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ABSTRACT 
 

Batch normalization is a standard technique for training deep 

neural networks. In batch normalization, the input of each 

hidden layer is first mean-variance normalized and then 

linearly transformed before applying non-linear activation 

functions. We propose a novel unsupervised speaker 

adaptation technique for batch normalized acoustic models. 

The key idea is to adjust the linear transformations previously 

learned by batch normalization for all the hidden layers 

according to the first-pass decoding results of the speaker-

independent model. With the adjusted linear transformations 

for each test speaker, the test distribution of the input of each 

hidden layer better matches the training distribution. 

Experiments on the CHiME-3 dataset demonstrate the 

effectiveness of the proposed layer-wise adaptation approach. 

Our overall system obtains 4.24% WER on the real subset of 

the test data, which represents the best reported result on this 

dataset to date and a relative 27.3% error reduction over the 

previous best result. 

 

Index Terms— robust ASR, deep neural networks, batch 

normalization, unsupervised speaker adaptation, CHiME-3 
 

1. INTRODUCTION 
 

Although DNN-HMM hybrid approaches have shown to be 

robust to small input variations [1], they still suffer from the 

mismatch between training and test conditions, just like many 

other supervised learning based approaches. For real-world 

ASR systems, many factors can lead to mismatched training 

and testing conditions, such as different speakers, noises, room 

reverberations and microphone characteristics. Performing 

multi-condition training on the data from, say multiple 

speakers or multiple environments, can only lead to a “flat” 

model. To deal with the mismatch problem, many adaptation 

techniques are proposed to compensate for the differences 

between training and test conditions. These techniques can be 

roughly categorized into feature-space, model-space and 

feature augmentation approaches. 

The most popular feature-space approach is probably the 

feature-space MLLR method originally developed for GMM-

HMM systems [2], [3]. In this approach, a well-trained GMM-

HMM system is employed to obtain the fMLLR features, on 

which a DNN-HMM hybrid system is built. The linear input 

network method is another popular feature-space approach that 

tries to learn a linear transformation of the input of DNNs for 

adaptation [4], [5]. The linear transformation is normally 

constrained to be diagonal and tied across neighboring frames 

to reduce the number of parameters to be learned. For the 

feature augmentation approach, i-vectors are the commonly 

used auxiliary features for encoding speaker characteristics 

[6], [7]. Other auxiliary features, such as bottleneck vectors 

obtained from speaker classification tasks [8] or environment 

classification tasks, are utilized to account for speaker or 

environment variations. For model-space approaches, 

parameters in DNNs are modified for adaptation. A 

straightforward way is to adapt all the parameters in the DNN, 

but learning a large number of parameters would easily lead to 

overfitting, especially for unsupervised adaptation or when the 

amount of adaptation data is limited [9]. In [10], a 

conservative training approach based on KL divergence is 

proposed to regularize the adapted model to be close to the un-

adapted model, while the footprint size of each speaker is large 

in this case. To limit the number of parameters to be learned 

when the amount of adaptation data is limited, linear 

transformation based methods, such as linear hidden network 

[11], linear output network [12] and singular value 

decomposition bottleneck adaptation techniques [13], [14], are 

proposed. Limiting the number of parameters can be 

considered as adding regularization for acoustic model 

adaptation. The performance of adaptation is highly dependent 

on whether the task is supervised or unsupervised, the amount 

of adaptation data or computations, storage requirements per 

speaker, and specific tasks. 

In this context, we propose an unsupervised speaker 

adaptation method for batch normalized acoustic models. The 

key idea is to adjust scaling factors together with shifting 

factors in batch normalized acoustic models so that the 

distribution of the test data at every hidden layer better 

matches that of the training data. On the CHiME-3 dataset that 

exhibits a large amount of mismatch between training and 

testing conditions, we obtain a relative 23.9% error reduction 

when a tri-gram language model is used to generate first-pass 

decoding results for adaptation, and 34.3% error reduction 

when a five-gram language model and an RNN language 

model are used. The overall system achieves state-of-the-art 

4.24% WER on the CHiME-3 dataset. 

The rest of the paper is organized as follows. We describe 

our method in Section 2, and our experiments in Section 3 and 

4. We conclude this paper in Section 5. 
 

2. SYSTEM DESCRIPTION 
 

We first introduce the batch normalization method. Then we 

discuss the linear input network (LIN) based approach, and 

our proposed adaptation strategy for batch normalized acoustic 

models. The LIN based approach serves as a motivation 

example for our proposed algorithm. 

 

2.1. Batch Normalization 

 

Batch normalization is a standard training technique for deep 

neural networks [15]. It has been widely used in many tasks 

such as image classification [16] and large scale speech 
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recognition [17]. The key idea is to first normalize the input of 

each hidden layer using the mean and variance calculated from 

each mini-batch in the forward pass, and then linearly scale 

and shift the normalized input before applying non-linear 

activations. Mathematically, 
 

 
      (    

               

    
     ) (1) 

   

where      is the output of the  th hidden layer,   represents 

the non-linear activation function,      ,     ,      and      

are the mean, standard deviation, scaling factor and shifting 

factor at the  th hidden layer, respectively, and      is just the 

input of the network. The bias term of each hidden layer is not 

included here as it would be cancelled out by the mean 

subtraction operation in the forward pass.  

It is suggested in [15] that during DNN training, the 

distribution of the input of hidden layers could change 

frequently, as the parameters in previously layers change. As a 

result, the optimization process is slowed down significantly. 

This problem can be alleviated by performing layer-wise 

normalization. This way, much larger learning rates can be 

safely used, and thereby much faster convergence and 

potentially better results could be achieved.  

The linear transformation terms, i.e.      and     , are 

critical in batch normalization. If they are not incorporated, the 

input of the non-linear functions would be concentrated 

around zero. This means that the activations would be close to 

limited linear transformations for sigmoidal units [15], and 

approximately half of the activations would be implicitly 

forced to be zero and half to be positive for ReLUs. With the 

linear transformation terms, the network can automatically 

choose which segments of the activation function to use for a 

better performance.  

After the training is done, we feed-forward all the training 

data to the network and record the mean and variance at every 

hidden layer. We use the means and variances calculated this 

way, denoted as       
   

 and       
   

, for layer-wise normalization 

at the test stage. 

 

2.2. Linear Input Network 

 

The idea of the linear input network approach is to learn a 

linear transformation of the input features of the acoustic 

model [4], [5], [18]. In this study, as the amount of adaptation 

data is limited, we constrain the number of parameters to be 

learned by forcing the linear transformation to be diagonal, 

with parameters tied across neighboring frames: 
 

  ̂      

       

  
    (2) 

   

where   denotes the un-normalized input feature,  ̂ represents 

the adapted feature,   and   stand for the mean and standard 

deviation computed from the whole training data, and   and   

indexes time and frequency, respectively.   and   are the 

parameters to be learned for each speaker. We initialize   to 

be an all-one vector and   to be an all-zero vector before 

adaptation. 

This method is reasonable in the sense that the distribution 

of test data may be very different from that of training data. 

Therefore, a diagonal linear transformation is learned to scale 

and shift the normalized test data to better match the mean and 

variance of the training data. 

2.3. Adaptation of Batch Normalized Models 

One problem of the LIN approach is that it only tries to match 

the distribution of test data with that of training data at the 

input level. However, after many layers of affine 

transformations and non-linear operations, the distribution of 

the hidden activations of test data could become more and 

more mismatched with that of training data. Only matching the 

distribution at the input level would not be good because the 

LIN approach itself may not behave well. To deal with this 

problem, we learn a linear transformation for the input of 

every hidden layer so that the linear transformed input can 

better match the distribution of the training data at every 

hidden layer. 

Then, the problem is how to get the distribution of the 

training data at every hidden layer so that we can match the 

distribution of the test data onto. Batch normalized acoustic 

models naturally provide us the       
   

 and       
   

 at the  th 

hidden layer. Therefore, in this study we adjust the scaling 

factor and shifting factor at every hidden layer for batch 

normalized acoustic models 
 

 
 ̂     (    

     ̂            
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where  ̂ is the adapted hidden activations, and      and      

are the only parameters to be adjusted for each speaker. The 

dimensions of      and      are the same as the number of 

hidden units at the  th hidden layer. The number of 

parameters to be learned is therefore limited. Note that we do 

not change      as modifying it could destroy the well-

learned filters in the weight matrix. 

In this paper, we perform unsupervised adaptation for each 

speaker. We first decode all the utterances of each speaker in 

the test set using the speaker-independent batch normalized 

acoustic models to obtain the first-pass decoding results, from 

which we adjust the parameters to minimize the cross-entropy 

criterion using the back-propagation algorithms. 

It should be mentioned that in [19] and [20], Pawel et al. 

propose an adaptation technique based on learning hidden unit 

contributions (LHUC), which essentially learns a weight for 

every hidden unit to re-combine all the activations for a target 

speaker or environment. In [21], a parameterized hidden 

activation function approach is proposed to re-weight the 

importance of each hidden unit for speaker adaptation. 

Different from these studies, our method is proposed for batch 

normalized acoustic models, and we adjust the shifting factors 

together with the scaling factors to recombine the activation 

before, rather than after, the non-linear function at all the 

hidden layers. This may better adapt an acoustic model to a 

target speaker or a target environment. In addition, our method 

does not make any assumptions on the type of activation 

functions.  

 

3. EXPERIMENTAL SETUP 

We evaluate our methods on the recently proposed CHiME-3 

corpus [22]. The CHiME-3 dataset includes real and simulated 

data in four challenging daily environments, i.e. cafe, street 

junction, public transport, and pedestrian area, and consists of 

six-channel microphone array data. The real recordings are 

uttered by real speakers in the abovementioned environments, 

and are recorded using a specially designed tablet with five 

microphones mounted in the front and one in the rear. The 

simulated data is created by first convolving clean utterances 
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with the estimated impulse responses of an environment, and 

then digitally adding noises recorded in that environment. It 

represents a significant step towards realism compared with 

the previous CHiME challenges. The training set contains 

7138 simulated utterances from 83 speakers in the WSJ0-5k 

corpus and 1600 real utterances from four speakers, the 

development set consists of 1640 simulated and 1640 real 

utterances from four unseen speakers, and the test set contains 

1320 simulated and 1320 real utterances from another four 

unseen speakers. The transcriptions of all the utterances are 

based on those in the WSJ0-5k corpus. The text corpus in 

WSJ0 is available for language modeling. All the submitted 

systems are ranked according to their word error rates (WER) 

on the real subset of the test data [22]. Note that speaker labels 

are allowed to be used for speaker adaptation in this challenge. 

We train our acoustic models using noisy signals, while 

enhanced single-channel signals are used for decoding. This 

strategy is found to be more robust than training the acoustic 

model using enhanced signals [23], [5], [18]. In our study, we 

use the single channel signals from all the channels for 

acoustic modeling. This way, much more data can be used for 

acoustic modeling. In our study, the total number of training 

utterances is 50,828 (7138*6+1600*5, ~104 hours). We 

exclude the rear microphone of the real recordings due to its 

low SNR level. Following the common pipelines in the Kaldi 

toolkit, a GMM-HMM system is first trained, from which 

alignments are generated and a DNN-HMM hybrid system is 

built on the fMLLR features. After that, sMBR training is 

applied. Finally, a five-gram language model and an RNN 

language model are utilized to re-score the lattices generated 

by a tri-gram language model.  

For speech enhancement, we follow the generalized 

eigenvalue (GEV) beamformer proposed in [24], [25] to obtain 

enhanced single-channel signals. The key idea of the GEV 

beamformer is to estimate a time-frequency mask, which 

represents the presence probability of speech at every T-F bin, 

from multi-channel signals. With the estimated mask, spatial 

covariance matrices of speech and noise can be derived. Then, 

the beamforming weights are obtained by performing 

generalized eigen decomposition on these two covariance 

matrices. A single-channel post-filter based on blind analytic 

normalization (BAN) is further applied to reduce speech 

distortions. The key step here is to estimate the time-frequency 

mask from a noisy utterance. In our study, a DNN is trained on 

the complementary feature set [26] to predict the ideal ratio 

mask (IRM) [27], [28] defined in the power spectrogram 

domain using all the simulated training data (7138*6 

utterances in total). In our experiments, the GEV beamformer 

built in this way gives us substantially better ASR results over 

the default and official weighted delay-and-sum beamformer 

implemented using the BeamformIt toolkit.  

We refer the readers to [24], [25] and [29] for more details 

of the GEV beamformer and the RNN language models used 

in our recipe, and [30], [28] for more details of supervised 

speech separation. 

 

4. EVALUATION RESULTS 
 

In this section, we first report the performance of our baseline 

acoustic model trained without batch normalization, and then 

show the results of using batch normalization for acoustic 

model training. Finally, we present the performance of the 

proposed approach for speaker adaptation.  

 

4.1. Baseline Acoustic Model 

 

We build our baseline acoustic model using a DNN with 7 

hidden layers in a speaker-independent way. Each hidden layer 

has 2048 exponential linear units (ELUs) [31]. In our 

experiments, the ELUs lead to consistently better results over 

the commonly used ReLUs. The dropout rate is 0.3 for the 

input layer and all the hidden layers. The DNN is trained for 

50 epochs using AdaGrad [32] with a momentum term to 

minimize the cross-entropy criterion. The momentum is 

linearly increased from 0.1 to 0.9 in the first five epochs and 

kept fixed at 0.9 afterwards. The learning rate is fixed at 0.005 

in the first 10 epochs and linearly decays to      in the 

following epochs. The mini-batch size is set to 256. The input 

feature is 40-dimensional log Mel-spectrogram feature with its 

delta and double delta components. Sentence-level mean 

normalization is applied before global mean-variance 

normalization. Performing sentence-level mean normalization 

is shown to lead to consistent improvements in [33]. The 

globally normalized features are then spliced together using a 

symmetric 11-frame context window. There are 3161 senone 

states in total in our system. Using this training method and a 

tri-gram language model for decoding, we obtain 10.40% 

average WER on the real subset of the test set as reported in 

Table 1. 

 

4.2. Effects of Batch Normalization 

 

We then report our results of using batch normalization for 

acoustic model training. As batch normalization allows much 

larger learning rates for DNN training, we enlarge the learning 

rate by 10 times, and use the same configuration to train the 

batch normalized acoustic model. In our experiments, we 

observe not only faster convergence but also better ASR 

results. The average WER is improved by absolute 0.89% 

(from 10.40% to 9.51%). Note that if we apply the same 10-

times learning rate when training the baseline acoustic model, 

the training process diverges after several epochs. In addition, 

if we do not enlarge the learning rate when doing batch 

normalization, the performance improvement is small 

compared with the baseline acoustic model. 

 

4.3. Speaker Adaptation 

 

There are around 410 utterances for each speaker in the 

development set and approximately 330 utterances for each 

speaker in the test set. We use all the utterances of each 

speaker for adaptation. Before adaptation, we turn off the 

dropout at both the input layer and hidden layers by setting the 

dropout rates to zero and scaling down all the weight matrices 

by 0.7 (1-0.3). The speaker-independent acoustic model is then 

trained for 10 epochs using AdaGrad to minimize the cross-

entropy criterion. The learning rate is linearly decreased from 

0.005 to     , the momentum is fixed at 0.9, and the mini-

batch size is set to 256. We use the model after the last epoch 

to generate pseudo-likelihood for decoding. This recipe is 

tuned according to its recognition performance on the 

development set. In our experiments, we did not observe 

overfitting on the decoding results as we strictly limit the 

number of parameters to be learned for adaptation. In our 

cases, even if the adapted acoustic model fully overfits the 

first-pass decoding results, the performance would not drop as 

it will re-generate the same decoding results in the second 
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pass. We report the results of unsupervised speaker adaptation 

in Table 1 and 2. 

In our first experiment, the labels for adaptation come 

from the first-pass decoding results using the batch normalized 

acoustic model together with a tri-gram language model. 

Using the LIN approach for adaptation, we can improve the 

performance to 8.34% from 9.51%. Note that for the LIN 

adaptation, the number of parameters to be learned for each 

speaker is 240 (40*3+40*3). This large improvement may be 

due to the particularly challenging speaking styles of the test 

speakers in the CHiME-3 corpus [22]. Much better 

performance, i.e. 7.24%, is obtained by adapting the scaling 

factors and shifting factors for all the hidden layers in the 

batch normalized acoustic model. Combining the LIN 

adaptation with our proposed method leads to slightly worse 

performance (from 7.24% to 7.28%). This may be because 

adapting the scaling and shifting factors of the first hidden 

layer already incorporates most of the effects of the LIN 

adaptation. We also compare our approach with the LHUC 

algorithm [19], where the activations of each hidden layer are 

re-weighted using a sigmoid-like function. As shown in Table 

1, our approach obtains consistently better results over the 

LHUC algorithm, possibly because our approach adapts the 

activation before the non-linear functions. 

The first-pass decoding results are very important for 

unsupervised adaptation. Too many errors in the decoding 

results would mislead the acoustic model during adaptation. 

To obtain better first-pass decoding results, we first apply 

sMBR training to the batch normalized acoustic model. After 

generating the alignments and lattices, we train the acoustic 

model for two epochs using AdaGrad. As batch normalization 

allows large learning rates for training, we fix the learning rate 

at     , which is 10 times the commonly used learning rate in 

the sequence training code of the Kaldi toolkit. The WER is 

reduced from 9.51% to 8.64% after sequence training, as 

reported in the first entry of Table 2. We then refine the 

decoding results using a more powerful five-gram language 

model and an RNN language model. The performance is 

pushed up to 7.35% WER after five-gram language model re-

scoring and 6.45% WER after RNN language model re-

scoring. With the refined decoding results, we perform 

adaptation for each test speaker. After that, we first use the 

adapted model together with the tri-gram language model to 

generate the lattices, and then use the five-gram language 

model and the RNN language model again for re-scoring. The 

results are presented in the second and third entry of Table 2, 

respectively. By adapting the scaling and shifting factors, we 

can improve the performance from 6.45% to 4.24%, which 

represents a relative 34.3% improvement on the real subset of 

the test data. In addition, the 4.24% WER is the best result on 

the CHiME-3 dataset reported so far, which represents a 

relative 27.3% error reduction over the state-of-art 5.83% 

WER reported in [34]. It is also among the top results in the 6-

channel track of the later held CHiME-4 challenge. We report 

the per-environment WER of our best system in Table 3. 

Table 3. WER (%) per environment of our best system 

Environment 
Dev. set Test set 

SIMU REAL SIMU REAL 

BUS 2.89 3.94 3.14 5.78 

CAF 3.50 2.65 3.31 3.47 

PED 2.83 2.79 3.40 3.55 

STR 2.92 2.88 3.18 4.15 

 

5. CONCLUDING REMARKS 
 

In this study, we have proposed a novel method for the 

unsupervised speaker adaptation of batch normalized acoustic 

models. Large improvements have been observed on the 

CHiME-3 dataset after conducting speaker adaptation using 

our proposed approach. Moving forward, we plan to modify 

this method for speaker adaptive training; currently, we only 

perform test-time adaptation. In addition, auxiliary features 

such as i-vectors or fMLLR features can be combined with our 

proposed approach. Furthermore, in our current work, we 

feed-forward all the data to record       
   

 and       
   

 after 

training, and use them at the test stage for layer-wise 

normalization. It would be interesting to see whether it is 

possible to directly use test data to calculate means and 

variances so that we can perform faster and better adaptation.  
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Table 1. ASR performance (%WER) using first-pass decoding results of a tri-gram language model for adaptation. 

Approaches LMs for decoding 
Dev. set Test set 

SIMU REAL AVG SIMU REAL 

Baseline acoustic model Tri-gram 7.22 6.87 7.05 7.86 10.40 

Batch normalized acoustic model Tri-gram 6.85 6.47 6.66 7.17 9.51 

LIN adaptation Tri-gram 5.60 5.79 5.69 6.37 8.34 

Scaling and shifting factors adaptation (proposed) Tri-gram 4.98 4.92 4.95 5.05 7.24 

Scaling and shifting factors adaptation (proposed) + LIN adaptation Tri-gram 4.93 4.96 4.94 5.10 7.28 

LHUC [19] Tri-gram 5.18 5.36 5.27 5.58 7.78 

 

Table 2. ASR performance (%WER) using better first-pass decoding results for adaptation. 

Approaches LMs for decoding 
Dev. set Test set 

SIMU REAL AVG SIMU REAL 

Batch normalized acoustic model + sMBR Tri-gram 6.50 6.10 6.30 7.36 8.64 

- Five-gram 5.31 4.96 5.14 6.11 7.35 
- RNNLM 4.63 4.15 4.39 5.52 6.45 

LIN adaptation Tri-gram 5.01 5.29 5.15 6.07 7.59 

- Five-gram and RNNLM 3.55 3.47 3.51 4.47 5.39 

Scaling and shifting factors adaptation (proposed) Tri-gram 3.85 4.20 4.02 4.18 5.77 

- Five-gram and RNNLM 3.03 3.06 3.05 3.25 4.24 

Yoshioka et al. [34] - 3.63 3.45 3.54 4.46 5.83 
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