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Abstract 

This paper tightly integrates spectral and spatial information 

for deep learning based multi-channel speaker separation. The 

key idea is to localize individual speakers so that an enhance-

ment network can be used to separate the speaker from an es-

timated direction and with specific spectral characteristics. To 

determine the direction of the speaker of interest, we identify 

time-frequency (T-F) units dominated by that speaker and on-

ly use them for direction of arrival (DOA) estimation. The 

speaker dominance at each T-F unit is determined by a two-

channel permutation invariant training network, which com-

bines spectral and interchannel phase patterns at the input fea-

ture level. In addition, beamforming is tightly integrated in the 

proposed system by exploiting the magnitudes and phase pro-

duced by T-F masking based beamforming. Strong separation 

performance has been observed on a spatialized reverberant 

version of the wsj0-2mix corpus. 

Index Terms: spatial features, permutation invariant training, 

deep neural networks, cocktail party problem. 

1. Introduction 

Riding on the tide of deep learning, monaural speaker-

independent speaker separation, or the cocktail party problem, 

has made major advances since the introduction of deep clus-

tering [1], [2], [3], [4], deep attractor networks [5] and permu-

tation invariant training (PIT) [6]. These algorithms address 

the label permutation problem in the challenging monaural 

speaker-independent setup, demonstrating much better separa-

tion performance over conventional algorithms such as spec-

tral clustering [7], computational auditory scene analysis [8], 

and speaker- or target-dependent systems [9]. 

When multiple microphones are available, spatial infor-

mation can be leveraged for better separation, as speaker 

sources are directional and usually spatially separated in real-

world environments. One stream of research to exploit this in-

formation is focused on spatial clustering [10], [11], [12], [13], 

[14], which clusters individual T-F units according to their 

spatial origins under the speech sparsity assumption [8], [15], 

using spatial cues such as  interchannel time, phase or level 

differences (ITDs/IPDs/ILDs) and directional statistics. How-

ever, these approaches typically only consider spatial infor-

mation, which is insufficient for separation in reverberant en-

vironments or when sound sources are close to one another. In 

contrast, recent developments in deep learning based monaural 

speech separation have shown that even with spectral infor-

mation alone, remarkable separation performance can be 

achieved [16], [17]. 

One promising research direction is thus to combine the 

merits of these two streams of research so that spectral and 

spatial processing can be tightly integrated to improve separa-

tion. In [18] and [19], estimated masks or embeddings from 

monaural deep clustering are utilized to construct a beam-

former in each frequency for separation. Their studies follow 

the recent development of T-F masking based beamforming in 

the CHiME challenges [20]. The performance is however 

largely limited by beamforming, which cannot produce suffi-

cient separation when room reverberation is strong and when 

the speakers are close to one another. In such cases, perform-

ing further spectral masking would be very helpful. A recent 

study [21] applies monaural deep attractor networks on the 

outputs of a number of fixed beamformers. However, their ap-

proach requires the knowledge of microphone geometry to 

manually design the fixed beamformers for a single fixed de-

vice and such fixed beamformers are typically not as powerful 

as data-dependent beamformers, which can lead to significant 

noise reduction based on signal statistics. Different from the 

above approaches, which apply deep clustering or its variants 

only on monaural spectral features, our recent study [22] pro-

poses a multi-channel deep clustering algorithm, which utiliz-

es IPDs as additional features for DNN training. Although 

IPDs are inherently ambiguous across frequencies, experi-

mental results suggest that spectral features can help to resolve 

this ambiguity. However, this approach does not exploit beam-

forming, which can produce phase enhancement and is known 

to perform very well in less reverberant conditions or when 

the number of microphones is large. 

Following [22], this study utilizes IPD features as addi-

tional inputs for PIT, as the PIT approach is more end-to-end 

than deep clustering. The PIT network is used to resolve the 

permutation problem as well as for DOA estimation. With the 

permutation issue resolved and target direction estimated, the 

problem becomes how to separate the speaker of interest with 

specific spectral characteristics and arriving from a particular 

direction. We address this problem by using an enhancement 

network, where the input is a combination of spectral features, 

initial mask estimates from the PIT network, and directional 

features indicating whether the signal is from the estimated di-

rection. Spectral and spatial information are hence tightly in-

tegrated at the input level to leverage the representational 

power of deep learning for better mask and magnitude estima-

tion. In addition, the phase estimate produced by data-

dependent beamforming is utilized as the enhanced phase. 

Previous studies have utilized spatial features for DNN 

training [23], [24], [25]. However, they are designed for 

speech enhancement tasks (i.e. speech vs. noise) and assume 

that the target speech is in the front direction in the binaural 

setup. In more general cases, the target speaker may originate 

in any direction and the spatial features proposed in those 

studies would no longer work well. We evaluate the proposed 

algorithms on a spatialized reverberant version of the wsj0-

2mix corpus. Much better separation results have been ob-

served over the oracle multi-channel Wiener filter, MESSL 

[12], GCC-NMF [26] and multi-channel deep clustering [3].  This research was supported in part by an AFRL contract (FA8750-15-1-0279), an NSF grant 

(IIS-1409431), and the Ohio Supercomputer Center.   
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2. System Description 

Our system contains two neural networks, with a two-channel 

PIT network (depicted in Figure 2) trained for initial mask and 

DOA estimation, and a multi-channel enhancement network 

trained to refine the initial mask estimate of each speaker. The 

overall system is depicted in Figure 1.   

2.1. Single-Channel Permutation Invariant Training 

A permutation invariant objective function was first proposed 

in [1] while later reported in [2], [27] to work as comparably 

well as deep clustering. The key idea is to train a neural net-

work to minimize the minimum utterance-level loss of all the 

permutations. The phase-sensitive mask (PSM) [28] is typical-

ly used as the training target. The loss function to minimize is: 
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where   indexes microphone channels,      and   ∑     
  are 

the STFT representation of source   and the mixture,   is a set 

of permutations on   sources,  
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truncates the PSM to the range      ,  ̂ denotes the estimated 

masks,     computes magnitude, and      extracts phase. Fol-

lowing [29] and [3], the    loss is used for training and sig-

moidal units are used in the output layer. 

A recurrent neural network with bi-directional long short-

term memory (BLSTM) cells is commonly used in PIT. Log 

magnitude is used as the input feature. The network architec-

ture is shown in Figure 2.  

2.2. Two-Channel Permutation Invariant Training  

Our recent study [22] found that simply including the cosine 

and sine of IPDs for DNN training leads to significant im-

provements. In this study, we include these two features for 

PIT. As PIT network is more capable of end-to-end optimiza-

tion [3], the estimated mask is expected to be better than the 

binary mask produced by multi-channel deep clustering [22].  

Given a microphone pair 〈   〉, we extract spectral fea-

tures            from microphone  , cosIPD              , 

and sinIPD               to train our PIT network, where 

the labels are computed using the source images captured at 

microphone  . The network architecture is illustrated in Fig-

ure 2. At run time, the separation results are obtained as 

 ̂ 
   

  ̂ 
   

  , where  ̂ 
   

 denotes the estimated mask of source 

  at microphone  . The rationale [22] of using cosIPD and sin-

IPD is that                 
           should naturally 

form clusters within each frequency for spatially separated 

speakers with difference time delays. As      and      are very 

similar in far-field conditions, we only use the real and imagi-

nary parts of             as the additional features. Although 

cosIPD and sinIPD are ambiguous across frequencies, the 

spectral features could help to resolve this ambiguity [22].  

2.3. Multi-Channel Speech Enhancement 

The enhancement network takes in spectral features, initial 

mask estimates by the two-channel PIT network, and direc-

tional features to improve the mask estimation of target speak-

ers. We introduce two types of directional features, one based 

on compensating IPDs and the other based on beamforming. 

Suppose that there are       microphones and micro-

phone   is designated as the reference microphone, we con-

sider   microphone pairs: one pair 〈   〉, where   is a ran-

domly-chosen non-reference microphone, and     pairs 
〈    〉 for any non-reference microphone   . We apply the 

two-channel PIT network on each of the   pairs to obtain an 

estimated mask of each source at each microphone. With these 

estimated masks, we first compute the speech covariance ma-

trix for source   following [30], [31], [32], [33]: 
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where      stands for conjugate transposition and           is 

the weight denoting the importance of each T-F unit for the 

computation of  ̂      . It is computed using the median of 

the estimated masks, following [31].  

                   ̂ 
            ̂ 

          (3) 

The steering vector  ̂       is then computed as the principal 

eigenvector of  ̂       [30]. The rationale is that if  ̂       is 

well estimated, it would be close to a rank-one matrix, as the 

target speaker is a directional source [30], [15]. The estimation 

of steering vectors is essentially similar to DOA estimation. 

Following our recent study [34], one way to compute di-

rectional features (DF) is to compensate the IPD features using 

the estimated phase difference: 
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where   contains all the considered     microphone pairs. 

The key idea is that for a T-F unit dominated by source  , the 

observed IPD should be aligned with the estimated phase dif-

ference, only if the steering vector is well estimated. The 

phase compensation term is used to establish the consistency 

of directional features along frequency such that at any fre-

quency, a value close to one in the derived directional feature 

would indicate that the T-F unit is likely dominated by the tar-

get source, while dominated by other sources otherwise. This 

property makes the directional features useful for DNN based 

T-F masking to enhance the signal from a specific direction.  

An alternative is to use beamforming results as directional 

features. We here consider the multi-channel Wiener filter 

(MCWF) computed as:  

 ̂ 
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Figure 1. Illustration of overall system. 
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2719



where  ̂       
 

 
∑               

  is the observed mixture 

covariance matrix and   a one-hot vector with    being one. 

The feature is then computed as: 

   
            (| ̂ 

             |) (6) 

Clearly, using the directional features alone is not suffi-

cient enough for separation, as the underlying sources could 

be spatially close to each other and reverberation components 

of interfering sources could arrive the array from the estimated 

direction. We hence also utilize the spectral feature of the mix-

ture and the initial mask estimate as the inputs to train the en-

hancement network. This way, only the signal with specific 

spectral characteristics and in a particular direction is en-

hanced while suppressed otherwise. More specifically, the en-

hancement network is trained using a combination of 

     |  | ,  ̂ 
   

 and    
   

 to estimate the PSM of source   at 

microphone  . The loss function is: 
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where  ̂ 
   

 is the estimated mask produced by the enhance-

ment network and  ̂ 
            ̂ 

               is the en-

hanced phase produced by the MCWF beamformer. At run 

time, we run the enhancement network once for each source 

and the separation result is obtained as  ̂ 
   

  ̂ 
        

  ̂ 
   

. We 

emphasize that the phase produced by beamforming is em-

ployed as the enhanced phase, since  ̂ 
    is expected to be bet-

ter than the mixture phase     if the distortion introduced by 

beamforming is minimal.  We also point out that we do not 

train a network to estimate a mask that will be, at run time, 

applied to  ̂ 
             . Instead, the magnitude produced by 

beamforming is used as directional features to improve the 

magnitude estimation of source   at microphone  , as   
   

, ra-

ther than fluid  ̂ 
                , is considered as the reference 

for metric computation.  

Our models, once trained, can be directly applied to mi-

crophone arrays with various numbers of microphones ar-

ranged in diverse geometry. We can first apply the well-

trained two-channel PIT network on each microphone pair, 

then use Eq. (4) or (6) to constructively combine all the mi-

crophones, and finally apply the well-trained enhancement 

network on the derived features for each source for separation. 

Note that we can replace two-channel PIT with single-channel 

PIT in this pipeline. However, we found that the former pro-

duces better initial mask estimates, simply because the permu-

tation problem can be alleviated by exploiting IPDs. The two-

channel PIT network, however, can only utilize pairwise spa-

tial information and its extension to multi-channel cases is not 

straightforward. In contrast, the directional features construc-

tively combine the spatial information of all the microphones 

and hence are expected to better encode spatial information 

than the ambiguous pairwise cosIPDs and sinIPDs.  

3. Experimental Setup 

We train our models using simulated room impulse responses 

(RIR) and test on simulated as well as real-recorded RIRs. To 

create reverberant multi-channel speaker mixtures, we con-

volve the RIRs with the utterances in the open wsj0-2mix data 

[1], which contains 20,000, 5,000 and 3,000 single-channel 

anechoic two-speaker mixtures in its 30-hour training, 10-hour 

validation and 5-hour test set. The speakers in the validation 

set are seen during training, while the test speakers are unseen. 

The task is hence speaker-independent. In wsj0-2mix, the 

SNR of one source with respect to the other is uniformly 

drawn from -5 dB to 5dB. The sampling rate is 8 kHz.  

We employ the RIR generator1, which is based on the 

classic image method, to generate simulated RIRs. The spati-

alization process is detailed in Algorithm 1. An illustration of 

the setup is depicted in Figure 3(a). The overall guideline is to 

make the setup as random as possible while still subject to re-

alistic constraints. For each mixture in wsj0-2mix, we random-

ly generate a room with random room characteristics, speaker 

locations and array spacing. Here, we consider a linear array 

setup with speakers randomly located in the front plane. We 

generated 20,000, 5,000 and 3,000 eight-channel utterances 

for training, validation and testing, respectively. The average 

speaker-to-microphone distance is 1.38 m with 0.37 m stand-

ard deviation and the average direct-to-reverberant energy ra-

tio (DRR) is 0.49 dB with 3.92 dB standard deviation.  

We generated another 3,000 eight-channel utterances for 

testing using the Multi-Channel Impulse Responses Database2 

[35] recorded using eight-microphone linear arrays with three 

different microphone spacing (i.e. 3-3-3-8-3-3-3, 4-4-4-8-4-4-

4 and 8-8-8-8-8-8-8 cm). The RIRs are measured in a room of 

size 6x6x2.4 m in steps of     from      to    , at a distance 

of 1 m and 2 m, and at three T60s (0.16, 0.36 and 0.61 s). We 

randomly place each speaker in each test utterance of wsj0-

2mix at a randomly-chosen direction and distance, using a 

randomly-chosen linear array and a randomly-chosen rever-

beration time. Note that for any two speakers, we constrain 

them to be at least     apart. See Figure 3(b) for an illustra-

tion. The average DRR is 2.8 dB with 3.8 dB standard deriva-

tion. We emphasize that this setup is a very realistic one, as it 

is speaker-independent and we only use simulated RIRs for 

training, while real RIRs for testing. 

The PIT and enhancement networks respectively contain 

four and three BLSTM layers, each with 600 units in each di-

rection. Both networks are trained on 400-frame segments of 

the 20,000 eight-channel utterances generated using the simu-

lated RIRs. Adam is utilized for optimization. The window 

size is 32 ms and the hop size is 8 ms. We apply 256-point 

FFT to extract 129-dimensional log magnitudes and spatial 

features for model training. We emphasize that the enhance-

                                                                 
1
Available at https://github.com/ehabets/RIR-Generator.   

2
Available at http://www.eng.biu.ac.il/~gannot/RIR_DATABASE/.    

Input: wsj0-2mix; 

Output: spatialized reverberant wsj0-2mix; 

For each source s1, source s2 in wsj0-2mix do 

Sample room length    and width    from        m; 

Sample room height    from       m; 

Sample mic array height    from       m; 

Sample displacement    and    of mic array from            m; 

Place array center at *
  

 
    

  

 
      + m; 

Sample microphone spacing    from             m; 

For           do 

Place mic   at *
  

 
    

   

 
           

  

 
      + m; 

End 

Sample speaker locations in the frontal plane: 

  
   

   
   

   
   

       
   

   
   

   
   

      such that any two 

speakers are at least     apart from each other with respect 

to the array center, and the distance from each speaker 

to the array center is in between          m; 

Sample T60 from           s; 

Generate impulse responses using RIR generator and convolve them with 

s1 and s2; 

Concatenate channels of reverberated s1 and s2, scale them to match SNR 

between original s1 and s2, and add them to obtain reverberated mix; 

End 

Algorithm 1. Data spatialization process (simulated RIRs). 
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ment network needs to be trained on the directional feature 

computed from various numbers of microphones, as its quality 

varies with the numbers of microphones. At run time, for each 

utterance, we randomly select a subset of microphones for 

testing. The aperture size can be 3 cm at minimum and 56 cm 

at maximum for the real RIRs, and 2 cm and 63 cm for the 

simulated RIRs. SDR improvement (SDRi) computed using 

the bss_eval_images software is used as the evaluation metric. 

The reverberant image of each source at the reference micro-

phone, i.e.   
     is used as the reference for metric computation. 

4. Evaluation Results 

The second last column of Table 1 presents the results on the 

simulated RIRs. The performance of single-channel PIT in the 

reverberant condition (7.5 dB) is much lower than the 10.0 dB 

SDRi [6], [3] obtained on the original anechoic wsj0-2mix 

corpus, likely because of the smearing of spectral features and 

the breaking of the speech sparsity property due to reverbera-

tion. Although cosIPDs and sinIPDs are ambiguous across 

frequencies and the microphone geometry is completely un-

known, adding them as additional features for model training 

leads to large improvement (from 7.5 to 9.9 dB). Then, we use 

the enhancement network to further improve the performance, 

based on the masks estimated from the two-channel PIT net-

work. This improves the performance from 9.9 to 10.6 and 

10.9 dB for the directional features computed using Eq. (4) 

and Eq. (6), respectively. The last column of Table 1 reports 

the performance on the test data spatialized by the real RIRs. 

The results hold up reasonably well, although the models are 

trained only on the simulated RIRs. In addition, similar trends 

as in the second last column are observed. 

Table 2 shows the results with up to eight microphones 

along with the comparison with other systems. Even with ran-

dom microphone geometry, adding more microphones gradu-

ally improves the separation performance (from 10.9 dB for 

two microphones to 13.6 dB for eight microphones). Recent 

studies [18], [19] apply single-channel deep clustering on each 

microphone signal to derive a T-F masking based beamformer 

for each source for separation. To compare with their ap-

proaches, we supply the truncated PSM (tPSM), computed as 

  
       

           
              , to Eq. (3) to compute oracle 

 ̂       and report oracle MCWF results (denoted as tPSM-

MCWF). We also report the performance of estimated MCWF 

(eMCWF) obtained using the estimated masks  ̂ 
   

 computed 

from the two-channel PIT network. In addition, we compare 

our algorithm with MESSL3 [12], a popular Gaussian mixture 

model based wideband spatial clustering algorithm proposed 

for two-microphone array, and GCC-NMF4 [26], where dic-

tionary atoms obtained from non-negative matrix factorization 

are assigned to individual sources over time according to their 

time difference of arrival estimates obtained from GCC-

PHAT. The recently-proposed multi-channel deep clustering 

(MCDC) [22] algorithm combines deep clusteirng with 

conventional spatial clustering. Its extension to multi-channel 

cases is done by first applying two-channel deep clustering on 

each microphone pair, then stacking the embeddings from 

each pair, and finally performing kmeans clustering on the 

stacked embeddings. Our approach is consitently better than 

MCDC, likely because our approach is more end-to-end and 

better integrates spatial information. We also list the 

performance of various ideal masks, such as the ideal binary 

mask (IBM), ideal ratio mask (IRM) and tPSM, which are 

computed based on the source images captured at the 

reference microphone. Compared with such monaural ideal 

masks that use mixture phase for re-synthesis, the multi-

channel tPSM (MC-tPSM), computed as   
       

   
         

   
 

 ̂ 
           where  ̂ 

    here is obtained from tPSM-MCWF and 

used as the phase for re-synthesis, is clearly better and be-

comes even better when more microphones are available. Note 

that MC-tPSM represents the upper bound performance of the 

proposed approach and shows the effectiveness of using  ̂ 
    

as the phase estimate.  

By exploiting spatial information, we obtain 10.9 dB 

SDRi using two microphones and 13.6 dB SDRi using eight 

mcirophones, which are much better than the 7.3 dB SDRi 

obtained by single-channel PIT. The 13.6 dB result is better 

than the 12.1 and 13.0 dB results obtained using the monarual 

IBM and IRM (with mixture phase). 

5. Concluding Remarks 

We have proposed a novel and effective deep learning based 

approach for BSS, where complementary spectral and spatial 

information are integrated as input features to improve mask 

estimation. The trained models are flexible enough to be ap-

plied to arrays with various numbers of microphones arranged 

in diverse geometry. Future research would include the joint 

training of the PIT and the enhancement network, exploring 

other types of spatial features and tighter integration with 

beamforming algorithms. 

                                                                 
3
Available at https://github.com/mim/messl.  

4
Available at https://github.com/seanwood/GCC-nmf.  
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Figure 3. Illustration of experimental setup. 

Table 1. SDRi (dB) results on spatialized wsj0-2mix (simulated RIRs). 

Approaches            
Simu 

RIRs 

Real 

RIRs 

1ch PIT - 7.5 7.3 

2ch PIT - 9.9 9.1 

+ enhancement network Eq. (4) 10.6 10.3 

+ enhancement network  Eq. (6) 10.9 10.9 

Table 2. SDRi (dB) comparison with other approaches using various numbers 

of microphones on spatialized wsj0-2mix (real RIRs). 

#
m

ics 

MESSL 

[12] 

GCC- 

NMF 

[26]  

eMCWF 
MCDC 

[22] 

Proposed 
tPSM- 

MCWF 

Oracle Masks 

   
   

      
IRM IBM tPSM 

MC-

tPSM Eq.(4) Eq.(6) 

2 4.1 5.0 6.5 9.2 10.3 10.9 7.1 

12.1 13.0 14.1 

14.1 

3 - - 7.8 9.6 10.8 11.7 8.6 14.8 

4 - - 8.7 9.8 11.1 12.3 9.6 15.3 

5 - - 9.4 9.9 11.4 12.8 10.4 15.8 

6 - - 9.8 10.0 11.6 13.2 11.0 16.2 

7 - - 10.2 10.0 11.8 13.4 11.5 16.5 

8 - - 10.5 10.0 11.9 13.6 11.9 16.7 
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