analytical
investigation has been undertaken for the present model.

The remaining part of the paper is organized as follows. In
Section II, we describe the architecture of the neural network
model. Section IIT presents the definition of model dynamics
and the learning algorithm used by the network. In Section IV
the model is formally analyzed, and we summarize the main
result as a theorem which guarantees that the model can learn
to generate any complex sequence. In Section V, the efficiency
of the learning algorithm and acquisition of multiple sequences
are analyzed. The model is shown to exhibit incremental

learning, whereby later sequences can be acquired without
damaging memory traces of previously learned sequences. We
conclude the paper with some general discussions in Section
VI about possible extensions of the model and its link to
neurobiological and psychological data.

II. NETWORK ARCHITECTURE

As a basic idea, this model generates a sequence S of length
N by successively predicting component p; based on the
context of p;. More specifically, the model is designed to detect
the context of p; first, and then associate this detection with p;,
thus producing p; once its context occurs from the input. Since
a context is, by definition, also a sequence, recognizing the
contexts of sequence components can be done by means of a
set of sequence detectors, each of which is uniquely associated
with a component. In the following discussions, we assume
that each symbol, or static pattern, is uniquely represented
by an input unit. This assumption is introduced to focus the
attention to processing temporal aspects in sequence learning.
In general, some pattern recognition networks, such as ART
[5], [6] or self-organizing maps [22], can serve as the front-end
to this network for recognizing spatial (static) patterns from
the input flow.

In order to learn a complex sequence, each input component
must be associated with other successive components beyond
its immediate successor in the sequence. This can be achieved
with a short-term memory (STM) model (see [40], [41], [2],
(31D). In a decay-based STM model, when component p;
is presented, the corresponding input unit U; is activated.
Assuming discrete time steps, the activity level of U; then
decays after each time step, resulting in a pattern of activity
where the more recent a component is presented the higher
the activity level of its corresponding input unit. In other
words, a sequence of successive input patterns are made
simultaneously available as a spatial pattern due to STM.
The resulting spatial pattern is a vector V whose elements
represent sequence components, so that the magnitude of each
vector component corresponds to the temporal order of the
corresponding sequence component. All input units together
form the input layer.

In order to implement such an STM model, each input unit is
extended to a local network, called a shift-register assembly. A
shift-register assembly is a group of units, called shift-register
units, which are serially linked one after another, forming
a chain like the outstar avalanche [13). Fig. 1 shows such
an assembly. Each assembly is triggered externally through
a head unit at one end of the register-chain. The head unit
receives its input from a unique input terminal which is
directly activated by external stimulation or by a modulator
unit (to be discussed shortly) during generation. Each terminal
represents a unique input symbol. When a symbol is presented
to the network, the corresponding terminal is activated. When
aterminal is triggered, the head unit of the respective assembly
is activated. The activity of each unit in the assembly is then
shifted to the next one along the chain in the next time step.
Every time an activity is shifted. its magnitude is reduced by
a constant amount until the magnitude is reduced to 0.
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Fig. 1. A shift-register assembly. The right-most register unit, called the head
unit, receives activation from a corresponding input terminal. The activity of
a register unit decays and is shifted to its left neighbor every time step.
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Fig. 2. The architecture of the overall network model. Thin lines denote
modifiable connections, while thick lines and dashed lines denote fixed
connections.

With such a STM model in place, a single detector layer
with m units is introduced for detecting different contexts.
Fig. 2 shows the entire neural network architecture of this
model. Each unit in this layer receives inputs from all the
shift-register units (SR units) and this layer can be trained to
associate its units with the input subsequences corresponding
to different contexts. A detector in the network is said to be
committed if it is tuned to a particular input subsequence, i.e.,
the detector unit will be activated when the subsequence is
presented. We use a winner-take-all mechanism for the detec-
tor layer as described by Grossberg [14]. In this mechanism,
each unit inhibits all the others in the network, and it also
excites itself (see Fig. 2, dashed lines). The overall effect of
this competitive network is that the unit with the highest initial
activity is the only one that has certain activity while all the
others are inactive (with 0 activity). Due to winner-take-all
dynamics, there is at most one detector unit committed to a
particular subsequence.

The system anticipates the next component and compares
it with the external input through the modulator layer. As
shown in Fig. 2, there is one modulator associated with each
detector in the network. Each modulator unit receives upward
connections from every individual terminal. In addition, it
receives a downward connection from its respective detector.
An active detector enables its modulator in the next time

step (assuming some delay). Once enabled, the modulator
performs one-shot (single step) learning which updates its
connection weights from the terminals. Since only one terminal
corresponding to an input component can be active at any
time step, one-shot learning leads to one-to-one connection
from an active terminal to a triggered modulator. Basically,
this one-shot learning establishes the association between a
context detector and the next input component. If they do not
match next time when the detector is activated, the anticipated
activation of the corresponding modulator will be absent, and
this mismatch will be detected by the modulator, which in
turn sends a signal to its respective detector to expand the
context that the detector is supposed to recognize. We provide
the detailed neural dynamics and the learning algorithm in the
next section.

III. LEARNING ALGORITHM

A. Model Definition

Let us assume that the network model has m detectors, m
modulators, n terminals and n shift-register assemblies. Each
assembly has 7 SR units. The activity of detector i at time ¢,
E;(¢), is defined as:

Ei(t) = g Y Wi aVir(t), 8 o)
Tk
ifx >
o= of K22 @

where W, ;i is the connection weight from the kth SR unit
of assembly j to detector i. Vji(t) is the activity of this SR
unit at time ¢. #; is an adjustable threshold for the detector,
which is initialized to 0. ; may be increased when detector 4
wins the winner-take-all competition in the detector layer, to
be discussed later. The activity V;x(¢) is defined as follows,

I(t) if k = 1 (head unit)
Vik(t) = {max [0, Vik-1(t = 1) — 8] ®
otherwise

where I;(t) is the binary activity of terminal j. I;(¢t) = 1 if the
corresponding symbol of terminal j is being presented to the
network at time ¢, and I;(¢) = O otherwise. Due to the nature
of sequential input, at most one terminal has its I(t) equal to
1. 6 is a decay parameter. Eq. (3) provides an implementation
of the STM model described earlier, i.e., an input activity is
held for a short time and decays gradually in a shift-register
assembly. If assembly j is stimulated by an input at time ¢,
namely I;(t) = 1, according to (3) the end unit of the assembly
gets activated at time ¢ + r — 1, and its activity V(¢ + r —1)
=1 — 6(r — 1). Apparently, the input cannot be held longer
than r steps, the limit of STM capacity. Given r, in order for
the input to be held for r steps, the parameter must be chosen
so that 1 — §(r —1)>0. That is, 6 <1/(r — 1).

It was mentioned in the previous section that all the detector
units in the detector layer form a winner-take-all network.
The detailed dynamics of winner-take-all can be found in
[14]. In such a competitive network, the activity of each
detector evolves until the network reaches equilibrium, where
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the detector with the highest initial activity becomes the
only active unit. The network takes a short time to reach
equilibrium. This time period should be much shorter than
the duration of one sequence component' In the following
analysis, we assume that each discrete time step is longer than
the time needed for the winner-take-all mechanism to reach
an equilibrium.

The learning rule for each detector ¢ is a Hebbian rule [17]
plus normalization to keep the overall weight a constant [25],
[40], denoted as a normalized Hebbian rule,

Wikt + 1) = Wi k(1) + a0s(t)g(Vir(t), Ai)
Wi,jk(t + 1)
aC + Ej,k Wz"jk(t +1)

(4a)

Win(t+1) = (4b)

where « is a gain parameter or learning rate. A large o makes
training fast. It is easy to see that when « is very large,
approximate one-shot learning is exhibited as a result. As
mentioned earlier, winner-take-all competition in the detector
layer will activate a single unit from the layer. To indicate the
outcome while omitting the details of competitive dynamics,
we introduce O;(t) which equals 1 if detector ¢ is the winner
of the competition, or 0 otherwise. Function g, as defined
in (2), serves as a gate to let in the influences of only
those SR units whose activities are greater than or equal to
A;. A; is the sensitivity parameter of unit ¢. The lower the
sensitivity parameter the more SR units can be sensed by a
winning detector. Thus more connections of the detector can
be modified according to (4a). Furthermore, the sensitivity
parameter A; is adaptive by itself, following the rule below:

ifd; =0

1
A= {max [0.1—6(di—1)] ifdi>0 ©)

where d;, called the degree parameter of detector 3, is a non-
negative integer, initialized to 0. ¢ is the decay parameter as
introduced in (3). According to (5), A; is equal to 1 when d;
=0 or 1, and decreases until 0 as d; increases. Since value 1
is the activity level of the corresponding head unit when some
assembly is stimulated, detector ¢ will only sense a head SR
unit when d; = 0 or 1. When d; increases, more SR units can
be sensed, and except when d; = 0, d; is equal to the number
of units that detector i can sense when it becomes a winner.
The constant C' in (4b) is positive, and its role will be analyzed
in Section [V. The connection weight W; ;; is initialized to
1/[r(1 + C) + €], where ¢ is a small random number introduced
to break symmetries between the inputs of the detectors, which
may cause problems for competitive dynamics.

Let us denote unit z as the winner of the competition in the
detector layer. After the connection weights are updated, the
activity of unit z will change as a result with the same input
in the future. More specifically, £, is monotonically non-
decreasing as learning takes place. This observation will be
proven in the next section. This resulting (increased) activity
by (1) is then used to update the threshold of unit z. This can

! From the neurophysiological perspective, the kind of neural dynamics that
occurs in the winner-take-all network should take no more than dozens of
milliseconds, while typical perception of a sequence component should take
hundreds of milliseconds.

be generally described as:
0;(t+1) = 8;(t) + O:(E; (t+1) — 0:(1)) ©)

where E(t + 1) is the activity of i based on the new weights,
ie. EX(t+ 1) =Xjp W jx(t+1)Vjk(t). Thus, ; is adjusted to
E? if unit { is the winner. Otherwise, §; remains the same. Due
to this adjustment, unit z increases its threshold so that unit z
will be triggered only by the same input subsequence whose
components have been sensed during weight updates by (4a).
This assertion will be proven in the next section. The above
threshold can be relaxed (lowered) a little in order to handle
sequences with certain distortions. This way, subsequences
very close to the training one can also activate the detector.
A modulator receives both top-down connection from its
corresponding detector and bottom-up connections from input
terminals (Fig. 2). We assume that the top down connec-
tion modulates the bottom-up connections by a multiplicative
operation. Thus, the activity of modulator i is defined as,

Mi(t) = Oi(t — 1) iRijIj(t) %)

where R;; is a binary-valued weight of the connection from
terminal 7 to modulator ¢. All R;;’s are initialized to 0.
It is assumed that the top-down signal from the detector
takes one time step to reach its modulator. Since at any
time, at most one terminal is active (I(t) = 1), M(t) is
also a binary value. If O;(¢t — 1) = 1 and M;(t) = O then
the modulator sends a feedback signal to its detector. Upon
receiving this feedback signal, the detector increases its degree
parameter, thus lowering its sensitivity parameter A; (see (5)).
Quantitatively, d; of detector 7 is adjusted at time ¢ as follows:

d; +O;(t - 1) if M;(t)=0
d; = .
d; otherwise

®)

We refer to this situation where O;(t —1) = 1 and M;(t) =0
as a mismatch. A mismatch occurs when an anticipated next
component in the sequence does not appear, to be explained
shortly. Thus the degree of a context detector increases when
a mismatch is caused by the detector.

Finally, one-shot learning is performed on the bottom-up
connection weights of the modulator of the winning detector
2,

R.; = I;(t) &)

This learning rule sets the connection weights of modulator z
to the current activities of the input terminals. Since there is
only one active terminal at time ¢, i.e., the one representing
the current input symbol, only one bottom-up weight of the
modulator is equal to one, and all the others are zero. The
result of this training is a one-to-one association between a
modulator and a terminal.

Let us return to explain under what condition a mismatch
occurs, which leads to an increase of the degree of detector
2. According to (7), a mismatch occurs when O;(t — 1) =
1 and X7_; R;;[;(t) = 0. Since at any time, only one
bottom-up weight of modulator ¢ equals 1 and only one
input terminal (I;) is activated, mismatch occurs when the
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non zero weight and the terminal with non zero input do
not coincide with each other. But one-shot learning of (9)
establishes a non zero link only between a modulator and the
next input terminal. Therefore, if the link between detector
¢+ and an input terminal established last time when detector
it was activated does not coincide with the activated input
terminal this time (at time £), a mismatch occurs. The bottom-
up links of a modulator established between the modulator
(or the corresponding detector) and the next input component
are used for the modulators to anticipate the next component
in sequence generation. Thus a mismatch corresponds to the
situation where the anticipated next input symbol does not
match with the real input symbol during sequence training.
Since R;;’s are all initialized to 0, following (7) a mismatch is
bound to occur the first time a pair of consecutive components
is presented, which then increases the degree of the detector for
the first component from O to 1. If the sequence to be learned is
a simple sequence, like A-B-C-D-E, it suffices to increase the
degrees of all detectors involved to 1. For complex sequences,
though, the degree parameters of the relevant detectors will
further increase until no mismatch occurs.

The training steps are repeated at each following time step.
After all sequence components have been presented, the entire
cycle of training, referred to as a training sweep, is repeated.
The training phase is completed when there is no mismatch
occurring during the last training sweep. In this case, as shown
in the next subsection, the network correctly anticipates the
next component for every time step. The completion of the
learning phase can be detected in various ways. For example,
a global unit can be introduced to sum up all feedback
from modulators to their respective context detectors during
a training sweep. Thus, the inactive global unit by the end of
a sweep signals the end of the learning phase.

B. Sequence Generation

During sequence generation (reproduction), the connections
from the input terminals to the modulators in the model are
reversed (see Fig. 2). Since only one bottom-up link from the
terminals to a modulator is non-zero after one-shot learning
of (9), once reversed, a modulator triggers only one terminal.
The generation process of a learned sequence starts from the
presentation of the beginning component of the sequence.
The beginning component will trigger an appropriate context
detector, which in turn activates its respective modulator,
thus leading to the activation of the second component in
its corresponding terminal. The activated terminal joins the
beginning component to activate another context detector,
which again triggers its respective modulator and thus the
third input component. This process continues until the entire
sequence is generated.

The reversal of the connections from the terminal layer to
the modulator layer can be neurally implemented by intro-
ducing bidirectional connections between the two layers and
assuming that the backward connections from the modulator
layer to the terminal layer are trained in the same way
as the forward connections. Thus the backward connections
established during the learning phase are used directly during

()

Fig. 3. (a) An example network configuration. Each component of the input
sequence is presented to the network by triggering the input terminal rep-
resenting the corresponding symbol. (b) The resulting network configuration
after successful training with the sequence Se.

the generation phase. A similar idea has been proposed for
training bottom-up and top-down connections simultaneously
in the ART 1 network [5].

In the present model, the duration during which a sequence
component is presented is not learned by the network. There-
fore, the components generated are of equal duration. To
encode duration, the model can be modified by introducing
a weighted connection from each detector to its modulator.
The weight of this connection can serve as a propagation
delay, and can be adjusted to the duration of a corresponding
component. This connection weight prevents the detector from
triggering the modulator until an appropriate propagation delay
has elapsed. A similar idea has been proposed by Wang and
Arbib [41] to produce durations of sequence components.

C. Example

Let us see how the algorithm operates by examining an
example sequence, which is a complex sequence S, = B-A-
B-A-C. Let terminals 1, 2, 3, and 4 represent symbols A,
B, C and # respectively, where ‘# is the end marker of a
sequence. Fig. 3(a) shows the network configuration for this
example. All units in the detector layer are uncommitted at
the beginning.
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During the first training sweep, the first component B is
presented to the network at time O by activating terminal 2.
Let us assume that detector 1 wins winner-take-all competition.
Weight update is then performed by detector 1 according to
(4), followed by an adjustment to its threshold 6; according
to (6). Next, detector 1 sends its output O;(0), which equals
1, to modulator 1, and this signal arrives at the modulator at
time 1. At time I, symbol A is presented to the network by
activating terminal 1. At this time, modulator | computes its
activity level according to (7), resulting in 0 since all R; ;s are
initialized to 0. Because M;(1) = 0, a feedback signal is sent
to detector 1 to increase d; (see (8)). Meanwhile, modulator 1
performs one-shot learning according to (9), and thus set R ;
to 1 and Ry ; (j # 1) to 0. At this point, detector 1 is tuned
to input subsequence B and anticipates the next component,
symbol A.

At time 1, the next winner from the detector layer is
selected. Notice that the previous winner, detector 1, can not
be the winner at this time because 6; is now set to E;(0).
Without loss of generality, let the current winner be detector
2. Detector 2 performs weight update by (4) and then sets its
threshold 6s to E5(1). At t = 2, the second B is presented by
activating terminal 2. Modulator 2 performs one shot learning
of (9), resulting in B2 5 = 1 and Ry ; = O for j # 2. Also d, is
increased to 1. At this point, detector 2 is tuned to subsequence
A and its modulator anticipates the third component of S..
With symbol B active, detector 1 becomes a winner again,
since the learning rule of (4) makes the detector even more
competitive than when the first B was presented. Detector 1
performs weight updates again, and then adjusts its threshold.

When ¢ = 3, terminal 1 representing symbol A is again
stimulated, and modulator 1 results in M7 (3) = 1. Since M;(3)
is not zero, no mismatch occurs. At time 3, detector 2 is the
winner of the detector layer and activates its modulator. At
time ¢ = 4 terminal 3 representing symbol C' is now activated,
not terminal 2 (symbol) which modulator 2 anticipates. Thus
a mismatch occurs. Modulator 2 sends a feedback signal
to detector 2 to increase its degree to 2. Modulator 2 also
performs one-shot learning, adjusting Ry 3 to 1 and Ry ; =
0 for j # 3. Now, detector 2 detects A but anticipates C.
Meanwhile. an uncommitted detector unit, let it be detector
3, becomes a winner, which is tuned to subsequence C.
Modulator 3 then establishes a link with # Thus d; is set
to 1. By now, the first training sweep is completed.

At the beginning of the second sweep, let time be reset to
zero for the convenience of discussion. At time ¢ = 0, symbol
B is presented by activating terminal 2. At time ¢ = 1, terminal
1 is activated. No mismatch occurs. At the same time, detector
2 becomes a winner and updates its weights with dy = 2. The
resulting connection weight distribution after (4) is tuned to B-
A. Also 8, is increased according to (6). At time 2, terminal
2 is stimulated. In this step, modulator 2 finds a mismatch
because terminal 2 instead of terminal 3 which represents C is
currently stimulated. Thus, ds increases to 3. Then, modulator
2 updates its bottom connections so that Ro» = 1 and R, j =
0 for j # 2. Furthermore, detector 1 becomes a winner at time
2. At t = 3 when symbol A is presented, detector 2 which
is tuned to detect B-A becomes a winner. Now, detector 2

.
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Fig. 4. The activity traces of the input terminals of a network during training
of sequence Se. A white box represents an actual terminal activity, a gray box
represents an anticipated activity, and a black box represents a match between
an anticipated and an actual input activity. The training phase was completed
after 5 sweeps. The simulated network consists of 24 detectors, 24 terminals,
and 6 SR units for each shift-register assembly. The parameter values used
are: @ = 0.2, d = 0.1, and C' = 3.0.

learns to detect A-B-A. However, in the next time step (¢ = 4),
terminal 3 is stimulated, instead of terminal-2 which modulator
2 anticipates. Thus a mismatch occurs and d; is increased to 4.
Also modulator 2 anticipates terminal 3. At time 4, detector 3
is a winner. For time O of the third sweep, training proceeds as
before. At time ¢ = 1 when terminal 1 is stimulated, detector
2 which is tuned to A-B-A, is prevented from winning by its
threshold 65 which was increased during its previous training.
As a result, an uncommitted detector unit, let it be unit 4,
becomes a winner, and is tuned to A after training. At time
t = 2, detector 1 becomes a winner. However, modulator 4
establishes a link to terminal 2. At time ¢ = 3 when terminal
1 is stimulated, detector 2 which is tuned to A-B-A becomes
a winner, while detector 4 which is tuned to A cannot win
due to its shorter context. At time ¢ = 4, training proceeds as
in the previous sweep.

The fourth training sweep proceeds with no mismatch found,
and therefore the training phase is completed after this sweep.
The resulting network configuration is shown in Fig. 3(b),
where unit 1 in the detector layer detects the context B
and anticipates A, unit 2 detects the context B-A-B-A and
anticipates C, and so on. Fig. 4 shows the activity traces
of the four terminals of Fig. 3 during the learning phase.
Once learned, the sequence can be generated by presenting
the beginning component B to the network.

IV. ANALYSIS OF THE ALGORITHM

We now analytically establish a number of properties of
the above model for sequence generation. In the end, we
conclude with a theorem which states that the model can learn
to generate any complex sequences, provided that the number
of SR units in each assembly is greater than or equal to its
degree of the sequence. Let us point out that the degree of a
sequence should not exceed 7, the number of SR units in each
assembly. Otherwise, the sequence cannot be acquired. This is
because the maximum degree of the contexts that can be held
in STM is equal to 7, not large enough to resolve ambiguities in
a sequence whose degree is greater than r. Thus, the selection
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of r limits the degree of the sequence that can be learned.
To simplify the analysis, we assume one shot learning, which
can be made by choosing an appropriate « in (4a). We also
assume that there is sufficient supply of uncommitted units in
the detector layer.

Before we present the following proposition, let us define
that a right subsequence of sequence S is a nonempty right
part of S. For example, sequences D, C-D, B-C-D are all
the right subsequences of sequence A-B-C-D. Similarly, we
define a sequence that has S as a right subsequence as a left
supersequence of S. For example, sequences C-D, B-C-D,
and A-B-C-D are some of the left supersequences of D. The
next right subsequence of S is a right subsequence of S whose
length is 1 minus the length of S. Similarly, the next left
supersequence of S is a left supersequence of S whose length
is 1 plus the length of S. For example, B-C-D is the next
right subsequence of A-B-C-D, and A-B-C-D is the next
left supersequence of B-C-D.

Proposition 1: The learning rule of (4) with a proper choice
of parameter C' guarantees that the detector of sequence S is
preferred to the detectors of all the right subsequences of S.

In other words, when sequence S occurs, the detector that
recognizes S masks those detectors that recognize the right
subsequences of S. We call this property of the leamning
rule temporal masking, following the term masking fields
introduced by Cohen and Grossberg (8], which states that a
larger spatial pattern is preferred to a smaller one in activating
their corresponding detectors.

Proof: Let S be py — ps — -+ — pg. When S has been
presented completely, the SR activity corresponding to p; is
1—(d;)6 (i =1, -, d), given that 1 —(d—4)6 > 0 (otherwise
1—(d —14)6 becomes 0, see (3)), and the overall activity E(d)
as the function of d

d

E(d) =Y [1-(d-i)8) = d[l - (d - 1)§/2]

i=1

Let unit z be the detector trained for recognizing S. Thus
the degree of z is d. Due to one shot learning, the weight
W, from the SR unit representing p; to z equals [1 — (d —
1)8]/(C + E(d)). Therefore, at this time,

(10)

d
E.(d) = Will - (d-i)f]

d
=Y 1-(d-982/(C+E@) (D
=1

Now, proposition 1 becomes equivalent to that a proper C
can be selected so that

E.(d)> E.(d—1) (12)

where E,(d — 1) is equal to the activity of the detector for the
next right subsequence of S, ps — - - - — pg. According to (11)
and (10), (12) is equivalent to

C+d~1—(d—1)(d—2)6/2>1_(%)75
Hld-1)-8(d-1)(d-2)

+682124+22 4. 4+ (d-2)%}

TABLE 1
SELECTION OF C WITH RESPECT TO § AND 7
r
Cmin
2 3 4 5
0.1 0.1 0.11 0.36 0.8
o
0.2 0.25 0.93 2.6 9.0
According to the equation
q 3 2
Zi2=2q +39°+g a3
6
=1
We obtain
1
C+d—1—(d—1)(d—2)6/2>m

: {(d— D[t - (d-2)6]
+ %Z(d— 1)(d — 2)(2d — 3)}

After simplifying and rearranging the above terms, we finally
have

o> 8dd—1) [1 1_5+2 ]

6 5d=1) 14

Since the degree of the sequence that is to be learned cannot
be greater than 7, the number of the SR units in a shift-register
assembly, as long as C is chosen to be

o> 57‘(’;"6— 1) [1+ 1_56?;2“1)]

15)

inequality (12) will be true. Q.E.D.
Inequality (15) tells us how to choose C based on the
value of § in order to ensure that the detector of a sequence
is preferred over the detectors of its right subsequences. It
can be seen that the smaller is §, the smaller is the right-
hand-side of (15), and thus the smaller a value of C' can be
chosen to satisfy the inequality. As a degenerate case, if § =
0, (15) becomes C > 0, and this corresponds to the condition
of forming masking fields in static pattern recognition [8].
Therefore, (15) includes masking fields as a special case. In
temporal processing, 6 reflects forgetting in STM, and thus
cannot be 0. On the other hana, é shoutd be smaller than 1/(r—
1) in order to fully utilize available SR units for STM (see the
discussions following (3)), thus the degree of the learnable
sequences (see (3)). Table I gives an idea about the relation
between Cpin, the minimum C' satisfying (15), r, and 6.
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In general we define function h(d) as

d
hd) = [ = (d-i)6]/(C+E)

i=1

(16)

the same as E,(d) in (11). Also we refer to the situation when
a detector is chosen for the first time as initial training.

Proposition 2: Initial training of a detector results in only
one nonzero weight for the detector, which equals 1/(1 + C).
Also, the activity of the unit equals} A(1) and the threshold
increases to h(1).

Proof: Let the unit in question be 2. For initial training
0.=0,d:=0,and W, 1. = /[r(1 + C) + ], for L < j<n
and 1 < k < r. Since ¢ is a small random number introduced
only for symmetry breaking, we can ignore it in the following
analysis. Thus, we let W_ ;. be 1/{r(1 + C)]. Let the active
terminal be j' when z is activated for the first time, i.e., at this
time I;; = Vi1 = 1, and no other SR units have the activity
level of 1. According to (1),

1
z:;wmmm=mragwm

Limited by the number of SR units in each shift-register
assembly (the STM capacity) ¥, Vji(t) <rIj = r. Thus

1
1+C

On the other hand, since d, = 0, A, = 1, one shot learning
by (4) ends up with W ;1 = 1/(1 + C), and W, j = 0, for
Jj# 4 ork # 1. Also 6. becomes 1/(1 + C) according to (6).
Because of this weight distribution and the new threshold, the
only chance for unit z to be selected is when terminal j’ is
active again, namely Vj/; = 1 (V1 is binary according to (3)).
When Vi = 1, E. = W, ;1 V1 = 1/(1 + O). Therefore, it
will exceed the new threshold. Q.E.D.

Proposition 3: Except for d = 0 (initial training), an acti-
vated detector of degree d has u nonzero weights which have
the distribution, [1 —(u — 2)8]/[C + E(u)), for i =1, - -+, u,
where u < d. The activity and the threshold of the unit are
both equal to F(u).

Proof: We prove the proposition by mathematical induc-
tion on d. According to proposition 2, it is true for d = 1.
Assume that this proposition is true for d = q>1. Ford = g +
1, let us examine the time step when d increases from ¢ to g +
1 in the next step. Again let the unit in question be 2. Let v be
the number of non-zero weights of z in this step. According to
the inductive hypothesis, £ = 6, = h(v), v < ¢. Examine now
time step t, the first time unit z is activated after d increases
to g+ 1. Since the degree changes when a mismatch occurs
in the next step (8), thus at ¢, the weight distribution and 6.
have not been changed. In order to exceed 4, = h(v) with the
weight distribution, the SR units corresponding to the non-
zero weights must all have non-zero activities. According to
the Cauchy-Schwartz inequality, the unit corresponding to the
weight [1 —(v — ¢)6]/[C + E(v)] must have the activity 1
—(v —4)é. Let the sequence corresponding to these SR units
be S:p1 —p2 — - — p,. Since v < d, v < d+ 1, thus the
conclusion holds for this activation of z. Let us know study

E. < an

possible changes to the weight distribution, the activity and
the threshold during this activation. There are two cases to be
considered:

1) S is all that is currently held in STM. The weight update
by (4) does not change the weight distribution, and the
activity and the threshold of z will remain the same.
Thus the conclusion holds for the next activation of z.

2) S is not all that is held in STM. Let S, be the longest
prior subsequence of S that is currently held in STM,
satisfying v < [Sq|+ |S] = v/ < g+ 1, where |X
denotes the length of the sequence X. Because the
sensitivity parameter A, =1—(d—1)d, one shot learning
by (4) yields the weight distribution: [1 — (¢/—4)81/[C +
E(v')), fori =1, ---, v/, corresponding to the sequence
S.-S. According to (6), the threshold is updated to h(v').
Since A(v’) > h(v), the threshold is increased as a result.
Because of this new weight distribution and the new
threshold, by the same token, unit z can be activated
next time only by S,-S, a left supersequence of S. Since
|Sq-S| < g+ 1, the conclusion is true for that time.

The above two cases encompass all possible occasions when
unit z is activated with its degree equal to g+ 1. Thus the
proposition is true. Q.ED.

We call that a detector is triggered (activated) by a sequence
S, if the detector wins winner-take-all competition in the
detector layer and S is the longest sequence whose components
have a non-zero contribution (cf. (1)) to the activity of the
detector. In other words, all the components of S have non-
zero weights connecting to the detector. According to the
above proposition and its proof, we readily have

Corollary 1: (a) The threshold update rule of (6) never
decreases the threshold of an activated unit; (b) At any time, a
detector can be triggered by only a single sequence; (¢) Except
for initial training, once a unit is activated by sequence S, it
can only be activated by S or a left supersequence of S.

To be precise, (b) of the above corollary makes it legitimate
to say that a detector is funed to the unique sequence which can
trigger a detector. This concept was used informally in Section
I11.B. We are now ready to prove the major conclusion of this
paper, which is stated as the following theorem.

Theorem 1: A model defined in I1I.A with m detectors and
r SR units for each of n shift-register assemblies can learn to
produce an arbitrary sequence S of length <m and degree <r.

Proof: Since learning is completed when there is no
mismatch during an entire training sweep, in other words, the
sequence anticipated by the model is the same as the sequence
to be learned. Thus, when learning is completed, the model can
produce the entire sequence with the presentation of the first
component of S. So all that remains to be proven is that after a
finite number of training sweeps, all mismatches are resolved.
The following results need to be established first.

1°. It is impossible that two detectors are tuned to the same
sequence. Once a detector 7 is tuned to a sequence S;, it will
be triggered by S; when S; occurs in the input unless a left
supersequence of S; is triggering another detector j. In the
latter case, according to Proposition 1, detector j wins the
competition. In any case, it is not possible to trigger another
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detector and then adjust its weight distribution to make it tuned
to S.

2°. Once a detector is committed, it will anticipate a compo-
nent. If a detector 7 is activated, it is tuned to a subsequence
S; of S. Based on 1°, if S; occurs again in the input it will
trigger ¢ unless a left supersequence S; of S; triggers another
detector j. But there must exist an S; in .S that does not have a
left supersequence to which another detector is already tuned.
Otherwise, according to Proposition 1, ¢ would not be activated
in the first place. Therefore detector ¢ will be activated at least
once during the entire presentation of S. In other words, ¢ will
anticipate a component of .S. When a detector is first commit-
ted, it is also activated, and the conclusion can be applied re-
cursively when the sequence tuned by the detector is expanded
as its degree increases. Therefore the conclusion is true.

We now prove that an arbitrary component p;, except for
the first one, of S can be uniquely anticipated after a finite
number of sweeps. The first component needs to be provided
in order to generate the sequence and thus is not anticipated
by any detector. S can be written as S, — p; — S, for i > 1,
and S, is the prior subsequence of p; from the beginning of S
and S is the rest of S. When the entire S, is presented, there
will be a detector activated. If the detector fails to anticipate
p;, its degree increases. By 2°, there are at most |S|— 1
committed detectors. Thus, unless p; is uniquely anticipated
by a detector, which validates the conclusion, the degree of
the detector anticipating p; will grow greater than or equal to
the degree of p;. By unique we mean the detector does not
anticipate any other symbol except the one represented by p;.
Let the degree of p; be d;. We now examine an occasion when
the degree of the detector currently anticipating p; is greater
than or equal to d;. Again let the detector be unit z and d,
denote the degree of z. We have d, > d;. There are two cases
to be considered:

1) d; <|S,| =4— 1. In this case, after z is activated, z will
be tuned to the context of p; if d, = d; < i— 1, or a left
supersequence of the context of p;. In any event, by the
definition of a context, unit z will uniquely anticipate p;.

2) d; >|S,|, as component D in the example sequence
A-B-D-A-B-E. According to Proposition 3 and par-
ticularly the analysis of case 2) in the proof of the
proposition, 8, = h(i— 1). Since d; >i~ 1, S, occurs
as another part of S (see the above example). With that
taken into account, S can be written as S, — S, —p; —Sq,
where p; is a component, S. and S, are subsequences of
S, and |S.| > 0. The degree of the detector anticipating
p; will grow greater than ¢— 1. Let the detector be z;.
Because |S.| > 0, the threshold of z; grows greater than
h(i— 1). Thus, when S, occurs as a beginning sequence,
z; will not be activated. The same reasoning applies
to all the occurrences of S, except for the one at the
beginning of S. Therefore after finite number of sweeps,
a detector will uniquely anticipate p;. QE.D.

V. OTHER MODEL PROPERTIES

In this section, we point out some other properties of the
model. Different from the previous section, the properties

are presented through rather informal analysis and computer
simulations.

A. Efficiency of Training

The number of training sweeps the model takes to learn
a sequence largely depends on how complex the sequence
is. One sweep is sufficient for learning a simple sequence,
while more sweeps are needed for complex sequences (see the
example in Section IIL.C). During each sweep, the detectors
which do not correctly anticipate their next components have
their degrees increased by at least one. A degree parameter
increases more than once if the corresponding detector is
triggered more than once (see the example in Section III.C).
Let us know derive an upper bound on the number of training
sweeps for a sequence of degree k. The following is the
worst imaginable scenario. The detector which anticipates the
component of degree k takes k sweeps to increase its degree
to a value greater than or equal to k. Let the component be
p;. After that the detector will be able to uniquely anticipate
the component. Furthermore, k— 1 more sweeps are taken to
increase the degree of a unit which anticipates a component
whose context is the next right subsequence of the context
of p;, so that the unit can uniquely anticipate the component.
Similar reasoning applies subsequently. So the total number
of sweeps is k+ (k— 1) +---+ 1 = k(k+ 1)/2. Since other
less complex components are handled as well during these
training sweeps, we conclude that an upper bound p of the
training algorithm satisfying,

b= k—(k—;—l—) (18)

The above upper bound is not a tight one. We conjecture that a
realistic estimate on average training cycles should be about k.

What happens if the degree of the sequence to be learned
is greater than r, the number of SR units in a shift-register
assembly? Due to insufficient capacity of STM, mismatches
cannot be resolved based on what is held in STM, and
the training process will not terminate. To prevent it from
happening, a maximum number of training sweeps can be set
based on the value of u. While the degree of the sequence
may not be available before training, r is a parameter of the
network model and can be used to break endless training.
Based on (18), training should be terminated once the number
of training sweeps exceeds r(r + 1)/2. We know for sure that a
successful training does not take more than r(r+ 1)/2 sweeps.

In case of insufficient detector units, what will happen
is that the network cannot find any detector whose activity
level based on the current input passes its threshold. In
other words, all detectors have value O as their activity level
(see (1)) in response to the current input. In this case, the
competitive mechanism should not select a unit arbitrarily.
This requirement can be easily implemented by excluding a
unit from competition if its activity is zero.

While a detector in Wang and Arbib [41] never increases
its degree greater than the degree of the context it is supposed
to detect, a detector in the present model may increase its
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Fig. 5. Training and generation of the sequence (TO-BE-OR-NOT-TO-BE).
network. See the legend of Fig. 4 for similar notations. The training phase t

actual

l anticipated = actual

Shown in the figure are the activity traces of the input terminals of a simulated
ook 5 training sweeps. The parameters used in the simulation are the same as

listed in the caption of Fig. 4. The generation process can be initiated by presenting to the network the first component of the sequence, T .

degree unnecessarily to a value greater than the degree of the
component it anticipates. In the example discussed in Section
IIL.C, after training is completed the degree of detector 2
which anticipates component C is 4, while the degree of C
in the sequence is 3. The reason for this to happen is that
sometimes the degree of a detector is greater than the length
of the subsequence that the detector is tuned to (proposition 3).
When the degree of a detector increases due to a mismatch, the
sequence that the detector is tuned to does not immediately get
expanded accordingly. Instead, the detector has to wait until
it is triggered again so that it has a chance to adjust its weight
distribution. But the weight distribution will be adjusted based
on the items held in STM. If the number of items held in
STM is smaller than the degree of the detector, as analyzed
in case 2) of the proof of proposition 3, the detector will be
tuned to a sequence whose length is smaller than the degree
of the detector. This situation is possible only for beginning
components in a sequence. This is also noted in case 1 °
of the proof of theorem 1. However, as analyzed there, this
situation will disappear shortly when the detector is triggered
later in the presentation of the sequence. The worst situation
probably occurs in the sequence A-B-A-C, where the degree
of the detector anticipating C finally increases to 4, while the
degree of C is 2. But in this case only two sweeps of training
are sufficient to learn the sequence.

In terms of the number of detectors that are committed to
learn a sequence, the present model has a significant advantage
over the previous model by Wang and Arbib [41]. In their
model, the number of detectors needed is equal to the length
of the sequence minus one. In our model, no unit will be
committed unless required. In this sense, it represents the most
efficient use of units in the detector layer. Interestingly, this
advantage is better manifested for complex sequences. In a
rather extreme case, only two detectors need to be committed
for the sequence A-A--. -A-B, where B is preceded by k A’s.
One detector anticipates A with input A and another one

anticipates B with the input of the sequence of kA’s. Note
that degree of the sequence is k. The network takes [k + 1/2]
(ceiling function) sweeps to learn the sequence.

B. Computer Simulation

To further illustrate the model, we carried out the following
computer simulation. The network has 24 detector units, each
of which is associated with one modulator unit, 24 terminals
each of which is connected to one shift-register assembly, and
6 SR units for each shift-register assembly (144 register units
in total). See the figure legend for the other parameter values
used in the simulation. Fig. 5 shows the activity trace of the
network from a simulation run with input sequence (TO-BE-
OR-NOT-TO-BE). As in the example of Section III.C, we use
symbol ‘# as the end marker. Also, symbol *-* here is treated
as a distinct symbol separating meaningful words instead of a
component separator. The behavior of the network is displayed
in the same way as in Fig. 4. The network learned the sequence
in 5 training sweeps. In the last training sweep, the system
correctly anticipated every component of the sequence, as
shown in the last column of the figure. After this training, the
entire sequence can be correctly generated by the presentation
of its first component, T in this case, and the activity trace
will be the same as the last sweep of training. The degree of
the sequence is 6, equal to r.

Once one sequence is learned, a right subsequence of it
can be reproduced from a middle point of the sequence. In
the above example, with symbol R as the initial input the
network correctly produced the remaining part of the sequence
(-NOT-TO-BE). Component R was chosen because it forms
the degree 1 context for its successor ‘-’. In general, it requires
a subsequence as an input to produce the remaining part of
the sequence. The subsequence can activate an detector which
anticipates a certain component. The component can then join
the input to activate another detector, and so on, until the
remaining part is fully generated. This feature of the model
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conforms with the experience that one can often pick up a
familiar song or a piece of music once exposed to a part of it.

C. Multiple Sequences

The network is capable of storing multiple input sequences.
Multiple sequences can be learned either simultaneously or
sequentially. In simultaneous training, all input sequences are
presented one after another during each training sweep. After
a number of sweeps, all sequences will be acquired by the
network. As an example, we tested the network with three
sequences N-E-U-R-A-L, M-A-C-H-I-N-E, and S-Y-S-
T-E-M. After 6 training sweeps, all of them were able to be
generated by the input of their first component (N, M, or S)
respectively. In learning multiple sequences, each sequence is
assumed to have a unique first component. The first component
can be viewed as the identifier (name) of the sequence, which
upon stimulation is able to produce the entire sequence. Once
a sequence is acquired, its generation does not have to start
from its identifier so long as a sufficient subsequence occurs in
the input, the point explained in the previous subsection. For
instance, after two sequences S;-A-B-C-D and Sy-A-C-D-E
are acquired, the first sequence S; (also the first component)
can be either generated by the presentation of component S; or
subsequence A-B. Similarly, after a human learner has learned
a song, he or she can sing it either by being told the name of
the song or by being primed with a beginning segment of the
song.

Multiple sequences can also be trained sequentially, mean-
ing that new ones can be learned after some sequences have
been stored into the network. If a new sequence to be learned
has no component in common with the stored ones, it can
be trained and stored as if nothing were already stored in the
network. The more interesting situation is that a new sequence
has subsequences which also occur in the stored ones. In this
case, as should be expected from the learning algorithm, some
previous links between modulators and input terminals will be
altered. For instance, assume that the simple sequence A-B-C
was stored first, and now the network is being trained with
another simple sequence D-B-FE. The link from B to C will
be replaced by a link from D-B to E as a result of learning
the second sequence. In this sense, the previous memory
is interfered as a result of leaming new sequences. This
effect, however, conforms with a well-known psychological
phenomenon, and it is called retroactive interference [35]. The
critical question is whether the interference can be overcome
with a little retraining or not. In our model, the answer is yes.
The committed detectors which are interfered are only those
which have been tuned to a subsequence that occurs in the new
sequence. With a little retraining, the degrees of appropriate
detectors will be increased to differentiate the interfered old
subsequences and the new one.

To demonstrate a typical situation of retroactive interfer-
ence, the same network simulated in Section III.C was used
to learn sequentially two sequences, S3: R-E-M-E-M-B-E-
R and S;: M-E-M-O-R-Y. S3 was trained first, and the
network took 4 sweeps to learn it, as shown in Fig. 6(a).
After that, S; was presented for training, and the network

also took 4 sweeps to learn it (Fig.6(b)). Because of common
subsequences in the two sequences, acquisition of S interfered
with the memory of S3. The network needs to be retrained
in order to correctly generate S3. In the simulation, the
network took two more sweeps to regain S3, as shown in
Fig. 6(c). After this relatively brief retraining to overcome
retroactive interference, the network stored both sequences
with no interference between them. Fig. 6(d) and (e) show
two episodes of generating S and S3 with the input of their
beginning components, respectively.

From the above discussion, it is clear that our model
does not suffer from the so called catastrophic interference
as exhibited in backpropagation learning of multilayer per-
ceptrons [27], [34]. Catastrophic interference refers to the
behavior where training of new associations between inputs
and outputs destroys previously learned pattern associations.
On the contrary, the present model exhibits the kind of
retroactive interference similar to the limitations that people
have in sequential learning. We call this behavior of sequential
training incremental learning. Based on this result, we suggest
that the conclusion drawn from the study of McCloskey
and Cohen [27] and Ratcliff [34] may be applicable only
to multilayer perceptrons with backpropagation training, not
artificial neural networks in general.

VI. GENERAL DISCUSSION

As evident in Theorem 1, the capacity r of the STM
model limits the degree of a sequence that can be learned.
Although 7 can be freely chosen in engineering applications,
psychological evidence suggests that human STM can hold
only a limited number of items, about seven [30]. Given
such severe limitations, how can the model learn sequences
with much longer repeating sequences? We suggest to use
chunking to solve the problem. It was previously demonstrated
that chunking provides an effective way of recognizing long
sequences [41]. The basic idea there is to introduce hierarchies
so that units in a particular hierarchy recognize a sequence of
limited items of the next lower level. So in terms of sequence
components which correspond to the lowest level, a unit in a
certain level can recognize sequences of lengths exponentially
increasing with the level of the hierarchy where the unit lies.
Thus the mechanism significantly expands the lengths of the
sequences that can be recognized. We think that a similar
idea can be applied to this model of generation to increase
the length of the context recognized by a specific detector.
Instead of having one layer of detectors, multiple layers should
be included in the model. Future study will need to address
questions arising from the introduction of multiple layers, such
as which level a detector should be selected from and how
learning is performed within multiple layers if a unit in a
higher layer is chosen.

Although our discussion so far focuses on temporal se-
quence generation, the model with some straightforward revi-
sion can also serve for sequence recognition. This is because
the model has a component of context recognition which
can be extended to arbitrary sequence recognition. In this
situation, competitive learning in the detector layer should be
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Fig. 6. Sequential training of two temporal sequences. The figure notations are the same as in Fig. 4. (a) Training of the network to generate sequence Sj:

R-E-M-E-M-B-E-R. The network took four sweeps to learn the sequence. (b) Training of the same network to generate sequence Sy: \[-E-M-O-R-Y".
The network took four sweeps to learn the sequence. (c) The network was retrained to generate S3. Two more training sweeps were required in order to
correctly generate S3. (d) The network correctly generated S4 without further training. (e) The network correctly generated S3 without further training.

The parameter values used are the same as in Fig. 4.

triggered by some segmentation mechanism signaling the end
of a sequence. The temporal masking mechanism leads to the
desirable property that a detector tuned to a sequence will win
the competition over those detectors tuned to the sequences
which are right subsequences of the sequence. Acquisition
and recognition of temporal sequences can be integrated in the
same model. A recent model by Gjerdingen [12] demonstrates
certain properties of temporal masking. His model embeds a
masking field of Cohen and Grossberg [8] in an ART 3 network
proposed by Carpenter and Grossberg [6] for recognizing
temporal sequences of musical chords. It is not clear from

the model description, however, how learning and recognition
are combined into a single process of self-organization.

In this model, we have demonstrated how anticipation may
be used to learn to generate complex temporal behaviors. The
idea of anticipation-based learning seems to be consistent with
psychological evidence about human learning of sequential
behaviors. Meyer [29] proposed that expectation is key to
music cognition. Nissen and Bullemer [33] reported that when
a temporal sequence is repeatedly presented to subjects, their
reaction to a particular component of the sequence becomes
faster and faster, and the reaction time to a component in
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a repeated sequence is much shorter than when it occurs in
random sequences. The latter rules out the possibility that
the reduction in reaction time is due to the familiarity with
a component. This basic finding has been confirmed by later
experiments [42], [7]. The result suggests that the subjects
have developed with practice some form of anticipation before
a particular component actually occurs in the sequence. It is
observed that in learning temporal sequences human subjects
can even be explicitly aware of the temporal structure of a
sequence, and predict what comes next in the sequence [33],
[42], [4]. :

One architectural characteristic of this model is the use
of shift registers for maintaining a signal for a short time
(Fig. 1). Similar architectures have been used by others for
temporal pattern processing (see [37], [38]). This architecture
was argued to be neurally plausible [20]. In the auditory
cortex of cats, electrophysiological recordings identify various
time delays up to 1.6 seconds in response to the same tones
separated by certain periods or a sequence of different tones
[19], [28]. In the visual system, Anderson and van Essen [1}
have argued that shift circuits exist at many levels in the visual
pathway (so called the shifter circuit hypothesis), and they
have discussed a range of computational functions of such
shift circuits.

Along the similar lines taken by Wang and Arbib [41],
the present model argues from the computational perspective
for the chaining theory of temporal behavior as rejected
by Lashley [24], echoing more recent psychological theories
of serial order organization [32], [25]. Simple associative
chaining between adjacent sequence components is unlikely
to be true. However, as demonstrated in this paper, if chaining
between remote components and chunking of subsequences
into high-order components are allowed, much more complex
temporal behaviors can be realized with the basic idea of
associative chaining, going beyond what was discussed by
Lashley [24]. The present model shows how learning and gen-
eration of complex temporal sequences can be computationally
achieved by self-organizing a neural network. We also realize
that chunking can significantly enhance the abilities of neural
networks for temporal processing.

How self-organization of chunking is achieved in a neu-
ral network model has been hardly addressed at all, and it
remains to be a challenge for the future study of temporal
pattern processing. The present model encodes symbols of
a temporal sequence directly by units in a network. This
high-level encoding scheme is unlikely to be true in terms
of brain mechanisms, whereby it is widely accepted that
high-level symbols should be represented by some distributed
activities across a population of cells. Because symbols are
represented by individual units, a number of issues cannot
be addressed, such as robustness of the network with respect
to malfunctioning of network units and invariant recognition
of individual symbols. Also left unanswered is how to detect
regularities in a set of sequences, like syntax formation from
a set of exemplar sequences.

Let us conclude that in this paper a neural network model
is presented which learns to generate complex temporal se-
quences. Sequences are acquired by one-shot learning obeying

a normalized Hebbian learning rule, in combination with
a competitive mechanism realized by a winner-take-all net-
work. During learning and generation, the network actively
anticipates the next component on the basis of a previously
stored context. A mismatch between system anticipation and
actual input triggers self-organization of context expansion.
Our formal analysis has demonstrated the functioning of the
network and shown that the model can learn to generate any
complex sequences within a certain limit determined by the
network architecture. In addition, multiple sequences can be
acquired in an incremental fashion. Finally, several aspects of
the model are discussed with respect to neurobiological and
psychological studies of temporal pattern processing.
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